• 对您的 LED 进行高效调光,无需检测电阻器

    作者:Chris Glaser 德州仪器

    采用电池驱动单 LED 时,效率是关键。高效使用电池能量并将其转换为光输出可延长电池使用寿命,降低成本并为最终用户减少麻烦。首先要实现高效开关功率转换,接下来是与上一步同等重要的调光。在不需要如此高亮度的照明时,调光可帮助用户减少光输出,进而降低电池电源消耗。调光与高效率功率转换相结合,可最大限度地延长智能手机血糖仪等设备的电池使用寿命。

    通过 a) 检测电阻器与 b) 功率级中的 MOSFET 对比 LED 电流调节。

    使这些器件在驱动 LED 时更高效的进一步方法是提高开关功率级自身效率。每个 LED 驱动器中的重要损耗都是电流感应元件(通常是检测电阻器)损耗。作为电阻器,所有通过它的电流都会造成损耗,消耗电池。为了严格控制 LED 电流(与光输出成正比),通常将电阻器用作感应元件。LED 电流通过该电阻器路由,并通过 LED 驱动器测量和调节产生的电压。虽然简单,但遗憾的是对一个单…

  • 何时选用多相位

    作者:Robert Taylor  德州仪器

    有很多应用都可通过多相位电源获得优势,例如 ASIC 或处理器的内核电源、汽车音响电源或者服务器的存储器应用等。几乎任何电源都可充分发挥多相位方案的优势。多相位电源优势包括热性能、尺寸、输出纹波以及瞬态响应等。该方案适用于简单的降压转换器、升压转换器以及诸如有源钳位正向或反向转换器等更复杂设计。

    相关文章:多相位降压转换器的优势

    电源与传导损耗有关的热性能与电流平方成正比。使用多相位方法可减少这些损耗。例如使用双相位,与传导损耗有关的电源可减半。

    • 单相位传导损耗 =
    • 双相位传导损耗 =
    • 四相位传导损耗 =

    传导损耗只是电源总体损耗的一部分,但在较大电流下这些损耗会非常显著。

    通过采用多相位方案缩小电源尺寸。尽管需要使用更多组件,但组件的尺寸一般比较小。磁组件会占据绝大多数电源空间,尽管需要更多元件,但整体体积还是会缩小。尺寸因素不仅与真正的大电流电源有关…

  • 多相位降压转换器的优势

    Other Parts Discussed in Post: LM3754, LM25119, LM5119

    作者:David Baba德州仪器  

    引言

    对于电流在 25 A 左右的低压转换器应用而言,单相降压控制器非常有效。若电流再大的话,功耗和效率就开始出现问题。一种较好的方法是使用多相降压控制器。本文将简单比较,使用多相降压转换器和单相转换器的好处,并说明电路实现时一个多相降压转换器能够提供什么样的值。

    图 1 显示了一款二相电路。由该电路的波形(图 2 所示)可以清楚地看到各相互相交错。这种交错可减少输入和输出纹波电流。另外,它还减少了印刷电路板或者某个特定组件上的热点。实际上,二相降压转换器让 FET 和电感的 RMS-电流功耗降低了一半。相交错还可以降低传导损耗。

     

    1 二相降压转换器

    2 1 2 的节点波形

    输出滤波器考虑

    由于每个相位的功率级电流更低,多相实现的输出滤波器要求也随之降低…

  • 万圣节来临,动手做一个无线充电的南瓜灯吧

    Other Parts Discussed in Post: BQ51013B, BQ500212A

    Gordon Varney是TI电池管理部门的一名系统工程师,为了庆祝即将来临的万圣节,他动手制作了一个通过无线充电来提供电能的南瓜灯。

    具体来说,他在镂空的南瓜底部嵌入一个铜线圈,连上一个无线电源接收器开发板(型号为bq51013B),然后将南瓜放置到一个嵌入桌面的Qi无线充电站上,南瓜灯就被点亮了。

      

    视频:

     video platformvideo managementvideo solutionsvideo player

    或在优酷观看视频 http://v.youku.com/v_show/id_XNjI3NzkxMDEy.html

    一起来分享您的万圣节DIY作品吧!

    参考资源:

    1, bq51013B开发板

    http://www.ti.com.cn/tool/cn/bq51013bevm-7…

  • 【视频分享】如何简化高电压电流测量

     video platformvideo managementvideo solutionsvideo player

    视频部分内容:

    问:客户正尝试监控他们的48伏特供应电压,而电流范围则是介于100毫安培到25安培之间。

    答: 可以使用间接测量方式,使用变流器或霍尔效应感测器测量电流,不过很可惜,变流器只对AC有用,所以这个方式对客户不可行。

    霍尔效应感测器也测量DC,不过价格稍贵一点,还有点苯重,而且如果处理的对象是金属和磁心,价格就会太昂贵。

    最简单的方法是直接测量,只要将电阻和负载供应串联,分路电阻就会产生电压,代表你供应至放大器的电压,接着就能获得输出电压。

    问: 您说最简单的方法是直接测量,我需要向客户推荐合适的放大器吗?

    答: 是的。回想在学校的日子, 我们通常最常想到的是标准的四电阻差异放大器。但现在,因为我们必须测量微量电压,通常以毫安培为单位,还要测量大量电压,通常是48伏特,最高还会到好几百伏特…

  • 如何通过配置负载点转换器 (POL) 提供负电压或隔离输出电压

    作者:Ramesh Khanna  德州仪器

    在温度高达 210 摄氏度或需要耐辐射解决方案的恶劣环境应用中,集成型降压解决方案可充分满足系统需求。有许多应用需要负输出电压或诸如 +12V 或 +15V 等隔离输出电压为 MOSFET 栅极驱动器电路供电或者为运算放大器实现偏置。我们将在本文中探讨如何使用 TPS50x01 配置降压转换器,提供负输出电压。此外,我们还将讨论如何通过提供高于输入压的电压来满足应用需求。

    TPS50601-SPTPS50301-HT 都是专为耐辐射、地质、重工业以及油气应用等恶劣环境开发的集成型同步降压转换器解决方案。TPS50x01 是具有集成型高侧及低侧 MOSFET 的电流模式控制器件。IC 的大型焊盘部分可通过检查热管理,让热量均匀地分布在 PCB 上。Pvin 范围在 1.6V 至 6.3V 之间,因而为控制电路供电的 Vin 电压范围则为 3V 至 6.3V 之间。

  • 如何优化 DSP 功率预算

    作者:Timothy Hegarty  德州仪器

    鉴于内核、存储器、I/O 以及其它电轨的过多电压电流要求,多核 DSP 实施需要智能电源管理。DSP 内核电压电源的一个重要性能基准就是能够根据DSP 使用情况及环境条件实时调节 VCORE。VCORE 命令一般以数字格式提供,电源应能随时解读。VCORE 电轨一般具有最大的电流规范,而能够平衡效率与尺寸的小型电源解决方案也很重要。关键在于在 DSP 与模拟 PWM 级之间使用低成本接口来实现这一电压识别 (VID) 功能。

    因此,下图提供了将内核电轨标示为 CVDD 的多核 DSP 加以说明。同时,我也在《EDN》杂志上发表了一篇题为《通过调节稳压器优化 DSP 功率预算》的文章,深入探讨这一主题。

    一个额定电流为 15A 的 500KHz 降压转换器负责为 CVDD 供电。该设计可使用连接至 VID 编程器的 4 线数字接口实现 VID 控制,其可直接连接至任何模拟功率级或控制器…

  • 通过调节稳压器优化 DSP 功率预算

    Other Parts Discussed in Post: LM10011

    作者:Timothy Hegarty  德州仪器

     

    系统级节电与功率预算优化是许多应用的关键。例如,数据中心运营商努力控制能耗,便携式设备设计人员力图降低流耗实现更长的电池使用寿命,而通信系统则需要降低工作温度提高稳定性。电源设计主要规范的当前着眼点是:1)在整个负载电流范围内最大限度提高效率;和 2) 根据负载需要自适应缩放输出电压。

    使用电压识别 (VID) 调节输出电压是满足这些需求的方法之一。当然,在英特尔和 AMD 提供的众所周知的自适应电压缩放 (AVS) 规范基础上,VID 可编程性已经在微处理器应用的 DC/DC 内核电压稳压器中得到了广泛使用。然而,这些 VID 控制器建立在多相位降压拓扑基础之上,在特性上专门围绕超大电流需求进行了定制。

    DSP、FPGA 以及 ASIC 现在具有类似的功能,可根据器件活动、电源及时钟域配置、工作模式以及工作温度…

  • 无需对负电源感到不爽!

    作者:Robert Taylor1  德州仪器

    大多数电源设计人员都知道怎样把较高电压转换到较低电压(降压转换器)或把较低电压转换到较高电压(升压转换器)。但如果要生成不同极性的电压又当如何呢?这类电源设计并不常见,但对各种工业、音频以及 RF 应用来说极为必要。

    从正极生成负电压有几种不同方法。您可使用任何类型的隔离转换器(反激、正激等)或升降压转换器

    在使用隔离转换器时,GND 被隔离,设计人员可根据设计需要随意连接负载。在使用非隔离拓扑生成该负电压时,升降压转换器(图 1)最便捷。

    1:升降压转换器的简单原理图

    非隔离拓扑的挑战在于如何在负输出电压和控制信号之间建立关联。可使用放大器或晶体管创建电平转换器,不过还有更低成本、更便捷的方法。您可使用任何通用降压转换器 IC,将该 IC 按一定配置连接起来,就可解决该挑战。

    2

    这种配置的思路是把输出电感器连接至 GND(而非降压转换器中的…

  • 隔离电源 — 模拟是否已退出历史舞台?

    作者:Winter Cheng  德州仪器

    我的第一个开关电源设计是一款用于汽车的 150W DC 至 AC 逆变器。那时是 1999 年,我的经理走到实验室,递给我一个精美的金属盒子,一头是点烟适配器,另一头则是 AC 插座。他告诉我这个盒子的输出是 120V AC 60Hz 方波,我的任务是开发一款可生成正弦波输出的更好产品。

    我的原型设计样本盒中,有 PWM 控制器、一些比较器、放大器和电压参考。这个项目四个月后终止。我最后明白了,用这些器件根本无法在有电动螺丝刀插入 AC 插座时生成具有满意电压失真的美观正弦波,更别提膝上型电脑 AC 适配器等负载。毫无疑问这是个令人沮丧的经历,但这个项目确实让我考虑过通过某种“更智能”产品来实施高级算法。

    三年后我第一次接触到数控电源。我使用门阵列逻辑 (GAL) 器件把 PWM 控制器输出的合规推挽式信号转换为相移全桥控制逻辑。不得不承认,GAL 器件的编程工作令人神往…

  • PowerLab 笔记:如何进行分立式设计

    作者:Brian King 德州仪器

     

    电源设计人员最常抱怨的一个问题是电源总是设计流程的最后一个环节。似乎到了大多数系统设计安排结束后才会有人想到:“嘿,我们还需要一款电源”。

    对于电信应用来说,砖型电源非常适合。你只需把电源安放在电路板上就可使用,无需太多设计工作。

    很多时候,产品最初通过的设计都会有一个能够承载模块成本的预算。然而进入生产阶段后,这个数量开始增长。接下来财务部就会着眼于利润率,要求新产品降低成本。这时首先想到的就是电源。

    分立式设计可轻松将电源组件成本降低 50% 以上。当然与单个模块相比,还需要考虑所需的非循环开发工作以及大量元件的装配成本。在开发时间足够的大批量产品中,使用分立式组件构建的电源也是非常合理的。

    这里正是您可真正利用 PowerLab 资源的地方。只需要适当的电源设计知识即可完成大量设计工作。这可显著降低开发成本与风险。

    有些 PowerLab 设计甚至实现了与业界标准砖型封装引脚兼容…

  • PMU 从发展中获益

    作者:Surinder Singh  德州仪器

    人类最根本的欲望就是发展,使事物更美好、更快、更大。我们可在半导体产业中看到不断重复的相同倾向。当然不是更大,在电子产品领域中实际上是更小。晶体管一发明,早期开拓者就问:“我能否在同一个芯片上放一个以上晶体管?”因而后来 Jack Kilby 发明了集成电路。今天,更好、更小以及更快对在单个 IC 中集成相当数量电路的电源管理单元 (PMU) 来说非常适用。

    开关模式电源与低压降转换器等单输出电源在任何电子系统中都非常重要。但几乎所有的电源系统都需要多电源。PMU 包含从多种电源选项中选出的各种单输出解决方案。PMU 如以下漫画所示,就像在一颗 IC 中有多颗 IC 一样。

    PMU 可以简单到在芯片上只提供两个 LDO 或转换开关,也可以复杂到包含 21 组输出。PMU 可以是通用的,就像瑞士军刀,也可加入专用设计理念。例如 SSD 不仅需要特定电压电流下的电源…

  • PowerLab 笔记:AC/DC 电话及平板电脑充电器

    作者:Brian King 德州仪器

    很明显,智能手机与平板电脑时代已经改变了每个人的生活。然而电源设计人员可能是唯一注意到这些产品制造商还掀起了 AC/DC 适配器革命的人。毕竟没有人愿意把自己的小型智能手机插在硕大的电源上

    还记得十年前这些庞大的“墙插式电源”吗?

    除外形小巧外,充电器还必须尽量低成本高效率

    就在几年以前,有人曾邀请我为一家大型售后配件制造商设计一款 5W 智能手机充电器。我尝试采用一款我们行业标准的低成本固定频率控制器来设计该充电器,但未能成功。尺寸要求结果只是我所面临的难题之一。满负载及空载条件下的功耗与整体解决方案成本需要一款新型控制器。在最初有人这样要求之后,其它类似的商机也开始有规律地涌现。经过几次不成功的尝试后,我就放弃了。

    幸运的是 2012 年德州仪器 (TI) 推出了 UCC28700/UCC28710 系列反激式控制器。最后,我有了设计 AC…

  • 电源设计控制的利弊权衡

    作者:Chris Glaser Texas Instruments

     

    我的梦想之车


    作为普通人,我们每天都要在不同的产品选项之间做出权衡。我真的很想开一辆鲜红色的昂贵运动跑车,可我根本攒不够这么多钱去买。不过每当我在我家附近的小卖部买东西时,总喜欢摆阔,买 Blue Bell 冰激淋,不买该店品牌的冰激淋。对我来说,这类权衡与我在日常生活中所做的无数其它权衡都与我所能接受的购买商品的价值息息相关。开高档车的价值并不值买丰田车的价差,但整整 1/2 加仑容器中更美味冰激淋的价值当然就很值了。

    作为工程师,我们面临设计挑战时也要对呈现在我们面前各种选项做出权衡。对于新一代智能手机或平板电脑的设计,还要用前一代机型使用的电源吗?或者我应该采用能够实现更高性能与更便捷系统集成的较新电源?在新应用中设计重复利用与优化老式设计相比,有多大的价值?我该使用已尝试过的东西还是选择高新技术?

    现在,在您的新一代电源设计中,这两者您都可以得到了…

  • 电源测试:稳定性测量

    作者:Bob Hanrahan 德州仪器

     

    此前,我已经发表了有关如何测试电源设计的三篇文章中的前两篇,即效率测量(第 1 篇)噪声测量(第 2 篇)。文章主要涵盖各种噪声源以及如何使用示波器正确测量噪声。此外,我还讨论了由线路及负载瞬态产生的输出错误问题。

    今天,我要谈谈电源测试的第三个也是最后一个指标:稳定性测量。

    电源属于闭环放大器,负责吸收电能并将其转换成具有特定稳压和/或电流的另一种电能形式。电源的稳压原理是传感输出并将输出的一部分与参考电压相比较。将传感信号与参考信号的差值进行放大,然后用于控制稳压器的功率级,以保持电压(或电流)恒定。(1)。

      

    电源采用从输出回到误差放大器的负反馈确保其在各种工作条件下(负载变化、温度变化以及输入电压变化等)的正确稳压。与任何稳定闭环系统一样,电源也必须确保在工作频率或风险振荡和/或其它不适应特性下闭环增益小于 1。电源负反馈条件必须与输入完全呈异相性或者构建小于…

  • 电源测试:噪声测量

    作者:Bob Hanrahan 德州仪器 

     

    上次,我发表了关于“如何测试电源设计”三篇文章中的第一篇:电源测试,效率测量,主要介绍有关测试的基础知识,包括必要设备以及如何准备用于测试的电路等。此外,我还介绍了如何精确测量启动时间、电流限值以及电源效率。

    今天,我要谈谈在测试电源性能时需要考虑的另一个重要指标:噪声测量。

    电源噪声从何而来?

    电源噪声的生成有多种不同的来源。与任何一款放大器一样,电源也会产生各种不同类型的噪声,而开关模式设计还需要处理其发生的固有开关噪声。开关电源不但可通过设计,最大限度地降低其开关噪声,而且还可纳入输出滤波器,进一步降低该噪声。但只有经过实际测量后才能确切知道电源所产生的噪声级别。

    瞬态纹波噪声

    为何要测量噪声?

    任何系统内的偏置电压正如我所认为的那样,可将其看作电气电路的基础。所有系统都能够与这些电源相连,而且必须解决与其相关的噪声问题。如果从电源生成(或通过…

  • 如何将总谐波失真降至 10% 以下

    作者: Ankur Verma 德州仪器

     

    LED 照明领域普遍关注的问题一直是如何将总谐波失真 (THD) 保持在 10% 以下。电源不但可作为非线性负载,而且还可引出一条包含谐波的失真波形。这些谐波可能会对其它电子系统的工作造成干扰。因此,测量这些谐波的总体影响非常重要。总谐波失真可为我们提供信号 w.r.t. 基波分量中谐波含量的相关信息。更高的 THD 就意味着出现在输入电源端的失真越大或电源质量越低。

    因此,我不得不使用 15 W 射灯(绝缘)设计来测试一个设计方法,该设计方案采用针对 7 个串联 LED 配置的 TPS92314 器件,可通过 150 ~ 265V AC 输入提供 3.1V 正向电压和 0.7A 额定电流。按照下列指示,我在 240V 的 AC 输入电压下实现了 8.7% 的 THD。

    在进行实际实施之前,请查阅本应用手册,了解完成该测试所需的两个重要方程式。

    在本例中,k 等于…

  • 电源测试:效率测量

    作者: Bob Hanrahan 德州仪器模拟应用工程师

    作为一名模拟现场应用工程师,我的使命是帮助客户解决系统问题。有时这些系统问题可能会追溯到电源上。去年 3 个月内,我曾在不同的客户那里遇到了 3 种不同的系统问题,问题的根源均与电源设计问题直接相关。系统已经投产,但却出现了间歇性的现场故障。对于每种情况,我都发现需要对电源做少量修改,而这些修改工作本可以在系统投产前轻易找到并进行的。

    我觉得最有意思的是,由于软件设计工具的进步,客户越来越信任没有经过任何工作台测试(曾经的基本操作步骤)的电源设计。据我观察,系统设计人员仅将仿真结果作为设计稳健性的佐证,甚至没花时间对电源进行实际工作台测试。通过以上观察结果以及许多设计人员从未有过工作台测试经验的这一事实,我清楚地认识到有必要写一篇专题报道。我有时也会思考这种局面与当下大学教育-重软件工具、轻实践设计及测试这个问题到底有多大关系?不过这是我在后续博客中将要探讨的话题。

  • 改进峰值电流模式控制

    作者: Terry Allinder 德州仪器

     

    最糟糕的设计方案通常会在最低输入电压下产生最大输出功率。而在现实情况中,高输入线路的最大功率可能是最低输入线路电压所输送功率的两倍。这会迫使电源设计人员必须对功率级进行过量设计。本文将探讨输入功率增加的原因以及降低方法。此外,还将介绍一种可提升峰值电流模式控制性能的创新方法。

    反向转换器变压器基本上由两个耦合电感器组成。当主开关接通期间,电能被储存在主耦合电感器中。由于变压器具有一次绕组和二次绕组配置,因而当主开关接通时,输出二极管 (D1) 会被反向偏置(1a–1b)。当主开关断开时,会将储存在主耦合电感器中的电能传送到输出耦合电感器中,作为驱动负载的能量。反向变压器能对输出电压进行升压或降压转换,并提供输入到输出的隔离。

      

     

     

     

     

     

     

     

     

     

     

     

     

     

    1.1a) 主耦合电感器中存储的电能;1b)电能传送至二次绕组


    峰值电流模…

  • 为 FPGA 供电简便易行 -写给采用 FPGA 的数字工程师

    作者: Sureena Gupta  德州仪器

     

    我不得不承认,随着时间的推移为 FPGA 供电变得越来越复杂,本文提供一些建议,希望可以帮助简化 FPGA 的电源解决方案,使用户能够创建出快速便捷的解决方案。

    在为 FPGA 供电时需要考虑若干电源设计方面的问题,比如:

    • 增加了输出电压轨数量
    • 需要为电轨设置设定点精度
    • 需要优化设计中的无源板面布局才能实现极低的纹波噪声
    • 需要 AC 瞬态响应,以及补偿环路

    另外,不要忘了还有排序以及更多所需功能。图 1 显示了 FPGA 开发套件中典型的 FPGA 电源解决方案。设计该方案除了要选择正确的器件和电感器外,还需要具备一些其它的专业知识。例如,需要考虑部件放置和板面布局方面的细节。

    1. 典型的 FPGA 电源解决方案

     

    那么,如何才能简化设计呢?

    幸运的是,有多种解决方案都有助于实现简化。在本文中,我将重点介绍两种能够帮助您快速便捷地实现设计目标的创新技术…

  • 如何在高效脉冲跳频模式下选择输出滤波电容器

    作者:Sungho Beck  德州仪器

     

    脉冲跳频模式 (PSM) 是一种广泛用于提高轻负载效率的方法。我们将以具有 PSM 模式的 TPS65290 器件为例介绍如何选择输出滤波电容器。图 1 和图 2 分别显示了 TPS65290 在 PSM 模式下的简化方框图和输出波形。

    如图 1 所示,在 PSM 模式下,只有 SKIP_COMPARATOR 参与了反馈环路。如果输出电压下降到最低值(图 2 中的 Vout_pwm),降压转换器就会开启并将输出电容器充电至最高值(图 2 中的 Vout_pwm+Vhys)。一旦输出电压达到最高值,转换器便开始进入睡眠状态,直到轻负载放电使输出电压再次降至最低值为止。

    由于放电期间转换器处于睡眠状态,轻负载效率在 PSM 模式下相对于在普通脉宽调制 (PWM) 模式下运行可能会有所提高。如果放电过程变长(也就是说负载更轻),那么 PSM 相对于 PWM 的效率优势就会变得更加明显。

  • 电子系统的浪涌管理和系统保护

    Other Parts Discussed in Post: TPS3700

    作者:John Cummings  德州仪器

     

    今天,防止电子产品出现电路故障以及管理上电浪涌电流的方法都得到了长足发展,简单的保险丝以及不确定 P 通道 FET 演变成了高级程度大大提升的解决方案。这些高度集成的解决方案不仅可管理进入系统的浪涌电流,而且还可使导通元件(通常是 FET)处于安全工作范围 (SOA) 内,由此为系统诊断提供了更优异的控制及故障遥测技术。本文将针对增强型系统保护解决方案和几个重要关注点展开讨论。

     

    简单的系统保护

    最简单的电子电路保护形式是具有恰当额定值的保险丝。为应用开发适当解决方案时,有各种保险丝可供选择,包括但不仅限于快熔断、慢熔断、多状态以及智能保险丝等。保险丝之所以种类繁多,是因为每一款都有其自身问题。

    快熔断保险丝的特点正如其名,熔断速度快,这意味着故障跳变的可能性很高,会导致产品召回。因此,如果要选择这种保险丝…

  • “美妙共振”

    作者: TI电池管理解决方案产品部高级应用工程师 UpalSengupta

     

    在我还不能准确定义“共振”这一概念的时候,我就对这个词很感兴趣。“共振”有多种不同的含义,其中大部分含义之间都存在着某种关联。作为电子工程师,现在我听到这个词的第一反应就会想到调谐 LC 电路。

    不过随后我还会联想到许多别的东西,如钟摆、游乐场的秋千或者音叉,这些都是现实世界中共振的例子。我曾咨询过其他人,问他们是怎么理解共振的,得到的回应真是五花八门,有的人茫然地瞪了我一眼,也有人说“让我想起诗歌”

    根据维基百科的定义,共振是指“系统在某些频率下比在其它频率下以更大的振幅做振动的倾向”。虽然这种生硬的技术类定义看似不太富有诗意,不过在我们思考“固有频率”概念的真正含义时,确实赋予了其诗意。毕竟精确调谐和高效率有其优雅之处。…

  • 越少未必越好

    作者:Upal Sengupta,高级应用工程师
    德州仪器电池管理解决方案业务部

    在我从事便携式设备开发工作的大多数时间里,一直被教导“越少未必越好”。PC 电路板上的集成电路 (IC) 数量越少,就越好。自从第一款便携式计算机和移动电话在 20 到 30 年前问世以来,我们就始终孜孜不倦地在为更小巧、更轻薄以及更低价格而努力。当然这种集成趋势在很大程度上是由半导体工艺技术的快速进步所带来的。虽然不太好意思承认,但我的确记不清“亚微米技术”是什么时候成为主流的。老实说,到现在我也记不起来我最后一次使用工艺技术为 1 微米左右的 IC 是在什么时候。

    多年来,我所在的团队一直在负责开发适用于移动电话的高集成度 PMIC 器件。在从 20 世纪 90 年代第一款数字 (2G) 产品出现到大约 2007 至 2008 年 3G 产品成为主流的这段时间里,我观察到一个相当稳定的趋势。我们在系统的…

  • 电源系统设计:非完全“即插即用”

    作者: TI电池管理解决方案产品部高级应用工程师 UpalSengupta

     

    许多年前,我们就已经开始使用“即插即用”一词来描绘一些易于使用的事物了。与过去相比,如今许多复杂设备在设置、配置和启用等方面都要比以往便捷得多。

    今天,客户希望产品可以“开盒即用”。这样的期望与过去相比或多或少得到了合理满足。然而,这种外在的简单性却稍含欺骗成分。作为工程师,我们必须花更多心思简化产品的外在使用,尽管其内部可能相当复杂。

    按照这种趋势,IC 组件供应商已经在努力简化其部件,充分满足系统设计人员的使用需求。与不久的过去相比,大多数 IC 产品说明书都提供详细的设计方程式、外部组件选择指南,乃至建议性 PCB 布局图,可帮助将给定 IC 整合于系统级设计。几乎所有编录中的 IC 都提供有评估套件,以帮助系统设计人员在开展自己的 PCB 构建之前详细了解所需知识。

    可惜的是,有时候系统设计工程师会有误解…