使用ADS199FE-PDK 透過SPI連接到 STM32F4052的開發版,mcu spi baud rate設置為2M,CPOL=LOW,CPHA=2 Edge,我開啟八通道的test signal輸入,使用邏輯分析儀發現每個通道的值差異不大,如圖1,但在每個SPI傳輸後,使用UART讓藍芽傳輸,SPI的值就會變得很奇怪,如圖二,請問是正常的嗎?
以及我該如何檢驗SPI的結果是正確的呢,謝謝
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stdio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;
UART_HandleTypeDef huart1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_SPI1_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
//int received_byte; // 定義接收字節變量
HAL_GPIO_WritePin(GPIOC, reset_Pin, GPIO_PIN_SET);
uint8_t RESET = 0x06; // 復位ADS1299命令
HAL_Delay(1000);
HAL_SPI_Transmit(&hspi1, (uint8_t*)&RESET, 1, 0x1000);
HAL_Delay(1000);
uint8_t ID = 0x00;
//uint8_t為一個char
uint8_t SDATAC = 0x11; // stop read data
uint8_t RDATAC = 0x10; // 讀取連續數據
uint8_t START = 0x08; // 啟動命令
// uint8_t STOP = 0x0a; // 停止命令(未使用)
// uint8_t WAKEUP = 0x02; // 喚醒命令(未使用)
// uint8_t STANDBY = 0X04; // 待機命令(未使用)
uint8_t test = 0x00; // 測試變量
uint8_t CONFIG1 = 0x01; // 配置寄存器1
uint8_t CONFIG2 = 0x02; // 配置寄存器2
uint8_t CONFIG3 = 0x03; // 配置寄存器3
uint8_t CH1SET = 0x05; // 設置通道1
uint8_t CH2SET = 0x06; // 設置通道2
uint8_t CH3SET = 0x07; // 設置通道3
uint8_t CH4SET = 0x08; // 設置通道4
uint8_t CH5SET = 0x09; // 設置通道5
uint8_t CH6SET = 0x0A; // 設置通道6
uint8_t CH7SET = 0x0B; // 設置通道7
uint8_t CH8SET = 0x0C; // 設置通道8
// uint8_t BIAS_SENSP = 0x0D; // 設置Bias Drive Positive Derivation Register
// uint8_t BIAS_SENSN = 0x0E; // 設置Bias Drive Negative Derivation Register
// uint8_t LOFF_SENSP = 0x0F; // 設置Positive Signal Lead-Off Detection Register
// uint8_t LOFF_SENSN = 0x10; // 設置Negative Signal Lead-Off Detection Register
// uint8_t LOFF_FLIP = 0x11; // 設置Lead-Off Flip Register
// uint8_t LOFF_STATP = 0x12;
// uint8_t LOFF_STATN = 0X13;
//
// uint8_t GPIO = 0x14; // 設置GPIO
// uint8_t MISC1 = 0x15; // 設置MISC1
// uint8_t MISC2 = 0x16; // 設置MISC2
// uint8_t CONFIG4 = 0x17; // 設置寄存器4
uint8_t received_Byte; // 定義接收字節變量
uint32_t dataPacket = 0;
uint32_t output[9] = {0};
int counter = 0;
int length;
uint32_t data_test = 0x7FFFFF; // 測試數據
uint32_t data_check = 0xFFFFFF; // 檢查數據
uint32_t result[4]={0}; // 定義結果變量
uint32_t result_before; // 定義先前結果變量
// int average_result_massiv[10] = {0}; // 定義平均結果數組
// int average_result; // 定義平均結果變量
//
// uint32_t noise_massive[100] = {0}; // 定義噪聲數組
// uint32_t final_noise_massive[100] = {0}; // 定義最終噪聲數組
// uint32_t summa_noise; // 定義噪聲總和變量
int zad = 8; // 定義任務變量
// int i_count = 0; // 定義計數器變量
// int average_count = 0; // 定義平均計數器變量
// int pcktcnter = 0;
uint8_t out1 = 0;
uint8_t new_data_flag = 0;
// 發送命令函數
void send_command(uint8_t cmd)
{
HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET);// 拉低CS引腳選擇芯片
HAL_SPI_Transmit(&hspi1, (uint8_t*)&cmd,1, 0x1000);// 通過SPI發送命令,HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET);// 拉高CS引腳釋放芯片
}
void send_data_by_uart(uint32_t outputdata)
{
//HAL_UART_Transmit(&huart1, &outputdata, sizeof(outputdata), 10); // Transmit the entire buffer
//outputdata is a (4x24bit) array with 4 corresponding to 4 channels
// step 1 - convert dataset
char buffer = {0};
char buffer1[6] = {0};
sprintf(buffer1, "%06x", outputdata);
for (int i=0;i<6;i++)
{
if (buffer1[i]!= '\0')
{
buffer = buffer1[i];
HAL_UART_Transmit(&huart1, &buffer, 1, 10); //original timeout = 1000
}
else
{
continue;
}
}//end of for (int i=0;i<6;i++)
if (counter == 7) // if send_data_by_uart has run 4 times then it means all data channels have been transmitted
{
buffer = '\n'; //send "\n" after all channels have been sent to BLE
HAL_UART_Transmit(&huart1, &buffer, 1, 10);
counter = 0;
}// end of if(counter == 3)
else
{
counter += 1;
}
}// end of send_data_by_uart
// 寫入字節函數
void write_byte(uint8_t reg_addr, uint8_t val_hex)
{
HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET);// 拉低CS引腳電壓,選擇芯片使其動作
uint8_t adress = 0x40|reg_addr; // 定義寄存器地址
HAL_SPI_Transmit(&hspi1, (uint8_t*)&adress, 1, 0x1000);// 發送寄存器地址
HAL_SPI_Transmit(&hspi1, (uint8_t*)&test, 1, 0x1000);// 發送測試數據
HAL_SPI_Transmit(&hspi1, (uint8_t*)&val_hex, 1, 0x1000);// 發送要寫入的數據
HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET);
}
// 讀取字節函數
uint8_t read_byte(uint8_t reg_addr)
{
uint8_t out; // 定義輸出字節變量
HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET);// 拉低CS引腳電壓,選擇芯片使其動作
uint8_t adress = 0x20 | reg_addr ; // 定義寄存器地址
HAL_SPI_Transmit(&hspi1, (uint8_t*) &adress, 1 ,0x1000);// 發送寄存器地址
// HAL_SPI_Transmit(&hspi1, (uint8_t*)&test, 1, 0x1000);// 發送測試數據
// HAL_SPI_Receive(&hspi1, (uint8_t*)&out,1, 0x1000);
HAL_SPI_TransmitReceive(&hspi1,(uint8_t*)&adress,(uint8_t*)&out,1,0x1000); // 讀取寄存器數據
HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET);// 拉高CS引腳釋放芯片
return(out);
}
// 指示燈功能函數
void live_bits ()
{
HAL_Delay(100); // 延遲100毫秒
HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_0);// 翻轉PB0引腳電平
HAL_Delay(100);// 延遲100毫秒
}
int measure_impedance()
{
write_byte(CH1SET, 0x00); // 將值0x00寫入通道1
write_byte(0x0D, 0x00); // 設置BIAS_SENSP寄存器,Disabled INxP to bias
write_byte(0x0E, 0x00); // 設置BIAS_SENSN寄存器,Disabled INxN to BIAS
write_byte(0x0F, 0xFF); // 設置LOFF_SENSP寄存器,Enabled INxP lead off, positive side from each channel for lead-off detection
}
HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET);
send_command(SDATAC);
HAL_Delay(1000);
write_byte(ID, 0x3E);
out1 = read_byte(0x00);
write_byte(0x01, 0x95);
//B5(1011 0110),Oscillator clock output enabled,fs=500Hz
// 95 (1001 0110),fs=500Hz
out1 = read_byte(0x01);
write_byte(CONFIG2, 0xD0); //ti 板子設置test singal 由外部驅動
// write_byte(CONFIG2, 0xD4);
//D4 (1101 0100),test singal 內部生成
//test singal=2 X (-(Vrefp-Vrefn)/2400)
//plused at fclk/(2^21)
write_byte(CONFIG3, 0xF0); //ti 板子設置
// write_byte(CONFIG3, 0xEC);
// EC (1111 1100),use internal ref_buffer
//BIAS_IN connent MUX=010 的通道,BIASREF=(AVDD+AVSS)/2,bias connect
write_byte(0x04, 0x00); ////ti 板子設置
// write_byte(0x04, 0x04); //Lead-Off Control Register, not all
write_byte(0x0D, 0x00); //ti 板子設置
// write_byte(0x0D, 0x01); // 0F BIAS_SENSP: Bias Drive Positive Derivation Register,這邊指使用通道1參與BIAS的回饋
write_byte(0x0E, 0x00); // 0F BIAS_SENSN: Bias Drive Negative Derivation Register
write_byte(0x0F, 0x00); // LOFF_SENSP: Positive Signal Lead-Off Detection Register
write_byte(0x10, 0x00); // LOFF_SENSN: Negative Signal Lead-Off Detection Register
write_byte(0x11, 0x00); // LOFF_FLIP: Lead-Off Flip Register
write_byte(0x12, 0x00); // (Read-Only) LOFF_STATP: Lead-Off Positive Signal Status Register
write_byte(0x13, 0x00); // (Read-Only)LOFF_STATN: Lead-Off Negative Signal Status Register
write_byte(0x14, 0x0F); //ti 板子設置
// write_byte(0x14, 0x3F); // GPIO 用於輸出
write_byte(0x15, 0x00); //ti 板子設置
// write_byte(0x15, 0x20); // MISC1, 第5bit決定SRB1引道到各通道,SRB1接至反向輸入端
write_byte(0x16, 0x00); // RESERVED
// write_byte(0x17, 0x00); // CONFIG4
write_byte(CH1SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input
write_byte(CH2SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input
write_byte(CH3SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input
write_byte(CH4SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input
write_byte(CH5SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input
//// HAL_Delay(10);
////
write_byte(CH6SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input
//// HAL_Delay(10);
////
write_byte(CH7SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input
//// HAL_Delay(10);
////
write_byte(CH8SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input
// HAL_Delay(10);
// send_command(SDATAC);
// uint8_t read_reg = read_byte(CH1SET);
// send_data_by_uart(read_reg);
HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET);
// HAL_GPIO_WritePin(GPIOB, Start_Pin, GPIO_PIN_);
HAL_Delay(1000);
// send_command(START);
HAL_GPIO_WritePin(GPIOB, Start_Pin, GPIO_PIN_SET);
HAL_Delay(10);
send_command(RDATAC);
HAL_Delay(10); //tsettle = 16393*500ns. 500ns = tclk, 16393 see datasheet pg 35
// int only_1_times=0;
while (1)
{
// HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET);
// write_byte(CH1SET, 0x65);// 通道1: Input shorted
// write_byte(CH2SET, 0x65);// 通道2: Input shorted
// write_byte(CH3SET, 0x65);// 通道3: Input shorted
// write_byte(CH4SET, 0x65);// 通道4: Input shorted
// HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET);
// HAL_Delay(2);
// measure_noise();
// if (HAL_GPIO_ReadPin(DRDY_GPIO_Port, DRDY_Pin) == GPIO_PIN_SET)
// {
// zad = 5;
// }
/* The code here separates channel data one-by-one, and then it packages the data by channels (8 packets, one per channel) and combines them into
one array to send out 8 packets at once. We need to change this. */
if (HAL_GPIO_ReadPin(DRDY_GPIO_Port, DRDY_Pin) == GPIO_PIN_RESET ) //
// if (HAL_GPIO_ReadPin(DRDY_GPIO_Port, DRDY_Pin) == GPIO_PIN_RESET && zad==5)
{ //
//HAL_Delay(2);
// zad=0;
//CS_Pin 低電位開始寫入資料
HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET); //CS low //CS_Pin 低電位開始寫入資料
//Read SPI and convert data
for(int i = 0; i<9; i++) //4 channels
{
//dataPacket = 0;
for(int j = 0; j<3; j++) //3 bytes per channel
{
// byte dataByte = SPI.transfer(0x00);
HAL_SPI_TransmitReceive(&hspi1,(uint8_t*)&test,&received_Byte,1,0x1000);
// HAL_SPI_Receive(&hspi1,&received_Byte,1,100); //transmit & receive occur at the same time
dataPacket = (dataPacket<<8)|received_Byte;
} // end of for(int j = 0; j<3; j++)
output[i] = dataPacket;
//send_data_by_uart(output);
dataPacket = 0;
} //end of for(int i = 0; i<4; i++)
// HAL_Delay(20);
//uint32_t size = sizeof(output)/sizeof(output[0]);
for(int i = 1; i<9; i++)
{
send_data_by_uart(output[i]);
}
//Send data over UART
// send_data_by_uart(result);
// HAL_Delay(20);
} // end of if(HAL_GPIO_ReadPin(DRDY_GPIO_Port, DRDY_Pin) == GPIO_PIN_RESET && zad==5)
//HAL_Delay(2);
} // end of while(1)
}//end of main
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(CS_GPIO_Port, CS_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(reset_GPIO_Port, reset_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(Start_GPIO_Port, Start_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : DRDY_Pin */
GPIO_InitStruct.Pin = DRDY_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(DRDY_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : CS_Pin */
GPIO_InitStruct.Pin = CS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(CS_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : reset_Pin */
GPIO_InitStruct.Pin = reset_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(reset_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : LED_Pin Start_Pin */
GPIO_InitStruct.Pin = LED_Pin|Start_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
