Other Parts Discussed in Post: TMCS1123

在电动汽车(EV)充电系统和光伏逆变器系统中,电流传感器通过监测分流电阻器上的压降或导体中电流产生的磁场来测量电流。这些高压系统使用电流信息控制和监测电源转换、充电和放电。

霍尔效应电流传感器和基于分流器的电流传感器是最常见的电流检测技术。然而,迄今为止,在高压应用中使用霍尔效应传感器一直存在问题。本文将探讨选择每种拓扑时需要考虑的因素,并重点介绍在高压应用中使用霍尔效应电流传感器来简化电流检测这一创新技术。 

基于分流器的电流检测与基于霍尔效应的电流检测

与霍尔效应电流传感器相比,基于分流器的电流传感器通常在整个电流范围内精度更高。通过使用稳定的放大器技术或精密模数转换器 (ADC) 和精密分流电阻器,工程师可以在整个电流测量范围、工作温度范围以及生命周期内实现漂移低于 1% 的高精度。基于分流器的传感器常用于汽车牵引逆变器、伺服驱动器以及 EV 充电基础设施应用。

放大器和精密 ADC 通常用来监测分流电阻器上的压降并提供比例输出。每种电流检测解决方案在工作电压、失调电压、漂移、带宽和易用性方面均有所不同。基于分流器的系统存在一些限制因素——由于器件的架构,这类系统通常具有较大的传播延迟,而且会增加设计复杂性,例如在高侧电源和低侧电源方面。另外,使用基于分流器的器件时,需要仔细考虑各种分流电阻器参数和功耗。

而与基于分流器的解决方案相比,一体式封装的霍尔效应电流传感器具有更高的性价比,传播延迟更小,并且更容易设计到系统中。采用一体式封装的解决方案时,电流通过引线框流过封装,因此无需精密电阻器,从而降低了成本并缩减了物料清单。另外,还无需高侧和低侧两个电源——您可以使用一个低侧电源来为霍尔效应传感器供电,从而进一步降低设计复杂性。

使用霍尔效应传感器创新技术简化高压电流检测

尽管霍尔效应电流传感器提供了诸多优势,但由于其在温度范围内和生命周期内存在较大的漂移,因此大多数设计人员不会考虑将其用于高压系统。由于电气和隔离衰减,霍尔效应电流传感器在其生命周期内存在很大的漂移。

为了克服这些缺点,德州仪器研发出了一种解决方案,可将霍尔效应电流传器 TMCS1123 在生命周期内的灵敏度漂移误差大幅降低至 ±0.5%,从而使工程师能够设计出在整个系统生命周期内需要更少校准或维护的高压系统。我们还将整个生命周期和温度范围内的总最大灵敏度误差降低至 ±1.75%,这有助于提高效率并减少成本高昂的系统校准工作。另外,TMCS1123 具有差分霍尔效应感应功能,能够显著减少磁场干扰或串扰,并且还提供了过流检测、精密电压基准和传感器报警等其他功能。请参阅图 1。

  

1TMCS1123 方框图

TMCS1123 还解决了霍尔效应传感器的一些其他常见限制,例如引线框电阻和芯片散热限制,这些会限制器件能够处理的电流大小。TMCS1123 能够在 25°C 条件下检测 75ARMS 的电流,并在整个温度范围和生命周期内,无需校准即可实现 ±1.75% 的灵敏度误差,因此能够在系统的生命周期内保持高精度。

电流检测设计考虑因素

下面列举了几个为系统选择电流传感器时的一些主要考虑因素。首先,精度是一项重要的考虑因素,应当作为首要定义的参数之一来确定可行的技术。其次,功率等级对于上述所有技术都至关重要。系统的电压和电流水平必须在器件规定的参数范围内,以确保安全高效地运行。为了灵敏地控制开关系统,例如太阳能系统中的隔离式直流/直流转换器,必须考虑带宽和速度。设计复杂性也是需要考虑的一项重要因素。因为无需额外的电源或元件,霍尔效应电流传感器使用简单,能够在器件允许范围内的所有电压电平条件下工作。

结语

EV 充电器和光伏逆变器等高压系统中日益需要高度精确的电流测量,而高压应用中存在一些设计挑战,使得系统的设计变得更加复杂,成本也更高。现在,借助 TMCS1123 等电流检测器件,您可以在 EV 充电器等高压应用中精确地检测电流,同时降低设计复杂性,并以更合理的价格迅速解决各种设计问题。

Anonymous