• 如何实现更高的系统效率——第二部分:高速栅极驱动器

    新年伊始,设计师们似乎在永远不停地追求更高效率。在此系列的第一部分中,我讨论了高电流栅极驱动器如何帮助系统实现更高的效率。高速栅极驱动器可以实现相同的效果。

    高速栅极驱动器可以通过降低FET的体二极管的功耗来提高效率。体二极管是寄生二极管,对于大多数类型的FET是固有的。它由p-n结点形成并且位于漏极和源极之间。图1所示为典型MOSFET电路符号中表示的体二极管。

     

    图1:MOSFET符号包括固有的体二极管

     

    限制体二极管的导通时间将进而降低其两端所消耗的功率。这是因为当MOSFET处于导通状态时,体二极管上的电压降通常高于MOSFET两端的电压。由于对于相同的电流水平,P = I×V(其中P是功耗,I是电流,V是电压降),通过MOSFET通道的传导损耗显着低于通过体二极管的传导损耗。

    这些概念在电力电子电路的同步整流中发挥作用。同步整流通过用诸如功率MOSFET的有源控制器件代替二极管来提高这些电路的效率…

  • 解密模块数据表 - 效率

    Other Parts Discussed in Post: TPSM84A21

    在这两部分博客系列的第1部分中,我讨论了除数据表的首页之外,了解有关电源模块集成和解决方案尺寸的完整故事至关重要。在本系列中,我将讨论与电源模块瞬态响应和效率相似的问题。

    瞬态响应是最具挑战的模块功能之一,以缩合成前页列表。这个困难常常导致制造商声称他们的设备具有类似“超快速瞬态响应”的物品。而此困难很可能导致此物品变得毫无意义。对于敏感的数字负载,了解设备的瞬态响应是超快的并不够。重要的是要了解您的输出电压将会过冲和下冲,以及恢复需要多长时间。通过确保数据表中的测试条件(如下表1所示)与实际应用紧密配合,您可以轻松评估设备在系统中的性能。

     

    1TPSM84A21瞬态性能数据

     

    模块的负载瞬态性能也与设备的输出电容密切相关。这就是模块集成问题再次出现的地方。即使是具有集成电容器的模块也可能在“理想”条件下拉低瞬态数据…

  • 解密模块数据表 – 尺寸大小

    Other Parts Discussed in Post: TPSM84A22

    相信大多数人很多时候在还未读完“条款和适用条件”的时候就点击了“同意”。既然如此,为何要花费这么多时间去阅读那些繁冗的条文呢?同任何重要的文件一样,数据表也有条文——1页的规格说明, 20页的条文细则。电源模块尤其如此,因为集成化遮掩了关于设备的关键细节。我将分两部分在博客文章中讨论,基于数据表首页的电源模块评估中几个常见的障碍。

    对模块的集成进行评估具有挑战性。最基本的电源模块只是一个小的组件,内部有转换器和电感,它基本上替代了一些电源工程师必须投入时间和精力来创建的一些电路板设计。然而,并非所有模块都是相同的:使用了电源模块却并不意味着不需要外部组件(在某些情况下,如图1所示,需要很多外部组件)。

     

    1:输入和输出电容增加了模块电路的复杂性

     

    模块之间的最大差异与输入和输出电容是否集成有关…

  • 同步降压转换器中的输入和输出电容考量因素

    电容对于同步降压转换器而言,是个至关重要的组件。由于有着各种各样的电容技术,因此,如图1所示,在设计同步降压转换器时需考虑输入和输出电容的参数。

      

    1:同步降压直流/直流转换器

     

    电力电容的选择参数如下文表1所示:

     

    降压转换器性能特性

    需考虑的电容参数

    功耗

    有效串联电阻(ESR)

    电压纹波性能

    有效串联电阻(ESR)

    负载瞬态(交流)性能

    有效串联电感(ESR)

    有效串联电阻(ESR)

    电容

    成本

    视技术和供应商而定

    尺寸

    长、宽、高

    可靠性

    电容材料

     

    1:降压转换器性能 vs. 电容参数

     

    下文表2所示为各类技术相关的电容特性。

     

    电容技术

    ES…

  • 不要这样为您的 FPGA 供电!

    糟糕。我将现场可编程门阵列(FPGA)连接到我的DC/DC转换器的输出,现在DC/DC无法启动。当使用示波器观察电路时,我看到图1所示的情形。输出电压未进入调压模式。哪里发生故障了呢?

     

    1:由于该FPGA具有较高的启动负载和极高的去耦电容,DC/DC转换器无法使其输出电压进入调压模式

     

    FPGA对其电源提出了一些独特的挑战。例如,FPGA供应商通常需要其输入电源拥有数百或甚至数千微法拉(µF)的去耦电容,以便在FPGA产生的瞬变的不同频率之间维持FPGA电源电压所需的调节,并减少电源电压上的纹波。许多FPGA还需要具有特定的启动时间(不要太快,也不要太慢)和启动单调性(VOUT在无任何向下移动的直线上达到其设定值)。

    除FPGA相关的设计挑战外,越来越多的FPGA设计人员还必须为其FPGA设计电源。作为FPGA专家,许多设计师在电源设计方面没有经验,因此需要一款极其简易的电源,而电源模块就是一个很好的选择…

  • 您电池电量计的精度如何?第2部分

    计量精度及其他影响精度因素的详细计算步骤

     

    在本系列的第1部分中,我说说明了测量精度与计量精度的区别。其中,强调了计量精度取决于您向所选算法内所输入变量(电压、电流和温度)的精度,以及算法的稳健性或用于不同电池使用情况的能力。另外,还指出您可以通过检查剩余电量,确定电量计在接近终止电压处报告值为0%,且SOC没有明显的跳变,从而评估电量计的精度。

     

    另外一个更有效的做法就是计算电池整个放电曲线对应的电量计的精度。您也可以使用充电曲线计算,但由于用户更关心电池放电的精度,因此,常使用电池放电曲线评估。

     

    以下便是计算计量精度的详细步骤:(下载Excel表单,其中包含实际的数据和公式)

     

    1.在这一包含电压、电流、温度和报告SOC数据的Excel建立一个电量计日志。在本系列的第1部分中,我提到您可以使用bq Studio、一个TI电量计EVM或任何其他电量计以及一个Arbin或Maccor仪器提取电量计日志。在本例中…

  • 何时应当使用 PWM 控制器?

    PWM是一种适用于多种电源拓扑结构的控制方法。任何拓扑结构的电源都有非常广泛的用途,可谓无处不在;而PWM的应用范围也颇为广泛。

    PWM是脉冲宽度调制的缩写。在开关电源中,PWM用于调节输出电压等输出并且抑制系统输入电压的变化。该系统概念描述了开关电源。输入和输出可以是直流、正弦(交流)或甚至一些其他周期性波形。

    让我们看一下两个非常流行的PWM控制器系列,UC3842/UC3843/UC3844/UC3845 (UCx84x)和UC1525A/UC2525A/UC3525A (UCx525A)。图1和图2分别为这两个系列的框图。

     

    1UCx84x框图


     

    2UCx525A框图

     

    两个图都显示了一种常见的PWM控制方法,与固定频率斜坡对比的误差信号产生PWM输出,驱动开关电源拓扑结构中的开关。误差信号可以控制电流、电压、电流和电压或者终端应用中的一些其它重要属性。拓扑结构可以仅涉及单个开关,如…

  • 将电压轨拆分为双极电源的三种方式

     

      

    音频应用、数据信号采集和模拟传感器非常适合使用双极性偏置电源。双极电源可以最大程度的利用模数转换器(ADC)动态范围,实现轨到轨放大,隔离模拟信号与地面噪声,而且还有许多其他优点。在此,我将介绍三种将单电源轨拆分为双极电压轨的方法。表1列出了将单一正极性电压轨拆分为双极轨的三种最常见方法及其优点和局限性。

     

     

     

    1:拆分电压轨方法对比表

     

    第一种(最简单的)方法是通过添加电阻分压器来创建虚拟接地;不幸的是,这种配置在非常低负载时容易变得不平衡。TLE2426(如图1所示)创建从电源缓冲的公共地;缓冲器在负载条件下在轨道之间创建更稳定的中心点。缺点是它只能处理十分之几毫安的电流。

     

     

    1:拆分电压轨配置中TLE2426虚拟接地驱动器的简化原理图

     

    与分立方法相比,开关拓扑结构具有更高的效率、精度和稳定性,以及更多的功能。有两类开关稳压器:电感式和电容式…

  • 在USB智能手机充电应用中偏置SR控制器IC

    人们对能源使用效率和节能的关注日益增强,同步整流器(SR)有助于提高将离线交流电源转换为用于USB智能手机电池充电5V电源的效率。在该转换期间,SR控制器集成电路(IC)需要适当的偏置,以便向SR MOSFET提供充足的驱动。USB应用中的偏置电压通常高于4V。由于BC1.2 USB电池充电标准规定电源适配器输出范围为4.1V至6V,因此可以从该输出偏置SR控制器IC,如图1所示。

     

    1:采用SR控制器偏置输出电压的反激式转换器

     

    如果输出电压降到UVLO以下怎么办?

    这种偏置方法简单、容易,几乎没有额外的成本。当输出电压高于4V,工作很好,但当VDD上的电压<4V时,SR控制器IC进入欠压锁定(UVLO)状态。这里的问题是,当输出降到4V以下时,SR仍然需要工作。事实上,在USB智能手机应用中输出降至3V之前,SR仍然需要工作。这是因为电池充电操作需要恒流操作,适配器保持提供恒定电流…

  • 对交流/直流电源而言哪种控制器更好:分立式还是组合式?

    如果你曾经在电源设计公司听到过员工的走廊谈话,他们很可能是在激烈争论>75W电源的设计应当采用图1还是图2所示的架构。事实上,这两种架构的电源元件完全相同,唯一的区别在于控制器。

     

     

     

    图1:基于分立式控制器IC的交流/直流设计

     

      

    图2:基于组合式控制器IC的交流/直流设计

     

    TI对这两种架构都有支持者,并且拥有基于这两种架构的产品。

    尽管TI长期以来在组合式控制器方面拥有丰富的产品组合并能够在同一解决方案中实现更多功能,我仍然认为,从长远来看,独立的功率因数校正(PFC)控制器以及独立的DC/DC转换器为工程师设计各种应用提供了无与伦比的优势。尤其在当前消费者注重成本的环境下,这种优势就更为突显。

    布局

    大多数电源设计人员都会告诉你,印刷电路板(PCB)布局是最让他们头疼的电源设计技术问题。糟糕的布局往往会让设计过程走进死胡同。电源具有各种形状和尺寸,需要根据形状要求考虑非常不同的布局。

    图3…

  • 如何利用高电流栅极驱动器实现更高的系统效率

    当今世界,设计师们似乎永远不停地追求更高效率。我们希望以更低的功率输入得到更高的功率输出!更高的系统效率需要团队的努力,这包括(但不限于)性能更高的栅极驱动器、控制器和新的宽禁带技术。

    特别是高电流栅极驱动器,其能够通过降低开关损耗帮助提升整体系统效率。当FET开关打开或关闭时,就会出现开关损耗。为了打开FET,栅极电容得到的电荷必须超过阈值电压。栅极驱动器的驱动电流能够有助于栅极电容的充电。驱动电流能力越高,电容的充放电速度就越快。拉灌大量电荷的能力可以降低功率损耗和畸变。(传导损耗是另一种FET开关损耗,传导损耗取决于内部电阻或FET的RDS(on)值,其中,随着电流通过,FET也会耗散功率。)

    换言之,目标便是降低系统内需要高频率功率转化的开关过渡时间。突出该类性能的栅极驱动器规格为上升和下降时间。参见图1。

     

    1:典型的上升和下降时间图

     

    如果您想更进一步,诸如延时匹配等栅极驱动器特性…

  • 宽输入电压、高效率、5V&250mA输出反激变流器设计

    Other Parts Discussed in Post: TPS61046

    作者:Jasper Li

     

    RS485和隔离CAN通讯在工业设备中被广泛应用,它们的收发器供电往往需要一个简单高效的隔离DC/DC变流器。反激变流器因其结构简单、价格便宜非常适合于这种应用场合。

    DC-DC升压变流器的工作原理与反激接近,所以可以利用DC-DC升压变流器IC来实现反激隔离变流器电路。基于TPS61046的反激变流器电路如图1所示,TPS61046是1.8V 到5.5V输入,28V输出升压变流器IC。图中利用稳压管D4限制VIN pin的电压不高于5.1V,可以将反激电路的输入电压提高至20V。利用第三绕组和FB pin将输出电压稳定在5V。在5V输入条件下,最大输出电流是200mA。在输入电压大于10V条件下,最大输出电流是250mA。

    图1: 基于TPS61046的反激变流器

     原边控制的反激变流器因为非理想变压器漏感的存在…

  • 数据集中器GPRS模块不间断供电电源设计

    Other Parts Discussed in Post: TPS61089, TLV62130, TLV62084

    作者: Jasper Li

     

    数据集中器是智能抄表系统中的关键设备之一,它实时地收集多个智能电表的数据并且通过无线网络如GRPS模块将数据发送至售电公司的管理系统中统一管理。根据国家电网公司的要求,数据集中器必须具有超级电容和电池两种备份能量,在电网断电后以后依然能够无线通信。在电网供电正常时,超级电容和电池充电;在电网不正常时,优先使用超级电容能量,最后使用电池能量。

    根据这个要求TI设计GPRS模块不间断供电如图1所示。电路主要包括低成本的线性充电电路,两个降压型DC-DC变流器TLV62130和TLV62084和一个升压型DC-DC变流器TPS61089。当来自电网的12V正常时,TLV62130工作输出5V,TPS61089停止工作。电池和超级电容被充电;当12V不正常,TLV62130停止工作,TPS61089自动开始工作并将VBUS电压稳定在4…

  • 智能家庭与超低功耗

    Other Parts Discussed in Post: TPS61099

    作者: Charles Wong

    由于互联网的繁荣以及半导体行业的爆发,智能家局正在不断走近普通大众的生活。那到底什么是智能家居呢?一种比较直观的定义是:在家里的任何东西都可以连入互联网并被远程控制,这就是智能家居。大家可以想象一下:当我们回到家的时候,可以直接用手机开门,因为门中安装了感应装置,通过和手机进行通信配对即可开门,而不再像以往那样需要口袋里装个钥匙,还可能不小心戳到自己;如果家里不小心起火了,装在天花板上的火灾探测器自动报警,并及时通知业减少损失;家中的遥控器可以控制所有的电器设备,不论冰箱洗衣机还是空调,因为所有设备都用了相同的通信协议,而不再像以往需要各自配对;国家电网,自来水公司,以及煤气表公司的员工也不再需要每个月上门抄表,因为煤气表,电表,或者水表,都将自带流量监测以及GPRS信号发射功能,每天可以自动上传数据。正如图一所示,这些都是智能家居带给大众的便利和神奇的体验…

  • 升压变流器的几点调试经验

    Other Parts Discussed in Post: TPS61253, TPS61258

    作者:Jasper Li

    DC/DC 变流器IC可能在整个产品系统的并不起眼,但它们对产品的稳定可靠工作至关重要。尽管TI 提供详细的规格书和应用文档帮助客户在系统上正确地实现变流器IC的功能,在实际应用中依然因为种种原因导致IC不正常工作问题,例如启动异常,输出电压不稳定,纹波过大甚至IC损坏等等。大部分时候,引起IC异常工作的原因并不复杂,简单的调试可以快速地定位并解决问题。这篇文章介绍几点针对升压变流器的调试经验。

    第一点: 能否在多块板子上重复相同现象

    当在一片系统板子上发现问题的时候,首先要做的是尝试在另外一片或多片板子上重复现象。如果现象无法重复,那么问题可能是由于焊接不良或者IC损坏导致的。

    焊接不良可能出现在DC/DC 变流器IC及其外围器件上,分为两种情况:相邻pin脚短接和pin脚虚焊。短接问题可通过观察pin脚焊接情况并且测试相邻pin阻抗的确定…

  • 模拟电磁干扰是否可能?

    如今,由高频多相 DC/DC 转换器提供强大支持的千兆赫兹 (GHz) 处理器以GHz速度与存储器进行通信。在这些频率上,组件和印刷电路板 (PCB) 寄生阻抗会产生与频率有关的电压降,而天线结构和 PCB 谐振接着又引发电磁干扰 (EMI)、信号完整性和电源完整性 (SI/PI) 问题。在先前的一篇博文中,我仔细研究了满足与超快速功率晶体管(比如:LMG5200 半桥 GaN 开关)的电磁兼容性的难题。在这篇博文中,我们将察看能够在制造之前帮助确定 PCB 问题区域的高度精细复杂的软件工具。

    设计高速、混合信号 PCB 需要经验丰富的工程人员和设备资源 - 因此,开发成本会非常高,特别是在需要对一块电路板实施多次迭代以实现电磁兼容性的时候。EMI、SI 和 PI 设计问题会拖延产品发布,而且如果在产品发布之后未被发现,则势必导致客户退货、产品召回以及消费者信心的缺失。一家公司的盈利能力取决于其产品的谨慎分析,而且由于工作频率不断提高…

  • eFuse如何帮助提供强大的工业电源路径保护

    任何电子系统经常遭受恶劣的环境和威胁,如静电放电(ESD)、电快速瞬变(EFT)和雷电浪涌。电源设计人员必须优先考虑电路保护以防止系统故障,特别是对于具有24V电源轨的工业应用

    电路保护方案能够保护电源和整个系统免受诸如过电流、短路、输入浪涌电流、过电压、欠电压、输入反极性保护(通常称为误配线)和反向电流阻塞的事件的影响。

    在本博客中,我将概述几种强大的工业电源路径保护方法,包括离散实现、热插拔和ORing控制器法及集成实现。

     

    离散实现

     

     

     

    1:离散保护方案

     

    离散实现方案是功率路径中使用保护方案的最传统的功率路径保护方式,图1展示一个示例。

    离散实现使用串联功率二极管来保护系统免受反极性(误配线)和反向电流。若电路吸收2A的电流,它在二极管上消耗约1W的功率,这将增加电路板温度。谐振电路(L-C)滤波器和多个TVS二极管在浪涌测试期间控制输入线瞬变(国际电工委员会(IEC)61000-4-5)。

  • 电池电量计的精确度如何?第1部分

     

    1部分:测量和测量精度

     

    电池量表(通常称为气体或燃料量表)从电池获取数据以确定其中剩余多少电量。对于量表的测量精度,不应曲解计量精度。量表准确报告充电状态和预测剩余电池容量的能力取决于各种测量,包括电压、电流和电池温度。应该注意的是,测量精度取决于量表的硬件,而测量精度取决于测量算法的鲁棒性和量表的测量精度。

    存在三种用于电池测量的主要方法。第一种是使用电压查找表,其适用于具有极轻负载应用。第二种是对流出或流入电池的电荷进行库仑计数(即,相对于时间将电流集成到电池中或从电池中流出),这种方法更可靠,但在电池插入时具有一些初始化问题,即了解什么是初始充电状态。第三种方法组合电压查找法和库仑计数法。这些测量方法的精度随着算法的复杂性而增加,其中电压查找法最不精确。

    无论采用何种算法来跟踪电池的充电状态,因为算法中的输入变量都是测量值,因此所测量参数的精度至关重要。准确的电压测量对于新插入的电池的初始SOC估计很有必要…

  • 蓝牙无线音箱电源方案:有效延长电池续航时间

    Other Parts Discussed in Post: TPS61088, TPA3118D2

    蓝牙无线音箱由于使用方便、便于携带,越来越多受到消费者的青睐。而蓝牙音箱的电池续航能力,由于直接影响到充放电次数和用户体验,一直是消费者所关注的一项重要指标。

    在之前的博客文章《利用包络追踪功能提高声频放大器的效率》声频功率放大器的包络追踪电源参考设计中,我们提到一种蓝牙音箱电源电源设计方案:通过向 电源反馈引脚(FB)引入音频包络信号来调整升压型DCDC电源TPS61088 的输出电压(即音频放大器的电源电压),从而提高电源和音频功放的工作效率已达到省电的目的。在本文中,我们对这种方案进行了实际测试。

    我们使用PMP9774TPA3118D2EVM搭建了测试系统,如图1所示。当接入音频信号(audio signal)开始播放音乐时,可以观察到TPS61088 的输出电压(Vout)的幅值会随着音频信号的包络线而变化,如图2所示…

  • 使用TPS61230A给USB OTG总线供电

    Other Parts Discussed in Post: TPS61230A

    作者: Charles Wong

    USB是日常生活中最常见的数据接口, 最开始的时候,USB有非常明确的主机和从机的区别。主机主要是个人计算机(PC),从机主要包括移动电话以及其他一些附件,比如鼠标和键盘。然而,随着消费类电子的不断发展,大量的数据传输需求出现在从机和从机之间。比如把手机的照片直接存到优盘里面,把IPAD内的视频传到Iphone里面,把数码相机直接连到打印机进行打印操作。USB OTG 就是这这样的背景下出现的,它是一种USB规范,一种让设备可以根据相关协议在主机和从机之间进行自动切换的规范。目前,USB OTG 广泛使用在PC,移动电话,手持式POS机以及移动电源等等产品中。可以在“从机”与“从机”间直接进行通讯是一件非常方便的事。下图一列出了市场上常见的USB OTG 优盘(左)以及相关线缆(右)。…

  • 如何进行电源设计 - 第1部分

    如果您不知道如何及从何处着手,开关模式电源设计可能听起来很神秘,因为有各种各样的拓扑和控制器类型可供选择。在本博客系列中,我将介绍如何为您的应用选择最适合的电源拓扑,并告知需了解的信息。专为应用打造的规格通常可作为最佳切入点。此规格应至少包括有关输入电压范围、输出电压和最大负载电流的信息。然而,若您也可以回答以下一些问题,则选择最合适的拓扑和/或系统解决方案将变得更容易:

    • 您的应用是否需要在输入和输出之间使用隔离栅?如果是,您需要达到什么绝缘水平?您想通过初级侧还是次级侧调压来实现输出电压调节?
    • 您的电源是用于直流-直流转换还是交流-直流转换?有关输入的其他有用信息可包括最大浪涌电流、最大输入电流和最大容许反射纹波。
    • 您的应用的输出功率范围是多少?在许多情况下,此信息有助于减少可用拓扑和控制器的数量。您的规格还应对电源输出电压容差、最大容许输出电压纹波、平均输出电流和峰值输出电流的要求。此外,规格中还应包括对负载调节、瞬态响应和线路调节…
  • 简化 100V 宽输入电压电源转换

    当需要执行降压电源转换时,开关稳压器是一种高效设备。得益于新的应用,针对这些产品,宽输入电压(VIN空间(TI认为其> 30V)的使用范围越来越广。

    图1所示为具有宽VIN的主要应用,以及它们的标称总线工作电压范围和DC / DC转换器将看到的瞬态范围。在这些应用中,用于汽车和高槽电池应用(如电动自行车、GPS跟踪器和无人机)的48V电池的问世使得对高达48V宽VIN的需求不断增长。 > 48V空间要求DC/DC转换器承受由负载突降、雷击和电动机的反电势等原因导致的高达100V的瞬态,同时仍调节12V和5V输出 

      

    1:应用的工作电压范围

     

    设计人员传统上通过在前端设置钳位电路来处理这些瞬变,使得转换器观察不到尖峰。图2所示为汽车系统示例,其中前端电路向设计添加了十多个组件。所有这些组件相加即为额外成本和空间。此外,随着电压升高,诸如二极管和电容器的关键部件的额定值也增加,这会导致成本呈指数增加。

    TI…

  • 方波波形开关节点大受欢迎

    所有功率级设计者期望在开关节点看到完美的方波波形。快速上升/下降边降低了开关损耗,而低过冲和振铃最小化功率FET上的电压应力。

    采用TI最新的GaN技术设计,图1a所示的功率级开关节点波形真的引人瞩目。其在120V / ns转换速率下,从0V升到480V,并具有小于50V的过冲。 

    1TI 600V半桥功率级——开关波形(a);设备封装(b);半桥板图(c)。

     

    GaN FET具有低端子电容,因而可快速切换。然而,当GaN半桥在高di / dt条件下切换时,功率环电感在高压总线和开关节点处引入振铃/过冲。这限制了GaN FET的快速切换功能。

    由于引线长且封装为大尺寸,传统的功率封装通常具有来自引线和接合线的高电感。在含铅封装中已观察到高达几百伏的过冲。减少过冲的关键是最小化功率环电感。

    为了降低引线电感,TI以表面贴装四方扁平无引线(QFN)封装提供单通道GaN功率级产品。如图1b所示…

  • 在数字控制前,有通用PWM

    若您不认识“我”,我可将其原理娓娓道来。我绝对喜欢数字控制!您应了解这些内容:z变换、卡尔曼滤波器、非线性控制、自适应控制,及定制电源解决方案的能力。

    在您表述任何观点前,我想指明我是一个超级极客——但您不得不承认,这些东西可以真的很酷(当然,真的有用)。数字控制的主要方法之一是,您可以采用一个预封装的控制器并可对其添加或修改,以满足最初的设备架构师未明确设想的最终解决方案要求。为此,数字控制器让电源设计师的梦想成真。

    但诚实地讲:数字控制也会产生一些我们不期望的、或超出处理范畴的辅助操作。在我看来,此时,通用脉宽调制(PWM)可派上用场,大放异彩。这些设备已经存在了一段时间,并且在许多方面成为电源行业的主力。他们具有卓越的性能,并具有能够适应设计师需求的丰富经验。从这个优势看,PWM类似于模拟控制器的数字控制类型。在许多应用中,这可能正是电源设计人员所需要的:简易灵活性。

  • 为系统安全选择电压检测器、监控器和复位IC:第 2 部分

    Other Parts Discussed in Post: LM8365

    在本系列的第一部分中,我定义了电压检测器和监控器/复位IC,并解释了不同的输出类型及一些基本设备。由于设计变得更加复杂,可能需要更高级的设备来成功监视电压。在本期中,我将重点介绍电压检测器和监控器/复位IC中的各种功能,以帮助设计人员选择正确的电路。

    可编程输出延迟

    电压监控器与电压检测器不同,其通常使用外部电容器具有可编程输出延迟,使其变得极其灵活。它们可用于正确排序现场可编程门阵列(FPGA)应用中多个电源,或防止系统故障。当电源电压上升到电压阈值(加上滞后,若适用),这通常会触发设备“取消标记”复位信号并使系统从复位状态返回。然而,由于存在由延迟电容器(CD)产生的延迟,因此在复位信号取消标志之前,电压必须保持高于电压阈值及指定时间延迟的滞后。这可防止系统过早地从复位状态返回。

    可编程输出延迟有时称为可编程复位超时周期。直接连接到延迟引脚…