是的,电源的确非常重要 —— 那笔者还能做些什么呢?

 

笔者的上一篇文章说明了电源变化和噪声会对模数转换器(ADC)性能产生的影响。幸好您的数据采集系统并非注定如此。这里有四种您可采取的措施,能确保您的ADC不太容易受到电源变化和噪声的影响。

 

1.选择具有良好电源抑制比(PSRR)的ADC当然,使您的系统性能免受其电源影响的最佳方法是选择具有足够PSRR的ADC来开始工作。如果您所选择的ADC不能完全满足您的PSRR需求,那么您可在自己原来的开关电源后加一个高PSRR的低压差稳压器(LDO)以提高系统的PSRR。这将有助于清除任何剩余的纹波,并直接增加整个系统的PSRR。请看一下高PSRR的LDO,如电压为3V至36V、电流为150mA的超低噪声TPS7A4901

1:为改善电源抑制状况而添加的TPS7A4901

 

2.适当的去耦和滤波。电源去耦通常发生在系统中的两个位置点:在供电源处和设备电源引脚处。较大“容量”的去耦电容器(通常电容不小于1μF)通常直接放置在电源输出端并连接至接地。这有助于稳定电源并立即尽可能滤除电源噪声。有时候,如果您希望电流汲取量大一些,您还可将额外的大容量电容器放置得更接近ADC引脚。

 

把附加的较小或“局部”去耦电容器(通常电容不超过1μF)放置得最接近ADC电源引脚处,以帮助过滤掉沿途发现的任何噪声。使用两个并联的局部去耦电容器(即电容为1μF的去耦电容器和电容为100nF的去耦电容器)将能在更大的频率范围内提供低阻抗。

 

3.注意布局。像对待所有其它重要模拟信号一样对待您的电源布线。您想提供从供电源到ADC电源引脚的最直接、电感最小的路径。如果您无法使用电源平面,那么请使线路保持短而直接,但要足够宽,以便处理预期的电流。此外,为了让返回电流尽可能容易地回到电源,还要将电源线路布置得直接跨地平面。

2:局部去耦电容器的布局范例

 

当处理瞬变情况时,低电感特别重要。当ADC需要突然增加电源电流时(如上电期间),高电感可能“阻塞”电源。如果模拟和数字接地间存在任何电感,则瞬变可能在它们之间产生超过绝对最大额定值的电压差,从而对ADC造成永久性损坏。图3表明,一些器件(如ADS1278)对AGND和DGND之间允许的电压差有很严格的限制。

  

3:适用于ADS1278 AGNDDGND的绝对最大额定值

 

4.熟知某些电源频率。如果电源噪声确实能找到一种途径躲过滤波和去耦,那么Δ-Σ型ADC还有最后一道防线:数字滤波器。数字滤波器最重要的功能之一就是让带外信号衰减;但是,该滤波器响应可重复本身的频率并会在频率为调制器采样频率(fMOD)的倍数时返回到0dB。接近这些频率的电源噪声能混叠回值得关注的信号带宽范围内。

4Sinc 3滤波器响应在ADS1298输出频率4 × fMODa),同时在ADS1220抑制频率50Hz60Hzb

 

如果您必须使用开关电源,请把它同步到输出数据速率的整数倍。根据滤波器响应,音调在开关频率下或将折回到DC或将被滤波器陷波减弱。一些高精度ADC(如24位ADS1220ADS1248)包括频率为50Hz/60Hz的附加滤波器陷波,用于选择输出数据速率。

 

笔者希望,本博客系列的第1部分和第2部分能让您从一个较高的层次上了解电源如何会影响ADC的性能以及如何在您的系统中减轻其影响。请谨记,下次要多注意自己电源的设计!

 

其它资源

 

原文链接:

http://e2e.ti.com/blogs_/b/precisionhub/archive/2015/06/25/four-ways-to-protect-your-adc-system-power-supply-rejection

Anonymous