最新技术文章
  • 汽车: 在低功耗 Bluetooth® PEPS 系统中添加 CAN 节点

    在使用低功耗 Bluetooth® 技术的汽车被动进入被动启动 (PEPS) 系统中,司机使用与汽车门禁系统通信的密钥卡(而不是钥匙)上车和启动电机(或引擎,如有内燃机)。

    图 1 所示为车内低功耗蓝牙 PEPS 的典型架构。该架构中有一个中央智能钥匙模块和九个卫星模块。此处所示的九个卫星模块仅为示例,在实际应用中,卫星模块的数量可能更多或更少。图 1 还显示了这些模块通过使用通信总线进行通信。

     

    图 1:车内的低功耗蓝牙 PEPS 架构

    卫星节点内部

    那么卫星节点内部是什么?图 2 所示为低功耗蓝牙卫星模块的典型方框图。该模块有一个低功耗蓝牙片上系统 (SoC)(如 TI 的 SimpleLink™ CC2640R2F-Q1)、一个电源和一个通信接口(通常为收发器)。图 2 还显示了 PEPS 系统内的其他模块,包括智能钥匙模块,甚至车身控制模块。 


    图 2:汽车 PEPS 系统方框图

    通信总线选项

    汽车 PEPS…

  • 汽车: 智能传感器将改变您的驾驶方式(因为最终您将不需要驾驶)

    在日常生活中实现全自动无人驾驶汽车是件激动人心的梦想。想象一个汽车是真正自动化的世界:你只需上车,告诉车辆你去哪里,并继续你的事,而你就能从A点到达B点,无需更多的人机交互。

    突然间,全国平均最长26分钟到达办公室的通勤时间 -开始消失。驾驶的焦虑和压力转化为放松和富有成效的体验。

    自动驾驶汽车出现如此多的令人激动的提案极的监管互动并不是什么新鲜事。自动驾驶汽车将从根本上改变城市以及更多地区的全球交通网络,同时重新制定交通基础设施,车辆所有权等规则。

    IHS Automotive最新预测显示,在物联网(IoT)连接、处理能力和机器视觉等必要技术发展的关键时期,到2035年全球自动驾驶汽车将有近2100万销售量

     考虑到当今的情况:

    • 机器通过物联网连接的能力已经成为众多行业中的游戏规则改变者,但它仍然是一项新兴技术。Gartner公司预测,到2020年全球将有204亿物联产品

    • 常规视觉备份摄像机是如今车辆的常见功能…

  • 嵌入式处理: 城市的脉搏:使用毫米波传感器获得智能交通系统的智能检测和追踪功能

    Other Parts Discussed in Post: IWR1642

    作者:德州仪器Prajakta Desai

    正如我们用传感技术来测量个人的呼吸和心率,实际上城市也从同样的技术中受益。智能城市的一个关键要素是配备有传感器的智能交通系统,可监控城市的“健康” - 跟踪交通数据和停车计时以实施执法,红绿灯优先事项和事件管理,如图1所示

    1智能交通系统通过路口监控和停车位检测来帮助监控城市的健康

    智能传感器作为智能交通系统的核心,可以追踪交通拥堵并保持交通畅通,特别是在十字路口和高速公路上。这些传感器必须具备以下功能:

    • 精确性,用于测量车辆或行人的延伸范围,速度和位置。

    • 稳固性,包括在不透气的天气,黑暗和阳光下工作。

    • 整体性,优化实时评估和修正。

    • 易于使用性,带有参考代码和样本以加速部署。

    TI的创新毫米波(mmWave)技术是一种用于交通监控的无线传感解决方案…

  • 模拟: 从ERM到X-axis LRA,TI为你提供全面的Haptics Solution

    Other Parts Discussed in Post: DRV2603, DRV2604, DRV2605, TAS2562

    作者:王云静 HUAWEI Team AFAA, 封磊 HUAWEI Team FAE

    Haptics系统通过触觉反馈来实现人机交互,用户通过点触屏幕即可完成短信、打字、游戏等各种应用,得益于其简单方便的交互体验,Haptics已经成为了智能手机、平板电脑中广泛应用的人机交互方式。

    Introduction

    图1为Haptics系统的工作示意图,针对不同的应用场景,手机厂家会设计不同的效果波形,当屏幕控制器感应到用户的某种Touch操作后,触发Processor生成一个对应的振动指令和驱动波形给Haptics Driver IC,Driver IC对驱动波形进行放大和修正后,驱动Actuator执行对应的振动效果。

    Figure 1, Haptics System

    Haptics系统主要由以下几部分组成…

  • 嵌入式处理: 基于Sitara的Ali-IOT边缘网关设置方法

    Other Parts Discussed in Post: AM5749, CC1310

    作者: Denny Yang, Hu ZongQi

    简介:本文介绍了基于Sitara AM5749平台的ali-iot边缘网关的配置方法。TI的新一代处理器平台AM5749是多核异构结构的SOC,片上有两个ARM核(ARM CORTEX-A15),两个DSP(C66x)核,两个EVE AI加速模块。AM5749处理器是高度集成的器件,可用于实现高性能和多媒体应用。板载加速器提供加速视觉和深度学习功能,支持多个工业以太网协议和视频处理。对比AM57XX家族其他产品,AM5749支持完善的memory ECC校验功能,同时内部直集成EVE深度学习加速模块配合TIDL软件开发包,可以快速在嵌入式平台实现深度学习的功能。阿里云是阿里巴巴集团下的云计算产品,提供卓越的云计算服务与技术。本文间介绍阿里云和TIDL的环境搭建以及如何由阿里云和TIDL构建一个云…

  • 汽车: TI 平板显示器 Link III 器件中断功能的配置及应用

    作者:Fery Feng

    此文主要针对利用DS09UB933/34/62/64-Q1FPD-Link器件搭建的流媒体后视镜/全景泊车等应用中,由于链路设计、应用环境干扰、ESD等情况,导致概率性出现屏幕显示闪屏或者滚动的现象。利用解串器中的诊断/中断功能,再配合上有帧buffer及视频处理能力的SOC就可以有效地应对此类问题。

    TIADAS应用中的FPD-LINK器件均带有丰富的诊断功能,包括奇偶校验/反向通道CRC校验/LOCK状态/帧水平宽度检测/帧垂直宽度检测等,利用这些诊断功能我们可以十分便利的知道解串器接收到的数据是否有问题。同时,我们可以将以上的诊断结果映射到中断管脚上,并将中断脚连接到SOC,如果解串器接收的数据检测出来有问题的话,可以通过中断脚通知SOC去读取相关的寄存器,从而知道具体是出现什么故障了。

    而对于接收端带有帧buffer或者视频处理能力的SOC的系统,在我们知道当前帧的数据有问题的话,…

  • 汽车: 成像雷达:一个传感器控制所有传感器

    业界对三种主要传感器(摄像头、雷达和LIDAR)在汽车中的不同作用,以及它们各自如何满足先进驾驶辅助系统(ADAS)和自动驾驶的感测需求仍然存在一些困惑。

    最近,我和我的一个朋友进行了一次有趣的讨论,他知道我在研究用于ADAS系统和自动驾驶车辆(AVs)中雷达的TI毫米波(mmWave)传感器。

    每当他读到自动驾驶汽车在不同驾驶环境下(比如障碍物检测)运行情况的文章时都会不失时机地取笑我。其中一次的对话如下:

    Matt:“如果那辆车搭载有LIDAR的话,就能轻松识别出车道中间的物体。”

    我:“我依然不同意这样的看法。”

    Matt:“什么?!你为什么不同意?那辆车上装有一个摄像头传感器和一个雷达传感器,但ADAS系统仍然完全未能感测到车道中间的那辆车。”

    我:“当读到这些最近发生的事件时,你就会注意到如果摄像头经常暴露在刺眼的强光和其他因素之下,就会导致其看不到路上的物体…

  • 电源管理: 让太阳能逆变器比太阳更可靠

    在炎炎夏日,我通常和大多数人一样会躲在空调房里避暑。再之后,随着天气变得凉爽起来,我会打开窗户吹着自然风,在那时我就会收到夏季的电费账单,然后我就会问自己空调带来的短暂舒适感是否真的值得。

    空调只能在对抗炎热天气的过程中取得得不偿失的胜利。作为一名工程师,我认为这是一个需要解决的问题。我的解决方案很简单:如果你无法彻底取代它们,那就好好利用它的光与热。因此,与其消耗大量昂贵的公用电,我们倒不如用屋顶上的太阳能电池板为空调提供动力。幸运的是,我并不是第一个想到这一点的人,而且太阳能的成本几乎与传统能源持平,每个人都能享受太阳能带来的好处

    虽然人们将大部分的关注点都投向了光伏面板,但太阳能发电生态系统的其他部分也不容忽视,比如,电力电子技术。但这也只是一个关键方面而已。光伏面板产生的是直流电压,但电力传输和配电系统却处于交流电状态,因此需要电源逆变器。

    为实现太阳能发电系统的成本目标,美国能源部提出了以下要求作为“

  • 电源管理: 提高太阳能逆变器设计的效率

    随着美国进入夏季,我已经开始向往在海滩度假,在池畔烧烤的日子。我在佛罗里达州南部长大,现居住在德克萨斯州,炎热和阳光灿烂的日子对我来说再熟悉不过。同样,在夏季缴纳更高的电费对我来说也早已习以为常。从积极的角度想,阳光灿烂的日子也带来了很多好处,其中一个就是太阳能。

    太阳能有助于降低发电相关成本。这个行业最热门的话题之一就是电源转换效率。为了提高0.1%的效率,太阳能逆变器制造商往往需要投入大量的时间。考虑到更高的效率和增加的能源之间的关联性,亦即更快的光伏(PV)系统的投资回报速度,那么确定逆变器将太阳能电池板的直流电转换为家用交流电的能力将至关重要。

    微逆变器和太阳能优化器是太阳能市场中两种快速发展的架构。图1所示为太阳能微逆变器的典型框图。该微逆变器转换来自单个PV模块的功率,且通常设计用于250W至400W的最大输出功率。

    图1:典型的太阳能微逆变器

    为最大化PV面板性能,微逆变器的前端是DC/DC级,其中数字控制器执行最大功率点跟踪…

  • 嵌入式处理: 实时控制器获得新的连接功能

    Other Parts Discussed in Post: TMS320F28388D

    在当前工业领域,适用于各种电机驱动、工厂自动化和高功率电网应用的有多种解决方案和架构。其中许多都具有可靠的性能和连接,但却价格昂贵,因为它们可能具有复杂的设计和高昂的成本,而且为了满足系统的需求往往还需要多个芯片。在不断变化的市场中,设计差异化固然重要,但效率和性能对于产品的生命周期以及企业最终的长期可持续发展却更为关键。

    您可能会问自己,“我如何在竞争中取胜?”或“什么是帮助我维持业务和实现未来发展的理想选择?”问题的核心在就于集成功能,其中实时控制可实现实时连接。

    全新系列的C2000™实时控制器F2838x提供更优化的连接选项,控制性能得到提高,而且能够在工业应用和高功率电网应用中展现出系统级灵活性。如图1所示,该系列是一款具有性能增强功能的F2837x器件和一个新的连接管理器,以及一个可卸载处理密集型通信并优化连接的…

  • 模拟: 简化HEV 48-V系统的隔离CAN、电源接口

    48V汽车应用中对隔离的需求持续增长。这是一种紧凑、高效、稳健、低噪声的方法,可通过CAN接口隔离48 V系统。

    为今天的汽车设计是一种平衡行为。在满足日益严格的排放标准和为越来越多的车载系统和小工具提供动力之间,需为当今的车辆提供高功率,以获得高效率。

    为实现效率和功率的融合,工程师更加依赖于将48V电力运行与传统燃气发动机相结合的系统,如混合动力电动汽车(HEV)。这种方法可确保车辆满足严格的二氧化碳(CO2)排放标准,同时还可改进性能和驱动质量。

    虽然关于双电池汽车系统本身已有很多说法,但我关注的是这些组合式12和48V系统中的一个关键且有时被忽视的组件:电流隔离。电流隔离用于抵抗接地噪声,并在与其连接的48 V系统中接地断开或故障时保护12 V系统。

    在本文中,我将讨论48-V汽车应用中隔离的需求,并描述一种紧凑、高效、稳健和低噪声的方法,通过控制区域网络(CAN)接口隔离48-V系统。

     

    使用48V电池的车辆…

  • 模拟: 什么是隔离数字输入?

    虽然隔离数字输入和数字隔离器听起来很相似,但实际上它们之间存在一些显著差异。阅读本博文后,希望您能够轻松分辨出两个隔离功能之间的区别。

     

    内部结构

     

    数字隔离器充当提供电流隔离数字信号路径的基本(或通常是加强型)功能。来自德州仪器(TI)的隔离结构是电容性的,其绝缘屏障由我们互补的金属氧化物半导体(CMOS)工艺技术构建的两个高压电容器组成。高频载波通过隔离栅从初级侧到次级侧通信,而我们的数字隔离器能够承受高达12.8 kV的施加浪涌电压和1.5 kV的工作电压,而不会破坏双电容屏障。数字隔离器的一个关键组件是基本或加强型隔离电压。

    图1:数字隔离器

    隔离数字输入充当提供从传感器输入或其他输入类型到主机控制器接口的逻辑输出的电流隔离的基本功能。与数字隔离器不同,隔离数字输入的输入级(如图2所示)包括用户设置输入阈值和集成电流限制,允许9V至60V范围内的输入电压转换为逻辑输出。在最简单的形式中,隔离数字输入用作隔离比较器,具有一些易于设计的附加功能…

  • 模拟: SBC 基础课程——CAN/LIN SBC初学者指南

    Other Parts Discussed in Post: TCAN4550-Q1

    什么是系统基础芯片(SBC)?

    SBC是纯粹的集成电路,它将控制器局域网络(CAN)或本地互联网络(LIN)收发器与内部/外部“功率器件”集成在一起。该功率器件可以是低压差线性稳压器(LDO)、DC/DC转换器或两者兼有。

    当设计师需要更多输出功率,或需要离散式解决方案的布局选项并且该离散式解决方案需要收发器和离散式LDO或DC/DC转换器,这时SBC是您的理想选择。

    SBC对于市场来说不是新生事物,但是,近期在集成和性能方面的创新均拓展了这些设备的使用。对汽车设计师而言,其高水平的集成和更高的可靠性可以使其实现质量更轻和成本更低的设计。从经典CAN向灵活数据速率CAN(CAN FD)的转型,要求解决方案能够弥补CAN FD控制器处理器可用性之间的差距,同时亦有助于增加经典CAN/CAN FD总线的数量。

    在比较深入地介绍SBC之前…

  • 汽车: 了解风门执行器以及在它们在汽车暖通空调系统中的驱动因素

    无论在酷暑还是寒冬,乘客始终可以通过汽车的加热和制冷系统享受到舒适的车内环境。在不同类别的车辆中,这些暖通空调(HVAC)系统的复杂性和自动化程度也各不相同。经济型汽车可能需要驾驶员手动旋转旋钮来控制温度,而在高端车辆中,则可以通过传感器同时自动控制车内的温度以及空气的湿度和质量。

    空气流动

    无论何种类别的车辆,汽车HVAC系统都需要交换空气,并在此过程中改变其温度、湿度和质量。

    让我们来看一下空气流动的原理。空气可以从车厢外部或内部吸入系统。也可以通过蒸发器或换热器进入HVAC系统以进行调节;经过调节的空气分布在整个车厢内,让乘客脚部保暖,或者防止挡风玻璃起雾。

    空气流动的途径有很多种:从外部到蒸发器再到挡风玻璃,或从内部到热交换器再到车厢底部的通风口。那么HVAC系统是如何控制空气流动的方式呢?

    图1所示为HVAC系统的侧视图。关键组件用数字标记,箭头指示空气流动的方向。图1中的部件4至8所示为风门执行器。橙色虚线表示风门移动的区域…

  • 汽车: 汽车背后的故事 通过深度学习提高和发展车辆感知

    当今汽车认知

    自动驾驶汽车的梦想正在成为现实。通过在车辆中实现多个高级驾驶辅助系统(ADAS),汽车行业对自动驾驶的追求正在稳步推进。当今的新车均已配备多个摄像头、雷达和超声波传感器,实现基于感知的辅助功能,如自动泊车辅助、自动紧急制动、车道保持辅助、驾驶员疲劳警报等。

    基于摄像头的感知功能在当今的车辆中至关重要。感知系统的功能与人体具有很强的相似性:摄像头或图像传感器充当车辆的“眼睛”,数据从图像传感器发送到主处理器即“大脑”,它使用各种算法来理解和解释数据,最后,通过发送控制转向、加速器和/或制动的命令(类似“手、脚”)来做出决定。在过去十年中,汽车感知系统已从基本的后视摄像头演变为具有停车辅助功能的全3D环视。人类能力边界随大脑发展得以拓宽,类似地,ADAS技术进步建立的基础是运行于日益高效的硬件平台上的创新感知算法。

    深度学习概述

    当今自动驾驶领域最热门的话题之一是…

  • 嵌入式处理: MSP430G2755 Main Bootloader UART 移植指导

    Other Parts Discussed in Post: MSP430G2553, MSP430G2755

    作者:Terry Han

    摘要

    TI 的MSP430支持在主程序中加载Bootloader的方式进行在线升级操作,通过在线升级功能,客户可以通过外部处理器随时更新MSP430内部的程序及Bug 的远程修复。同时TI也提供了基于MSP430G2553的参考代码,本文详细的介绍了如何将MSP430G2553的Bootloader移植到MSP430G2755中,使用MSP 430G2553 Host对MSP430G2755 Device进行的升级操作。

    本文基于MS430G2755为目标升级对象,详细讲述BootLoader的使用方法,并给出了具体的移植步骤

    Figure1为MSPBoot软件框架,本文的分析都是基于这个典型软件框架。

     Figure1. MSPBoot软件框架路

    1. MSP430 Main Memory…

  • 模拟: TPS23754输出短路问题分析及解决方案

    Other Parts Discussed in Post: TPS23754

    作者:Binbin Wang/Wilson Guo/Given Ding

    摘要

    TPS23754是一款集成DC/DC控制器的高效PD芯片,可以支持IEEE 802.3at标准,最大输入功率可达30W。其主要应用场景包括无线接入点,安防摄像头,IP电话等。该芯片支持反激和有源钳位正激两种拓扑,用户可以根据自身需求选择相应的拓扑。本文针对TPS23754,简介其应用方式以及针对应用中出现的输出短路无法恢复问题进行了分析并提出了解决方案。

    1.典型应用简介

    PoE (Power Over Ethernet) 指的是在现有的以太网Cat.5布线基础架构不作任何改动的情况下,在为一些基于IP的终端(如IP电话机、无线局域网接入点AP、网络摄像机等)传输数据信号的同时,还能为此类设备提供直流供电的技术[1]。一个完整的POE系统包括供电端设备(PSE, Power…

  • 电源管理: 利用电量计芯片实现双节串联锂电池的快速智能充电

    Other Parts Discussed in Post: BQ24725A, BQ28Z610

    作者:Harson Zhang   模拟现场应用工程师

    目前的快速充电方案,在手机市场中有广泛的应用。主流方案有基于处理器厂家高通平台的QC2.0/3.0,和即将应用的4.0标准,MTKPump Express标准,国产手机厂商的闪充。QC快充方案使用了高压输入的提高功率,可以在提高输入功率的同时使用低电流的线缆。闪充技术需要定制大电流的线缆配合,共同点都是应用在单节锂电池的产品上并不能应用在双节串联锂电池的快速充电场合。双节串联的锂电池的典型满充电压达到8.4-8.8V,应用在对讲机、 POS机等终端产品上。 TI针对多节电池的充电方案产品十分丰富,BQ24725A就是一款支持大电流的支持SMBus通信的充电控制器。BQ24725A输出电压支持到最高19.2V,充电电流最大支持到8A以上,输出电压精度控制达到0.5%

    使用类似BQ4725A这类集成的充电管理芯片方案对锂电池充电其实十分简单…

  • 电源管理: BQ40Z50-R2安全模式介绍及密码修改方法

    Other Parts Discussed in Post: BQ40Z50-R2, BQSTUDIO

    作者: 朱明武(Mingmo)

    电量计有三层安全模式:SEALED(加锁), UNSEALED(解锁), FULL ACCESS(全访问)。在不同安全模式下切换需要不同的安全密码。下面以BQ40Z50-R2为例(BQ40Z50-R1/R2/R3均适用)介绍三层安全模式的区别、模式切换方法、如何读取密码及如何修改密码。

    1、三层安全模式的区别

    不同安全模式下电量计的信息访问权限不同。

    SEALED(加锁)模式下,标准SBS命令(Command)可以访问、部分扩展命令(Extended Command)不能使用、不能读写Data Memory参数(不能导出导入GG文件)、不可以烧录CHEM ID、不能烧录或导出固件(FW)。具体SBS命令访问权限请参考电量计技术参考手册(Technical Reference Manual…

  • 模拟: OPT3004 在电池供电camera中 的应用

    Other Parts Discussed in Post: OPT3004

    Betty Guo

    在电池供电的应用中,功耗是非常重要的指标。电池供电的Camera中通常会使用两颗MCU来实现,一颗超低功耗的MCU处于长期工作状态,主MCU处于休眠状态。当外界环境发生变化时,比如白天切换到夜晚或人员走动时,传感器会反馈外界环境信息给超低功耗的MCU,超低功耗的MCU会根据传递的信号唤醒主MCU进行工作,配置图像采集sensor,从而节约能效。

    传统的长供电的摄像机应用中,多使用低成本的光敏电阻或光敏二极管作为光感元件。主MCU根据sensor采集的图像进行成像配置,同时光敏二极管作为辅助感光元件共同实现sensor的寄存器配置。

    对于电池应用摄像机,由于主MCU长期处于休眠状态,外界光强的感知完全由光敏二极管来实现。由于光敏二极管动态范围窄(0Lux1500Lux),当摄像机处于室外环境中时,外界光照强度很大,容易出现光强饱和现象…

  • 模拟: TI PD解决方案在安防市场的应用

    Other Parts Discussed in Post: TPS23753A, TPS23755, TPS23756, LM5155, TPS2378, LM5025A, UCC2897A

    POE即Power Over Ethernet, 是指无需使用额外电源线而通过以太网网线供电的方案。此方案广泛应用于安防摄像头, 网络视频存储等场合。POE标准的发展过程经历了2003年IEEE 802.3af标准的发布,2009年IEEE 802.3at的发布,以及2018 年IEEE 802.3bt标准的发布。在POE的系统架构分为PSE (Power Sourcing Equipment) 和PD(Power Device) 两部分. IEEE 802.3af(我们常称其为Type1)对应的功率等级为PSE=15.4w, PD=13w. IEEE 802.3at(我们常称其为Type2)对应的功率等级为PSE=30w, PD=25.5w…

  • 模拟: 同步网络高性能线卡的应用

    Other Parts Discussed in Post: LMK05318

    在分布式网络中,由于网络传输时延的不确定性,导致采用网络命令触发的同步精度差;同时,由于分布式网络各节点位置的分散性,不适合采用各节点硬件同步提供高精度的同步触发。基于时间信息的同步触发方式特别适合于分布式远距离同步系统,其触发方式灵活,不受距离的限制。

    同步以太网是一种采用以太网链路码流恢复时钟的技术, 简称SyncE。同步以太网通过从串行数据码流中恢复出发送端的时钟,从而实现网络时钟同步。但SyncE不能提供时间同步。IEEE1588v2是统一提供时间同步和频率同步的方法,能适合于不同传送平台的时频传送,既可以基于1588v2的时间戳以基于分组的时间传送(TOP)方式单向传递频率,也可使用IEEE1588v2的协议实现时间同步。IEEE1588v2时间同步的核心思想是采用主从时钟方式,对时间信息进行编码,利用网络的对称性和延时测量技术,通过报文消息的双向交互实现主从时间的同步…

  • 模拟: S参数究竟是什么?

    现代高速模数转换器(ADC)已经实现了射频(RF)信号的直接采样,因而在许多情况下均无需进行混频,同时也提高了系统的灵活性和功能。

     

    传统上,ADC信号和时钟输入都采用集总元件模型来表示。但是对于RF采样转换器而言,其工作频率已经增加至需要采用分布式表示的程度,那么原有的方法就不适用了。

     

    本系列文章将从三个部分入手,说明如何将散射参数(也称为S参数)应用于直接射频采样结构的设计。

     

    起决定性作用的S参数

     

    S参数就是建立在入射微波与反射微波关系基础上的网络参数。它对于电路设计非常有用,因为可以利用入射波与反射波的比率来计算诸如输入阻抗、频率响应和隔离等指标。而且由于可以用矢量网络分析仪(VNA)直接测量S参数,因此无需知晓网络的具体细节。

     

    图1所示的是一个双端口网络的例子,其入射波量为ax,反射波量为bx,其中x是端口。在该讨论中,我们假设被测器件是线性网络,因此适合采用叠加法。

    图1:双端口网络波量

     

    通常情况下,在测量所有端口上的反射波时…

  • 电源管理: 减小EMI,提高密度和集成隔离是2019年电源发展的三大趋势

    作者:德州仪器Kilby实验室电源管理总监Jeff Morroni

    毫无疑问,电源在调节、传输和功耗等各个方面都成为日益重要的话题。人们期望产品功能日趋多样、性能更强大、更智能、外观更加酷炫,业界看到了关注电源相关问题的重要意义。展望2019年,三大广泛的问题最受关注,即:密度、EMI和隔离(信号和电源)。

     

    实现更高的密度:将更多电源管理放入更小的空间

    由于IC光刻工艺和每个功能运行功率的大幅缩减,使得芯片上可集成更多功能和栅极,对成品的总体功率需求迅速增长,如图1所示。一些处理器现在可以消耗几百安培电流,并且可以在不到一微秒的时间内从低电流状态上升到完全激活状态。通过降低损耗和提高热性能实现在硬币大小的面积上达到千瓦级功率的密度目标并非一句玩笑话。

    1:从1992年到2010年的产品热密度发展趋势。

     

    问题不仅在于管理功率和因此产生的功耗。由于存在基本的I2R损耗,即使在电源负载路径中明显

  • 电源管理: LDO基础知识:噪声 - 第1部分

    Other Parts Discussed in Post: TPS7A91, TPS7A85

    作者:德州仪器Aaron Paxton

    在一篇LDO基础知识博文中,我讨论了使用低压差稳压器(LDO)过滤因开关模式电源导致的纹波电压。然而,这不是获得净化直流电源唯一要考虑的事情。因为LDO是电子设备,它们自身也会生成一定数量的噪声。选择使用低噪声LDO和采取步骤减少内部噪声,都可以在不损害系统性能的同时形成净化电源轨的不可分割的措施。

    识别噪声

    理想的LDO具备没有交流元件的电压轨。但缺点在于LDO会和其他电子设备一样生成本体噪声。图 1 显示了这种噪声在时间域中的表现。

     图 1:有噪声电源的输出噪声快照

    在时间域中进行分析是困难的。因此,有两个主要方法来检验噪声:跨越整个频谱,和作为综合值。 您可以使用频谱分析工具来识别LDO输出线路中的各种交流元件。(应用报告,“如何测量LDO噪声,”介绍了丰富的噪声测量知识。) 图 2 绘制了1A低噪声LDO…