使用ADS199FE-PDK 透過SPI連接到 STM32F4052的開發版,mcu spi baud rate設置為2M,CPOL=LOW,CPHA=2 Edge,我開啟八通道的test signal輸入,使用邏輯分析儀發現每個通道的值差異不大,如圖1,但在每個SPI傳輸後,使用UART讓藍芽傳輸,SPI的值就會變得很奇怪,如圖二,請問是正常的嗎?
以及我該如何檢驗SPI的結果是正確的呢,謝謝
/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2024 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stdio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ SPI_HandleTypeDef hspi1; UART_HandleTypeDef huart1; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_SPI1_Init(void); static void MX_USART1_UART_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_SPI1_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ //int received_byte; // 定義接收字節變量 HAL_GPIO_WritePin(GPIOC, reset_Pin, GPIO_PIN_SET); uint8_t RESET = 0x06; // 復位ADS1299命令 HAL_Delay(1000); HAL_SPI_Transmit(&hspi1, (uint8_t*)&RESET, 1, 0x1000); HAL_Delay(1000); uint8_t ID = 0x00; //uint8_t為一個char uint8_t SDATAC = 0x11; // stop read data uint8_t RDATAC = 0x10; // 讀取連續數據 uint8_t START = 0x08; // 啟動命令 // uint8_t STOP = 0x0a; // 停止命令(未使用) // uint8_t WAKEUP = 0x02; // 喚醒命令(未使用) // uint8_t STANDBY = 0X04; // 待機命令(未使用) uint8_t test = 0x00; // 測試變量 uint8_t CONFIG1 = 0x01; // 配置寄存器1 uint8_t CONFIG2 = 0x02; // 配置寄存器2 uint8_t CONFIG3 = 0x03; // 配置寄存器3 uint8_t CH1SET = 0x05; // 設置通道1 uint8_t CH2SET = 0x06; // 設置通道2 uint8_t CH3SET = 0x07; // 設置通道3 uint8_t CH4SET = 0x08; // 設置通道4 uint8_t CH5SET = 0x09; // 設置通道5 uint8_t CH6SET = 0x0A; // 設置通道6 uint8_t CH7SET = 0x0B; // 設置通道7 uint8_t CH8SET = 0x0C; // 設置通道8 // uint8_t BIAS_SENSP = 0x0D; // 設置Bias Drive Positive Derivation Register // uint8_t BIAS_SENSN = 0x0E; // 設置Bias Drive Negative Derivation Register // uint8_t LOFF_SENSP = 0x0F; // 設置Positive Signal Lead-Off Detection Register // uint8_t LOFF_SENSN = 0x10; // 設置Negative Signal Lead-Off Detection Register // uint8_t LOFF_FLIP = 0x11; // 設置Lead-Off Flip Register // uint8_t LOFF_STATP = 0x12; // uint8_t LOFF_STATN = 0X13; // // uint8_t GPIO = 0x14; // 設置GPIO // uint8_t MISC1 = 0x15; // 設置MISC1 // uint8_t MISC2 = 0x16; // 設置MISC2 // uint8_t CONFIG4 = 0x17; // 設置寄存器4 uint8_t received_Byte; // 定義接收字節變量 uint32_t dataPacket = 0; uint32_t output[9] = {0}; int counter = 0; int length; uint32_t data_test = 0x7FFFFF; // 測試數據 uint32_t data_check = 0xFFFFFF; // 檢查數據 uint32_t result[4]={0}; // 定義結果變量 uint32_t result_before; // 定義先前結果變量 // int average_result_massiv[10] = {0}; // 定義平均結果數組 // int average_result; // 定義平均結果變量 // // uint32_t noise_massive[100] = {0}; // 定義噪聲數組 // uint32_t final_noise_massive[100] = {0}; // 定義最終噪聲數組 // uint32_t summa_noise; // 定義噪聲總和變量 int zad = 8; // 定義任務變量 // int i_count = 0; // 定義計數器變量 // int average_count = 0; // 定義平均計數器變量 // int pcktcnter = 0; uint8_t out1 = 0; uint8_t new_data_flag = 0; // 發送命令函數 void send_command(uint8_t cmd) { HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET);// 拉低CS引腳選擇芯片 HAL_SPI_Transmit(&hspi1, (uint8_t*)&cmd,1, 0x1000);// 通過SPI發送命令,HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET);// 拉高CS引腳釋放芯片 } void send_data_by_uart(uint32_t outputdata) { //HAL_UART_Transmit(&huart1, &outputdata, sizeof(outputdata), 10); // Transmit the entire buffer //outputdata is a (4x24bit) array with 4 corresponding to 4 channels // step 1 - convert dataset char buffer = {0}; char buffer1[6] = {0}; sprintf(buffer1, "%06x", outputdata); for (int i=0;i<6;i++) { if (buffer1[i]!= '\0') { buffer = buffer1[i]; HAL_UART_Transmit(&huart1, &buffer, 1, 10); //original timeout = 1000 } else { continue; } }//end of for (int i=0;i<6;i++) if (counter == 7) // if send_data_by_uart has run 4 times then it means all data channels have been transmitted { buffer = '\n'; //send "\n" after all channels have been sent to BLE HAL_UART_Transmit(&huart1, &buffer, 1, 10); counter = 0; }// end of if(counter == 3) else { counter += 1; } }// end of send_data_by_uart // 寫入字節函數 void write_byte(uint8_t reg_addr, uint8_t val_hex) { HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET);// 拉低CS引腳電壓,選擇芯片使其動作 uint8_t adress = 0x40|reg_addr; // 定義寄存器地址 HAL_SPI_Transmit(&hspi1, (uint8_t*)&adress, 1, 0x1000);// 發送寄存器地址 HAL_SPI_Transmit(&hspi1, (uint8_t*)&test, 1, 0x1000);// 發送測試數據 HAL_SPI_Transmit(&hspi1, (uint8_t*)&val_hex, 1, 0x1000);// 發送要寫入的數據 HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET); } // 讀取字節函數 uint8_t read_byte(uint8_t reg_addr) { uint8_t out; // 定義輸出字節變量 HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET);// 拉低CS引腳電壓,選擇芯片使其動作 uint8_t adress = 0x20 | reg_addr ; // 定義寄存器地址 HAL_SPI_Transmit(&hspi1, (uint8_t*) &adress, 1 ,0x1000);// 發送寄存器地址 // HAL_SPI_Transmit(&hspi1, (uint8_t*)&test, 1, 0x1000);// 發送測試數據 // HAL_SPI_Receive(&hspi1, (uint8_t*)&out,1, 0x1000); HAL_SPI_TransmitReceive(&hspi1,(uint8_t*)&adress,(uint8_t*)&out,1,0x1000); // 讀取寄存器數據 HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET);// 拉高CS引腳釋放芯片 return(out); } // 指示燈功能函數 void live_bits () { HAL_Delay(100); // 延遲100毫秒 HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_0);// 翻轉PB0引腳電平 HAL_Delay(100);// 延遲100毫秒 } int measure_impedance() { write_byte(CH1SET, 0x00); // 將值0x00寫入通道1 write_byte(0x0D, 0x00); // 設置BIAS_SENSP寄存器,Disabled INxP to bias write_byte(0x0E, 0x00); // 設置BIAS_SENSN寄存器,Disabled INxN to BIAS write_byte(0x0F, 0xFF); // 設置LOFF_SENSP寄存器,Enabled INxP lead off, positive side from each channel for lead-off detection } HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET); send_command(SDATAC); HAL_Delay(1000); write_byte(ID, 0x3E); out1 = read_byte(0x00); write_byte(0x01, 0x95); //B5(1011 0110),Oscillator clock output enabled,fs=500Hz // 95 (1001 0110),fs=500Hz out1 = read_byte(0x01); write_byte(CONFIG2, 0xD0); //ti 板子設置test singal 由外部驅動 // write_byte(CONFIG2, 0xD4); //D4 (1101 0100),test singal 內部生成 //test singal=2 X (-(Vrefp-Vrefn)/2400) //plused at fclk/(2^21) write_byte(CONFIG3, 0xF0); //ti 板子設置 // write_byte(CONFIG3, 0xEC); // EC (1111 1100),use internal ref_buffer //BIAS_IN connent MUX=010 的通道,BIASREF=(AVDD+AVSS)/2,bias connect write_byte(0x04, 0x00); ////ti 板子設置 // write_byte(0x04, 0x04); //Lead-Off Control Register, not all write_byte(0x0D, 0x00); //ti 板子設置 // write_byte(0x0D, 0x01); // 0F BIAS_SENSP: Bias Drive Positive Derivation Register,這邊指使用通道1參與BIAS的回饋 write_byte(0x0E, 0x00); // 0F BIAS_SENSN: Bias Drive Negative Derivation Register write_byte(0x0F, 0x00); // LOFF_SENSP: Positive Signal Lead-Off Detection Register write_byte(0x10, 0x00); // LOFF_SENSN: Negative Signal Lead-Off Detection Register write_byte(0x11, 0x00); // LOFF_FLIP: Lead-Off Flip Register write_byte(0x12, 0x00); // (Read-Only) LOFF_STATP: Lead-Off Positive Signal Status Register write_byte(0x13, 0x00); // (Read-Only)LOFF_STATN: Lead-Off Negative Signal Status Register write_byte(0x14, 0x0F); //ti 板子設置 // write_byte(0x14, 0x3F); // GPIO 用於輸出 write_byte(0x15, 0x00); //ti 板子設置 // write_byte(0x15, 0x20); // MISC1, 第5bit決定SRB1引道到各通道,SRB1接至反向輸入端 write_byte(0x16, 0x00); // RESERVED // write_byte(0x17, 0x00); // CONFIG4 write_byte(CH1SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input write_byte(CH2SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input write_byte(CH3SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input write_byte(CH4SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input write_byte(CH5SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input //// HAL_Delay(10); //// write_byte(CH6SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input //// HAL_Delay(10); //// write_byte(CH7SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input //// HAL_Delay(10); //// write_byte(CH8SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input // HAL_Delay(10); // send_command(SDATAC); // uint8_t read_reg = read_byte(CH1SET); // send_data_by_uart(read_reg); HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET); // HAL_GPIO_WritePin(GPIOB, Start_Pin, GPIO_PIN_); HAL_Delay(1000); // send_command(START); HAL_GPIO_WritePin(GPIOB, Start_Pin, GPIO_PIN_SET); HAL_Delay(10); send_command(RDATAC); HAL_Delay(10); //tsettle = 16393*500ns. 500ns = tclk, 16393 see datasheet pg 35 // int only_1_times=0; while (1) { // HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET); // write_byte(CH1SET, 0x65);// 通道1: Input shorted // write_byte(CH2SET, 0x65);// 通道2: Input shorted // write_byte(CH3SET, 0x65);// 通道3: Input shorted // write_byte(CH4SET, 0x65);// 通道4: Input shorted // HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET); // HAL_Delay(2); // measure_noise(); // if (HAL_GPIO_ReadPin(DRDY_GPIO_Port, DRDY_Pin) == GPIO_PIN_SET) // { // zad = 5; // } /* The code here separates channel data one-by-one, and then it packages the data by channels (8 packets, one per channel) and combines them into one array to send out 8 packets at once. We need to change this. */ if (HAL_GPIO_ReadPin(DRDY_GPIO_Port, DRDY_Pin) == GPIO_PIN_RESET ) // // if (HAL_GPIO_ReadPin(DRDY_GPIO_Port, DRDY_Pin) == GPIO_PIN_RESET && zad==5) { // //HAL_Delay(2); // zad=0; //CS_Pin 低電位開始寫入資料 HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET); //CS low //CS_Pin 低電位開始寫入資料 //Read SPI and convert data for(int i = 0; i<9; i++) //4 channels { //dataPacket = 0; for(int j = 0; j<3; j++) //3 bytes per channel { // byte dataByte = SPI.transfer(0x00); HAL_SPI_TransmitReceive(&hspi1,(uint8_t*)&test,&received_Byte,1,0x1000); // HAL_SPI_Receive(&hspi1,&received_Byte,1,100); //transmit & receive occur at the same time dataPacket = (dataPacket<<8)|received_Byte; } // end of for(int j = 0; j<3; j++) output[i] = dataPacket; //send_data_by_uart(output); dataPacket = 0; } //end of for(int i = 0; i<4; i++) // HAL_Delay(20); //uint32_t size = sizeof(output)/sizeof(output[0]); for(int i = 1; i<9; i++) { send_data_by_uart(output[i]); } //Send data over UART // send_data_by_uart(result); // HAL_Delay(20); } // end of if(HAL_GPIO_ReadPin(DRDY_GPIO_Port, DRDY_Pin) == GPIO_PIN_RESET && zad==5) //HAL_Delay(2); } // end of while(1) }//end of main /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /** * @brief SPI1 Initialization Function * @param None * @retval None */ static void MX_SPI1_Init(void) { /* USER CODE BEGIN SPI1_Init 0 */ /* USER CODE END SPI1_Init 0 */ /* USER CODE BEGIN SPI1_Init 1 */ /* USER CODE END SPI1_Init 1 */ /* SPI1 parameter configuration*/ hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_2EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 10; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI1_Init 2 */ /* USER CODE END SPI1_Init 2 */ } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(CS_GPIO_Port, CS_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(reset_GPIO_Port, reset_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(Start_GPIO_Port, Start_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : DRDY_Pin */ GPIO_InitStruct.Pin = DRDY_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(DRDY_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : CS_Pin */ GPIO_InitStruct.Pin = CS_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(CS_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : reset_Pin */ GPIO_InitStruct.Pin = reset_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(reset_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : LED_Pin Start_Pin */ GPIO_InitStruct.Pin = LED_Pin|Start_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */