Other Parts Discussed in Thread: TMS320F28035, C2000WARE
TMS320F28035的ADC在带载重载时候,在某占空比时候某个ADC通道读到的的结果比正常多了或者少了20左右!通道不变更换EPWM3(原来是EPWM2)触发源后那个通道就正常了,但是另外一个AD通道又出现了类似多了或者少了20,经过测试发现ADC引脚波形没有变化,所以怀疑是不是内部ADC模块受干扰了?
This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
TMS320F28035的ADC在带载重载时候,在某占空比时候某个ADC通道读到的的结果比正常多了或者少了20左右!通道不变更换EPWM3(原来是EPWM2)触发源后那个通道就正常了,但是另外一个AD通道又出现了类似多了或者少了20,经过测试发现ADC引脚波形没有变化,所以怀疑是不是内部ADC模块受干扰了?
试过了没用,用的TI的ADC_SOC_CNF.c测试的然后配置通道和PWM触发也不行,我现在打算不用触发源了,打算连续转换,怎么设置呢?论坛上有很多写着SOC之间干扰的最后也没看到结果,不知道解决没有还是放弃了?
你好,这个例程的路径是什么?我没有看到过这个例程名,一般使用的例程都是这个位置的:C:\ti\c2000\C2000Ware_3_04_00_00\device_support\f2803x\examples\c28\adc_soc
连续模式可以看一下INTSELxNy寄存器的INTxCONT位,此位就是设置连续模式的。
#include "PeripheralHeaderIncludes.h"
void ADC_SOC_CNF(int ChSel[], int Trigsel[], int ACQPS[], int IntChSel, int mode)
{
extern void DSP28x_usDelay(Uint32 Count);
EALLOW;
AdcRegs.ADCCTL1.bit.ADCREFSEL = 0; //内部/外部参考选择, 0:内部能带隙用于参考源的产生
AdcRegs.ADCCTL1.bit.ADCBGPWD = 1; // Power up band gap 内核内的能带隙缓冲电路上电
AdcRegs.ADCCTL1.bit.ADCREFPWD = 1; // Power up reference 内核内的参考缓冲电路断电
AdcRegs.ADCCTL1.bit.ADCPWDN = 1; // Power up rest of ADC
AdcRegs.ADCCTL1.bit.ADCENABLE = 1; // Enable ADC
DSP28x_usDelay(1000); // Delay before converting ADC channels
AdcRegs.ADCCTL1.bit.INTPULSEPOS = 1; //中断脉冲在ADC结果锁存到结果寄存器的前一个周期产生
AdcRegs.ADCSOC0CTL.bit.ACQPS = ACQPS[0]; //控制SOCx的采样和保持窗口。最小允许值为6。 ,, 8,,采样窗口为9个周期的长度
AdcRegs.ADCSOC1CTL.bit.ACQPS = ACQPS[1];
AdcRegs.ADCSOC2CTL.bit.ACQPS = ACQPS[2];
AdcRegs.ADCSOC3CTL.bit.ACQPS = ACQPS[3];
AdcRegs.ADCSOC4CTL.bit.ACQPS = ACQPS[4];
AdcRegs.ADCSOC5CTL.bit.ACQPS = ACQPS[5];
AdcRegs.ADCSOC6CTL.bit.ACQPS = ACQPS[6];
AdcRegs.ADCSOC7CTL.bit.ACQPS = ACQPS[7];
AdcRegs.ADCSOC8CTL.bit.ACQPS = ACQPS[8];
AdcRegs.ADCSOC9CTL.bit.ACQPS = ACQPS[9];
AdcRegs.ADCSOC10CTL.bit.ACQPS = ACQPS[10];
AdcRegs.ADCSOC11CTL.bit.ACQPS = ACQPS[11];
AdcRegs.ADCSOC12CTL.bit.ACQPS = ACQPS[12];
AdcRegs.ADCSOC13CTL.bit.ACQPS = ACQPS[13];
AdcRegs.ADCSOC14CTL.bit.ACQPS = ACQPS[14];
AdcRegs.ADCSOC15CTL.bit.ACQPS = ACQPS[15];
AdcRegs.INTSEL1N2.bit.INT1SEL = IntChSel; // IntChSel=16, IntChSel causes ADCInterrupt 1 ,ADCINTx EOC源选择 ,16,无效值
// INTSEL1N2,,中断选择1和2寄存器(INTSEL1N2)(地址偏移量08h)
if (mode == 0) // Start-Stop conv mode 模式选择,
{
AdcRegs.ADCINTFLG.bit.ADCINT1 = 0; // clear interrupt flag for ADCINT1
AdcRegs.INTSEL1N2.bit.INT1CONT = 0; // clear ADCINT1 flag to begin a new set of conversions
//0:在ADCINTx标志(ADCINTFLG寄存器)被用户清除前,没有另外的 ADCINTx边沿产生。
AdcRegs.ADCINTSOCSEL1.all=0x0000; // No ADCInterrupt will trigger SOCx,,没有ADCINT能触发SOCx。TRIGSEL字段决定了SOCx的触发源
AdcRegs.ADCINTSOCSEL2.all=0x0000;
}
if (mode == 1) // Continuous conv mode
{
AdcRegs.INTSEL1N2.bit.INT1CONT = 1; // set ADCInterrupt 1 to auto clr 1:无论EOC边沿何时产生都将产生ADCINTx边沿(不考虑标志位是否清零)
AdcRegs.ADCINTSOCSEL1.all=0xFF;// ADCInterrupt 1 will trigger SOCx, TrigSel is ignored
AdcRegs.ADCINTSOCSEL2.all=0xFF;
}
if (mode == 2) // CLA mode, Start Stop ADC with auto clr ADC Flag
{
AdcRegs.ADCINTFLG.bit.ADCINT1 = 0; // clear interrupt flag for ADCINT1
AdcRegs.INTSEL1N2.bit.INT1CONT = 1; // set ADCInterrupt 1 to auto clr
AdcRegs.ADCINTSOCSEL1.all=0x0000; // No ADCInterrupt will trigger SOCx
AdcRegs.ADCINTSOCSEL2.all=0x0000;
}
if(IntChSel<15)
AdcRegs.INTSEL1N2.bit.INT1E = 1; // enable ADC interrupt 1
else
AdcRegs.INTSEL1N2.bit.INT1E = 0; // disable the ADC interrupt 1
// Select the channel to be converted when SOCx is received
AdcRegs.ADCSOC0CTL.bit.CHSEL= ChSel[0]; //选择被转换的通道。
AdcRegs.ADCSOC1CTL.bit.CHSEL= ChSel[1];
AdcRegs.ADCSOC2CTL.bit.CHSEL= ChSel[2];
AdcRegs.ADCSOC3CTL.bit.CHSEL= ChSel[3];
AdcRegs.ADCSOC4CTL.bit.CHSEL= ChSel[4];
AdcRegs.ADCSOC5CTL.bit.CHSEL= ChSel[5];
AdcRegs.ADCSOC6CTL.bit.CHSEL= ChSel[6];
AdcRegs.ADCSOC7CTL.bit.CHSEL= ChSel[7];
AdcRegs.ADCSOC8CTL.bit.CHSEL= ChSel[8];
AdcRegs.ADCSOC9CTL.bit.CHSEL= ChSel[9];
AdcRegs.ADCSOC10CTL.bit.CHSEL= ChSel[10];
AdcRegs.ADCSOC11CTL.bit.CHSEL= ChSel[11];
AdcRegs.ADCSOC12CTL.bit.CHSEL= ChSel[12];
AdcRegs.ADCSOC13CTL.bit.CHSEL= ChSel[13];
AdcRegs.ADCSOC14CTL.bit.CHSEL= ChSel[14];
AdcRegs.ADCSOC15CTL.bit.CHSEL= ChSel[15];
AdcRegs.ADCSOC0CTL.bit.TRIGSEL= Trigsel[0]; //SOCx触发源选择 ,sampling triggered by EPWM1 SOCA
AdcRegs.ADCSOC1CTL.bit.TRIGSEL= Trigsel[1];
AdcRegs.ADCSOC2CTL.bit.TRIGSEL= Trigsel[2];
AdcRegs.ADCSOC3CTL.bit.TRIGSEL= Trigsel[3];
AdcRegs.ADCSOC4CTL.bit.TRIGSEL= Trigsel[4];
AdcRegs.ADCSOC5CTL.bit.TRIGSEL= Trigsel[5];
AdcRegs.ADCSOC6CTL.bit.TRIGSEL= Trigsel[6];
AdcRegs.ADCSOC7CTL.bit.TRIGSEL= Trigsel[7];
AdcRegs.ADCSOC8CTL.bit.TRIGSEL= Trigsel[8];
AdcRegs.ADCSOC9CTL.bit.TRIGSEL= Trigsel[9];
AdcRegs.ADCSOC10CTL.bit.TRIGSEL= Trigsel[10];
AdcRegs.ADCSOC11CTL.bit.TRIGSEL= Trigsel[11];
AdcRegs.ADCSOC12CTL.bit.TRIGSEL= Trigsel[12];
AdcRegs.ADCSOC13CTL.bit.TRIGSEL= Trigsel[13];
AdcRegs.ADCSOC14CTL.bit.TRIGSEL= Trigsel[14];
AdcRegs.ADCSOC15CTL.bit.TRIGSEL= Trigsel[15];
EDIS;
AdcRegs.ADCSOCFRC1.all = 0xFFFF; // kick-start ADC 1:清除SOCx溢出标志
}
————————————————
用的EPWM6作为触发源
int ChSel[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
int TrigSel[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
int ACQPS[16] = {8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8};
ADC_SOC_CNF(ChSel,TrigSel, ACQPS, 16, 0);
通道选择都没有错!