Other Parts Discussed in Post: AWR6843, AWR1843, AWR1642, AWR1443, IWR6843ISK, DCA1000EVM

作者:Wesley He

TI mmWave sensor是高集成度的毫米波雷达传感器SOC,在开发过程中,SDK及TI DEMO均使用灵活的UART接口发送CLI命令进行射频参数配置及相关算法参数的配置。对于研发及测试认证过程中,往往都会有对连续波点频率模式设置的要求。本文介绍一种可以把连续波模式配置增添到应用代码中的实现方式,同时支持原有串口的CLI配置,仅需增加APP层代码,无需修改SDK驱动层代码,即可完成FMCW chirp模式或连续波CW模式的设置,旨在给用户提供一种简洁的配置方式,方便用户对毫米波雷达模块进行RF性能、天线方向图、频带内外性能、电源可靠性等测试。本文的测试环境如下:

  • 此方法适用器件型号:I/AWR1443, I/AWR1642, I/AWR1843, I/AWR6843
  • 本文测试硬件平台:IWR6843ISK EVM

1.      使用mmWave studio工具的连续波(点频)模式配置方法

DCA1000EVM是一款数据采集卡,适配于德州仪器(TI)的77GHz&60GHz 毫米波雷达传感器EVM高速60PIN接口,采集卡主要功能是使用户能够通过DCA1000板卡的以太网获得从雷达的LVDS接口送出的ADC数据;于此同时,DCA1000EVM也板载了USB<->SPI接口,方便PC软件对雷达传感器芯片进行配置。

mmWave Studio是一款独立的 Windows GUI,它具有配置和控制 TI 毫米波传感器模块以及收集 ADC 数据以进行离线分析的功能。该 ADC 数据捕获旨在评估和表征射频性能,以及进行信号处理算法的 PC 开发。下图是使用DCA1000+mmWave Studio 软件进行毫米波雷达数据采集的框图,PC上使用mmWave Studio 软件,通过USBßàSPI接口对毫米波雷达芯片进行工作模式配置并采集数据。可支持包括chirping mode、advance frame mode、continuous wave mode在内的全部毫米波雷达RF配置,并且GUI集成的数据分析功能可对采集回来的数据进行初步的分析。

图1. 使用DCA1000+mmWave Studio软件进行数据采集框图

mmWave  studio GUI 中连续波模式的设置界面如下图所示,用户仅需遵循mmWave studio软件的配置流程,配置毫米波雷达芯片于连续波工作模式即可,于此同时,DCA1000EVM还可以从LVDS接口获取在连续波模式下的接收通道获取的ADC数据。

图2. mmWave  studio GUI 中连续波模式的设置界面示意图

小结,使用DCA1000EVM +mmWave Studio软件组合的要求及优势如下:

  • 硬件:mmWave radar sensor EVM + DCA1000EVM + PC
  • 软件:mmWave studio
  • Radar硬件所需预留接口:LVDS(ADC数据传输) + SPI(RF参数配置) + UART(固件加载)+ SOP(SOC启动模式配置)
  • 优势:RF所有的配置都支持,同时可以获取点频模式下的ADC数据,可以同步分析RX性能。

2.      使用mmWave Studio CLI tools工具的连续波(点频)模式配置方法

mmWave Studio CLI tools是使用命令行界面 (CLI) 控制毫米波传感器的GUI工具,可以替换mmWave Studio的基本功能,对比于完整功能的mmWave Studio,mmWave Studio CLI tools是一个轻量化的工具,它使用与OOB(SDK out-of-box demo) 相同的配置方式与命令,同时,在硬件连接的需求上,省了一个SPI接口,所以在外场测试过程中,能够简化硬件连接及操作流程。

图3. 使用DCA1000+mmWave Studio CLI tools组合的硬件连接框图

mmWave  studio CLI tools的使用较为简单,直接使用TI已提供的软件包即可实现高占空比的FMCW波形配置,也可实现点频模式的配置,下文将要介绍了操作步骤。

  • 连续波点频发射模式
    • 烧写bin文件bin到板卡
    • 修改串口号". \studio_cli\gui\mmw_cli_tool\mmwaveconfig.txt"
      • COM_PORT_NUM=9 修改为Application/User口(命令口),需注意,这个串口跑的是921600bps
    • 修改cfg文件为CW模式。修改".\studio_cli\gui\mmw_cli_tool\mmwaveconfig.txt"
      • CONFIG_JSON_CFG_PATH=..\..\profile_continuous_mode_xwr68xx.cfg #连续波模式
      • CONFIG_JSON_CFG_PATH=..\..\profile_chirp_mode_xwr68xx.cfg #FMCW chirp模式
    • 双击运行".\studio_cli\gui\mmw_cli_tool\mmwave_studio_cli.exe"即可按点频连续波发射。
    • 设置为其他频点。修改".\studio_cli\profile_continuous_mode_xwr68xx.cfg"
      • contModeCfg 61 0 0 6000 0 0 30 0 1024           
      • contModeCfg 60 0 0 6000 0 0 30 0 1024
      • 61/60即是发射连续波时候的频点。
    • FMCW chirp扫频发射模式
      • 烧写bin文件bin到板卡
      • 修改串口号".\studio_cli\gui\mmw_cli_tool\mmwaveconfig.txt"
        • COM_PORT_NUM=9 修改为Application/User口(命令口),需注意,这个串口跑的是921600bps
      • 修改cfg文件为chirp模式。修改".\studio_cli\gui\mmw_cli_tool\mmwaveconfig.txt"
        • CONFIG_JSON_CFG_PATH=..\..\profile_continuous_mode_xwr68xx.cfg #连续波模式
        • CONFIG_JSON_CFG_PATH=..\..\profile_chirp_mode_xwr68xx.cfg # FMCW chirp模式
      • 双击运行".\studio_cli\gui\mmw_cli_tool\mmwave_studio_cli.exe" 即可按设定的FMCW chirp模式发射。
      • 设置为其他频段,请修改".\studio_cli\profile_chirp_mode_xwr68xx.cfg"。
        • profileCfg 0 60.75 30.00 25.00 59.10 0 0 54.71 1 96 2950.00 2 1 36
        • chirpCfg 0 0 0 0 0 0 0 1
        • chirpCfg 1 1 0 0 0 0 0 2
        • chirpCfg 2 2 0 0 0 0 0 4
        • frameCfg 0 2 96  0 26 1 0
        • 其中framecfg中的26可以修改,比如26ms对应7%占空比。70ms对应36.66%占空比。

小结,使用DCA1000+mmWave Studio CLI tools软件组合的软硬件要求及优势如下:

  • 硬件:mmWave radar sensor EVM + DCA1000 + PC
  • 软件:mmWave studio CLI tools
  • Radar硬件所需预留接口:LVDS(ADC数据传输) + UART(RF参数配置及固件加载)+ SOP(SOC启动模式配置,仅需配置一次)
  • 优势:支持FMCW模式及连续波点频模式,获取ADC数据则需DCA1000EVM数据采集卡的配合,若只需评估TX性能,可以只使用SOC板卡,不需要DCA1000EVM。

3.      使用mmWave SDK out-of-box demo的连续波(点频)模式配置方法

3.1.   运行mmWave SDK out-of-box demo的对外接口说明

在现有的TI mmWave SDK及TOOLBOX相关的示例代码中,均使用两个串口进行参数的配置及数据的获取,EVM板载的TM4C MCU是一个板载XDS110仿真器,仿真器自带两路串口,可以直接完成SDK DEMO中的参数配置及数据输出。在客制化产品中,可以使用外部的2个USB<->UART桥接线缆进行调试,两个串口的默认使用情况如下:

图4. 运行mmWave SDK out-of-box demo的对外接口框图

配置命令口:Application/User Uart: Configuration port 115200bps: UART_RX/TX port <-> USB-UART cable <-> PC

数据口:Auxilliary Data Port: Data port 921600bps: MSS_LOGGER-> USB-UART cable -> PC

3.2.   在mmWave SDK out-of-box demo中增加连续波CW模式配置代码

在现有的TI mmWave SDK及TOOLBOX相关的示例代码中,增加配置连续波点频的函数,完成对连续波模式的配置及单次自校准,通过原有的CLI串口调试接口,将连续波模式的CFG参数以CLI的格式配置进去,即可完成连续波点频模式的配置,该配置实现代码较为简单,可作为应用程序的一部分与应用程序整合,实现代码如下:

  • 在c 增加头文件

#include <ti/utils/cli/include/cli_internal.h>

  • 在c 增加一条新的CLI指令

cliCfg.tableEntry[cnt].cmd            = "ContMode";

cliCfg.tableEntry[cnt].helpString     = "<Freq>";

cliCfg.tableEntry[cnt].cmdHandlerFxn  = MmwDemo_CLIContMode;

cnt++;

  • 在c 增加以下代码

#define ROUND_TO_INT32(X)    ((int32_t) (X))

//#define CONV_FREQ_GHZ_TO_CODEWORD(X) (uint32_t) ((float)X * (1e9) / 53.644)//77G device

#define CONV_FREQ_GHZ_TO_CODEWORD(X) (uint32_t) ((float)X * (1e9) / 40.233)//60G device

static int32_t MmwDemo_CLIContMode (int32_t argc, char* argv[])

{

 

    int32_t                 retVal;

    float                 nFreqCent;

    rlContModeCfg_t contModeCfg;

    rlContModeEn_t contModeEnable;

    if (argc != 2)

    {

        CLI_write ("Error: Invalid usage of basicCfg command\n");

        return -1;

    }

    nFreqCent = atof(argv[1]);   

    contModeCfg.startFreqConst = (CONV_FREQ_GHZ_TO_CODEWORD(nFreqCent));

    contModeCfg.txOutPowerBackoffCode = 0;

    contModeCfg.txPhaseShifter = 0;

    contModeCfg.digOutSampleRate = 6000;

    contModeCfg.hpfCornerFreq1 = 0;

    contModeCfg.hpfCornerFreq2 = 0;

    contModeCfg.rxGain = 30;

//   b0  FORCE_VCO_SEL

//       0 - Use internal VCO selection

//       1 - Forced external VCO selection

//   b1  VCO_SEL

//       0 - VCO1 (77G:76 - 78 GHz or 60G:57 - 60.75 GHz)

//       1 - VCO2 (77G:77 - 81 GHz or 60G:60 - 64 GHz)

 

//    //77G device

//    if (nFreqCent > 78)

//        contModeCfg.vcoSelect = 0x2;

//    else

//        contModeCfg.vcoSelect = 0x0;

    //60G device

    contModeCfg.vcoSelect = 0x2;

    CLI_write ("CONT_FREQ_CONST=%X,%D\n",contModeCfg.startFreqConst,contModeCfg.startFreqConst);

    contModeEnable.contModeEn = 1;

    retVal = rlSetContModeConfig(RL_DEVICE_MAP_INTERNAL_BSS, (rlContModeCfg_t*)&contModeCfg);

    /* Check for mmWaveLink API call status */

    if(retVal != 0)

    {

 

    System_printf("Error: rlSetContModeConfig retVal=%d\n", retVal);

    return -1;

    }

    System_printf("Debug: Finished rlSetContModeConfig\n");

    int32_t                 errCode;

    MMWave_CalibrationCfg   calibrationCfg;

    MMWave_ErrorLevel   errorLevel;

    int16_t             mmWaveErrorCode;

    int16_t             subsysErrorCode;

    /* Get the open configuration from the CLI mmWave Extension */

    CLI_getMMWaveExtensionOpenConfig (&gMmwMCB.cfg.openCfg);

    /* NO: Setup the calibration frequency: */

    gMmwMCB.cfg.openCfg.freqLimitLow  = 600U;

gMmwMCB.cfg.openCfg.freqLimitHigh = 640U;

//    gMmwMssMCB.cfg.openCfg.freqLimitLow  = 760U;

//    gMmwMssMCB.cfg.openCfg.freqLimitHigh = 810U;

    gMmwMCB.cfg.ctrlCfg.dfeDataOutputMode = MMWave_DFEDataOutputMode_CONTINUOUS;

    gMmwMCB.cfg.ctrlCfg.u.continuousModeCfg.cfg.startFreqConst = contModeCfg.startFreqConst;

    gMmwMCB.cfg.ctrlCfg.u.continuousModeCfg.cfg.txOutPowerBackoffCode = contModeCfg.txOutPowerBackoffCode;

    gMmwMCB.cfg.ctrlCfg.u.continuousModeCfg.cfg.txPhaseShifter = contModeCfg.txPhaseShifter;

    gMmwMCB.cfg.ctrlCfg.u.continuousModeCfg.cfg.digOutSampleRate = contModeCfg.digOutSampleRate;

    gMmwMCB.cfg.ctrlCfg.u.continuousModeCfg.cfg.hpfCornerFreq1 = contModeCfg.hpfCornerFreq1;

    gMmwMCB.cfg.ctrlCfg.u.continuousModeCfg.cfg.hpfCornerFreq2 = contModeCfg.hpfCornerFreq2;

    gMmwMCB.cfg.ctrlCfg.u.continuousModeCfg.cfg.rxGain = contModeCfg.rxGain;

    gMmwMCB.cfg.ctrlCfg.u.continuousModeCfg.cfg.vcoSelect = contModeCfg.vcoSelect;

    /* Disable the frame start async event so that small chirp times

    are supported. If this event is enabled it will break real-time

    for small chirp times and cause 1D processing to crash

    due to lack of MIPS*/

    gMmwMCB.cfg.openCfg.disableFrameStartAsyncEvent = true;

    /* Enable frame stop async event so that we know when BSS has stopped*/

    gMmwMCB.cfg.openCfg.disableFrameStopAsyncEvent = false;

    /* No custom calibration: */

    gMmwMCB.cfg.openCfg.useCustomCalibration        = false;

    gMmwMCB.cfg.openCfg.customCalibrationEnableMask = 0x0;

    /* calibration monitoring base time unit

     * setting it to one frame duration as the demo doesnt support any

     * monitoring related functionality

     */

    gMmwMCB.cfg.openCfg.calibMonTimeUnit            = 1;

    /* Open the mmWave module: */

    if (MMWave_open (gMmwMCB.ctrlHandle, &gMmwMCB.cfg.openCfg, NULL, &errCode) < 0)

    {

        /* Error: decode and Report the error */

        MMWave_decodeError (errCode, &errorLevel, &mmWaveErrorCode, &subsysErrorCode);

        CLI_write ("Error: mmWave Open failed [Error code: %d Subsystem: %d]\n",

                   mmWaveErrorCode, subsysErrorCode);

        return -1;

    }

    CLI_write ("MMWave_open\n");

    /* Configure the mmWave module: */

    if (MMWave_config (gMmwMCB.ctrlHandle, &gMmwMCB.cfg.ctrlCfg, &errCode) < 0)

    {

        CLI_write ("Error: MMWDemoMSS mmWave Configuration failed [Error code %d]\n", errCode);

        MMWave_decodeError (errCode, &errorLevel, &mmWaveErrorCode, &subsysErrorCode);

        CLI_write ("Error: MMWDemoMSS mmWave Configuration failed [mmWave Error: %d Subsys: %d]\n", mmWaveErrorCode, subsysErrorCode);

        return -1;

    }

    CLI_write ("MMWave_config\n");

    /* Initialize the calibration configuration: */

    memset ((void*)&calibrationCfg, 0, sizeof(MMWave_CalibrationCfg));

 

    //    /* Populate the calibration configuration: */

    //    calibrationCfg.dfeDataOutputMode                          =

    //        gMmwMssMCB.cfg.ctrlCfg.dfeDataOutputMode;

    //    calibrationCfg.u.chirpCalibrationCfg.enableCalibration    = true;

    //    calibrationCfg.u.chirpCalibrationCfg.enablePeriodicity    = true;

    //    calibrationCfg.u.chirpCalibrationCfg.periodicTimeInFrames = 10U;

    calibrationCfg.dfeDataOutputMode = gMmwMCB.cfg.ctrlCfg.dfeDataOutputMode;

    calibrationCfg.u.contCalibrationCfg.enableOneShotCalibration = true;

    /* Start the mmWave module: The configuration has been applied successfully. */

    if (MMWave_start (gMmwMCB.ctrlHandle, &calibrationCfg, &errCode) < 0)

    {

        /* Error: Unable to start the mmWave control */

        MMWave_decodeError (errCode, &errorLevel, &mmWaveErrorCode, &subsysErrorCode);

        CLI_write ("Error: MMWDemoMSS mmWave Start failed [Error code %x]\n", errCode);

        CLI_write ("Error: MMWDemoMSS mmWave Stop failed [mmWave Error: %d Subsys: %d]\n", mmWaveErrorCode, subsysErrorCode);   

        return -1;

    }

    CLI_write ("Debug: MMWDemoMSS mmWave Start succeeded \n");

    retVal = rlEnableContMode(RL_DEVICE_MAP_INTERNAL_BSS, (rlContModeEn_t*)&contModeEnable);

    /* Check for mmWaveLink API call status */

    if(retVal != 0)

    {

        /* Error: Link reported an issue. */

        CLI_write("Error: rlEnableContMode retVal=%d\n", retVal);

        return -1;

    }

    CLI_write("Debug: Finished rlEnableContMode\n");

    /* Package the command with given data and send it to device */

    return 0;

}

  • cfg的配置信息如下:

flushCfg

dfeDataOutputMode 2

channelCfg 2 1 0

adcCfg 2 2

adcbufCfg -1 0 0 1 1

lowPower 0 0

ContMode 60

ContMode 60

3.3.   运行测试代码

将上述代码集成进测试程序后,编译成功后,将此BIN文件烧写到EVM板卡中,通过CLI串口加载配置,即可实现连续波点频模式的配置,串口打印信息如下,完成连续波点频模式的配置。

******************************************

xWR64xx MMW Demo 03.05.00.04

******************************************

mmwDemo:/>flushCfg

Done

mmwDemo:/>dfeDataOutputMode 2

Done

mmwDemo:/>channelCfg 2 1 0

Done

mmwDemo:/>adcCfg 2 2

Done

mmwDemo:/>adcbufCfg -1 0 0 1 1

Done

mmwDemo:/>lowPower 0 0

Done

mmwDemo:/>ContMode 60

CONT_FREQ_CONST=58E3A1CD,

Debug: Init Calibration Status = 0x1ffe

MMWave_open

MMWave_config

Debug: MMWDemoMSS mmWave Start succeeded

Debug: Finished rlEnableContMode

Done

小结,使用mmWave SDK out-of-box demo的连续波(点频)模式配置的软件组合的软硬件要求及优势如下:

  • 硬件:mmWave radar sensor EVM + PC
  • 软件:mmWave SDK out-of-box demo + 代码修改
  • Radar硬件所需预留接口:UART(RF参数配置及固件加载)+ SOP(SOC启动模式配置,仅需配置一次)
  • 优势:与应用代码整合,可以灵活的通过配置函数切换FMCW模式及点频模式,获取ADC数据则用户自己完成ADCBUF取数的驱动代码修改,若只用于评估TX性能,那此方法则不需要更多的修改,即可在应用代码中预留此接口,方便研发测试及产线测试。

4.      总结

本文介绍了3种连续波点频模式设置的软件工具及方法,用户可以根据实际的使用需求,在早期研发阶段,用灵活的mmWave studio软件配置RF参数,测试RF性能,在后期量产阶段,用代码固化的方式增加连续波模式的配置选项,方便测试雷达的点频性能及天线方向图等。需注意的是,在配置连续波模式后,SOC的温度较高,需要做好散热措施保证芯片工作温度在数据手册允许范围内。另外,本文介绍的方式全部都使用mmWave link API实现,如客户需要修改其中的部分配置,请参考mmWave dfp内的API文档。

5.      参考资料

C:\ti\mmwave_dfp_01_02_06_03\docs\mmWave-Radar-Interface-Control.pdf

https://www.ti.com.cn/tool/cn/MMWAVE-DFP

  • mmWave SDK: mmWave Software Development Kit

http://www.ti.com/tool/mmwave-sdk

  • mmWave SDK User’s Guide: C:\ti\mmwave_sdk_03_05_00_04\docs\mmwave_sdk_user_guide.pdf
  • mmWave SDK Out of Box Demo - XWR68XX: C:/ti/mmwave_sdk_03_05_00_04/packages/ti/demo/xwr68xx/mmw/docs/doxygen/html/index.html
Anonymous