This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

tcan4550 linux driver配置运行无法发送数据

Other Parts Discussed in Thread: TCAN4550

hi,

tcan4550调试,从linux-5.14版本获取了tcan4x5x的驱动,调试发现如下问题:

1、设备驱动在读取ID作为匹配时,调用tcan4x5x_read_reg,此函数在地址位中对所有地址偏移加0x1000,发送地址数据为0x41100001,而根据手册实际应该为0x41000001,修改后读取ID正常;

2、根据m_can_check_core_release()中读取ID后的逻辑判断,读取ID0的ID根据手册与实际测量结果应该为0x4e414354,恒无法满足后面的版本判断的30--32的判断逻辑,我推测是否要读取ID1的值0x30353534,后面逻辑判断为30,符合后面版本的判断;

3、驱动修改部分后能够正常加载,结合can设备加载成功后在应用层socket调用,应用程序write提示“No buffer space available”;

4、spi为大端传输(spi问题),芯片无响应,修改后响应正常;

目前未解决的问题是3。

  • m_can.h

    tcan4x5x.c
    // SPDX-License-Identifier: GPL-2.0
    // SPI to CAN driver for the Texas Instruments TCAN4x5x
    // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
    
    #include <linux/regmap.h>
    #include <linux/spi/spi.h>
    
    #include <linux/regulator/consumer.h>
    #include <linux/gpio/consumer.h>
    
    #include "m_can.h"
    
    #define DEVICE_NAME "tcan4x5x"
    #define TCAN4X5X_EXT_CLK_DEF 40000000
    
    #define TCAN4X5X_DEV_ID0 0x00
    #define TCAN4X5X_DEV_ID1 0x04
    #define TCAN4X5X_REV 0x08
    #define TCAN4X5X_STATUS 0x0C
    #define TCAN4X5X_ERROR_STATUS 0x10
    #define TCAN4X5X_CONTROL 0x14
    
    #define TCAN4X5X_CONFIG 0x800
    #define TCAN4X5X_TS_PRESCALE 0x804
    #define TCAN4X5X_TEST_REG 0x808
    #define TCAN4X5X_INT_FLAGS 0x820
    #define TCAN4X5X_MCAN_INT_REG 0x824
    #define TCAN4X5X_INT_EN 0x830
    
    /* Interrupt bits */
    #define TCAN4X5X_CANBUSTERMOPEN_INT_EN BIT(30)
    #define TCAN4X5X_CANHCANL_INT_EN BIT(29)
    #define TCAN4X5X_CANHBAT_INT_EN BIT(28)
    #define TCAN4X5X_CANLGND_INT_EN BIT(27)
    #define TCAN4X5X_CANBUSOPEN_INT_EN BIT(26)
    #define TCAN4X5X_CANBUSGND_INT_EN BIT(25)
    #define TCAN4X5X_CANBUSBAT_INT_EN BIT(24)
    #define TCAN4X5X_UVSUP_INT_EN BIT(22)
    #define TCAN4X5X_UVIO_INT_EN BIT(21)
    #define TCAN4X5X_TSD_INT_EN BIT(19)
    #define TCAN4X5X_ECCERR_INT_EN BIT(16)
    #define TCAN4X5X_CANINT_INT_EN BIT(15)
    #define TCAN4X5X_LWU_INT_EN BIT(14)
    #define TCAN4X5X_CANSLNT_INT_EN BIT(10)
    #define TCAN4X5X_CANDOM_INT_EN BIT(8)
    #define TCAN4X5X_CANBUS_ERR_INT_EN BIT(5)
    #define TCAN4X5X_BUS_FAULT BIT(4)
    #define TCAN4X5X_MCAN_INT BIT(1)
    #define TCAN4X5X_ENABLE_TCAN_INT \
    	(TCAN4X5X_MCAN_INT | TCAN4X5X_BUS_FAULT | \
    	 TCAN4X5X_CANBUS_ERR_INT_EN | TCAN4X5X_CANINT_INT_EN)
    
    /* MCAN Interrupt bits */
    #define TCAN4X5X_MCAN_IR_ARA BIT(29)
    #define TCAN4X5X_MCAN_IR_PED BIT(28)
    #define TCAN4X5X_MCAN_IR_PEA BIT(27)
    #define TCAN4X5X_MCAN_IR_WD BIT(26)
    #define TCAN4X5X_MCAN_IR_BO BIT(25)
    #define TCAN4X5X_MCAN_IR_EW BIT(24)
    #define TCAN4X5X_MCAN_IR_EP BIT(23)
    #define TCAN4X5X_MCAN_IR_ELO BIT(22)
    #define TCAN4X5X_MCAN_IR_BEU BIT(21)
    #define TCAN4X5X_MCAN_IR_BEC BIT(20)
    #define TCAN4X5X_MCAN_IR_DRX BIT(19)
    #define TCAN4X5X_MCAN_IR_TOO BIT(18)
    #define TCAN4X5X_MCAN_IR_MRAF BIT(17)
    #define TCAN4X5X_MCAN_IR_TSW BIT(16)
    #define TCAN4X5X_MCAN_IR_TEFL BIT(15)
    #define TCAN4X5X_MCAN_IR_TEFF BIT(14)
    #define TCAN4X5X_MCAN_IR_TEFW BIT(13)
    #define TCAN4X5X_MCAN_IR_TEFN BIT(12)
    #define TCAN4X5X_MCAN_IR_TFE BIT(11)
    #define TCAN4X5X_MCAN_IR_TCF BIT(10)
    #define TCAN4X5X_MCAN_IR_TC BIT(9)
    #define TCAN4X5X_MCAN_IR_HPM BIT(8)
    #define TCAN4X5X_MCAN_IR_RF1L BIT(7)
    #define TCAN4X5X_MCAN_IR_RF1F BIT(6)
    #define TCAN4X5X_MCAN_IR_RF1W BIT(5)
    #define TCAN4X5X_MCAN_IR_RF1N BIT(4)
    #define TCAN4X5X_MCAN_IR_RF0L BIT(3)
    #define TCAN4X5X_MCAN_IR_RF0F BIT(2)
    #define TCAN4X5X_MCAN_IR_RF0W BIT(1)
    #define TCAN4X5X_MCAN_IR_RF0N BIT(0)
    #define TCAN4X5X_ENABLE_MCAN_INT \
    	(TCAN4X5X_MCAN_IR_TC | TCAN4X5X_MCAN_IR_RF0N | \
    	 TCAN4X5X_MCAN_IR_RF1N | TCAN4X5X_MCAN_IR_RF0F | \
    	 TCAN4X5X_MCAN_IR_RF1F)
    
    #define TCAN4X5X_MRAM_START 0x8000
    #define TCAN4X5X_MCAN_OFFSET 0x1000
    #define TCAN4X5X_MAX_REGISTER 0x8fff
    
    #define TCAN4X5X_CLEAR_ALL_INT 0xffffffff
    #define TCAN4X5X_SET_ALL_INT 0xffffffff
    
    #define TCAN4X5X_WRITE_CMD (0x61 << 24)
    #define TCAN4X5X_READ_CMD (0x41 << 24)
    
    #define TCAN4X5X_MODE_SEL_MASK (BIT(7) | BIT(6))
    #define TCAN4X5X_MODE_SLEEP 0x00
    #define TCAN4X5X_MODE_STANDBY BIT(6)
    #define TCAN4X5X_MODE_NORMAL BIT(7)
    
    #define TCAN4X5X_DISABLE_WAKE_MSK	(BIT(31) | BIT(30))
    #define TCAN4X5X_DISABLE_INH_MSK	BIT(9)
    
    #define TCAN4X5X_SW_RESET BIT(2)
    
    #define TCAN4X5X_MCAN_CONFIGURED BIT(5)
    #define TCAN4X5X_WATCHDOG_EN BIT(3)
    #define TCAN4X5X_WD_60_MS_TIMER 0
    #define TCAN4X5X_WD_600_MS_TIMER BIT(28)
    #define TCAN4X5X_WD_3_S_TIMER BIT(29)
    #define TCAN4X5X_WD_6_S_TIMER (BIT(28) | BIT(29))
    
    struct tcan4x5x_priv {
    	struct regmap *regmap;
    	struct spi_device *spi;
    
    	struct m_can_classdev *mcan_dev;
    
    	struct gpio_desc *reset_gpio;
    	struct gpio_desc *device_wake_gpio;
    	struct gpio_desc *device_state_gpio;
    	struct regulator *power;
    
    	/* Register based ip */
    	int mram_start;
    	int reg_offset;
    };
    
    static struct can_bittiming_const tcan4x5x_bittiming_const = {
    	.name = DEVICE_NAME,
    	.tseg1_min = 2,
    	.tseg1_max = 31,
    	.tseg2_min = 2,
    	.tseg2_max = 16,
    	.sjw_max = 16,
    	.brp_min = 1,
    	.brp_max = 32,
    	.brp_inc = 1,
    };
    
    static struct can_bittiming_const tcan4x5x_data_bittiming_const = {
    	.name = DEVICE_NAME,
    	.tseg1_min = 1,
    	.tseg1_max = 32,
    	.tseg2_min = 1,
    	.tseg2_max = 16,
    	.sjw_max = 16,
    	.brp_min = 1,
    	.brp_max = 32,
    	.brp_inc = 1,
    };
    
    static void tcan4x5x_check_wake(struct tcan4x5x_priv *priv)
    {
    	int wake_state = 0;
    
    	if (priv->device_state_gpio)
    		wake_state = gpiod_get_value(priv->device_state_gpio);
    
    	if (priv->device_wake_gpio && wake_state) {
    		gpiod_set_value(priv->device_wake_gpio, 0);
    		usleep_range(5, 50);
    		gpiod_set_value(priv->device_wake_gpio, 1);
    	}
    }
    
    static int tcan4x5x_reset(struct tcan4x5x_priv *priv)
    {
    	int ret = 0;
    
    	if (priv->reset_gpio) {
    		gpiod_set_value(priv->reset_gpio, 1);
    
    		/* tpulse_width minimum 30us */
    		usleep_range(30, 100);
    		gpiod_set_value(priv->reset_gpio, 0);
    	} else {
    		ret = regmap_write(priv->regmap, TCAN4X5X_CONFIG,
    				   TCAN4X5X_SW_RESET);
    		if (ret)
    			return ret;
    	}
    
    	usleep_range(700, 1000);
    
    	return ret;
    }
    
    static int regmap_spi_gather_write(void *context, const void *reg,
    				   size_t reg_len, const void *val,
    				   size_t val_len)
    {
    	struct device *dev = context;
    	struct spi_device *spi = to_spi_device(dev);
    	struct spi_message m;
    	u32 addr;
    	struct spi_transfer t[2] = {
    		{ .tx_buf = &addr, .len = reg_len, .cs_change = 0,},
    		{ .tx_buf = val, .len = val_len, },
    	};
    
    	addr = TCAN4X5X_WRITE_CMD | (*((u16 *)reg) << 8) | val_len >> 2;
    
    	spi_message_init(&m);
    	spi_message_add_tail(&t[0], &m);
    	spi_message_add_tail(&t[1], &m);
    
    	return spi_sync(spi, &m);
    }
    
    static int tcan4x5x_regmap_write(void *context, const void *data, size_t count)
    {
    	u16 *reg = (u16 *)(data);
    	const u32 *val = data + 4;
    
    	return regmap_spi_gather_write(context, reg, 4, val, count - 4);
    }
    
    static int regmap_spi_async_write(void *context,
    				  const void *reg, size_t reg_len,
    				  const void *val, size_t val_len,
    				  struct regmap_async *a)
    {
    	return -ENOTSUPP;
    }
    
    static struct regmap_async *regmap_spi_async_alloc(void)
    {
    	return NULL;
    }
    
    static int tcan4x5x_regmap_read(void *context,
    				const void *reg, size_t reg_size,
    				void *val, size_t val_size)
    {
    	struct device *dev = context;
    	struct spi_device *spi = to_spi_device(dev);
    
    	u32 addr = TCAN4X5X_READ_CMD | (*((u16 *)reg) << 8) | val_size >> 2;
    
    	return spi_write_then_read(spi, &addr, reg_size, (u32 *)val, val_size);
    }
    
    static struct regmap_bus tcan4x5x_bus = {
    	.write = tcan4x5x_regmap_write,
    	.gather_write = regmap_spi_gather_write,
    	.async_write = regmap_spi_async_write,
    	.async_alloc = regmap_spi_async_alloc,
    	.read = tcan4x5x_regmap_read,
    	.read_flag_mask = 0x00,
    	.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
    	.val_format_endian_default = REGMAP_ENDIAN_NATIVE,
    };
    
    static u32 tcan4x5x_read_reg(struct m_can_classdev *cdev, int reg)
    {
    	struct tcan4x5x_priv *priv = cdev->device_data;
    	u32 val;
    
    	regmap_read(priv->regmap, priv->reg_offset + reg, &val);
    
    	return val;
    }
    
    static u32 tcan4x5x_read_fifo(struct m_can_classdev *cdev, int addr_offset)
    {
    	struct tcan4x5x_priv *priv = cdev->device_data;
    	u32 val;
    
    	regmap_read(priv->regmap, priv->mram_start + addr_offset, &val);
    
    	return val;
    }
    
    static int tcan4x5x_write_reg(struct m_can_classdev *cdev, int reg, int val)
    {
    	struct tcan4x5x_priv *priv = cdev->device_data;
    
    	return regmap_write(priv->regmap, priv->reg_offset + reg, val);
    }
    
    static int tcan4x5x_write_fifo(struct m_can_classdev *cdev,
    			       int addr_offset, int val)
    {
    	struct tcan4x5x_priv *priv = cdev->device_data;
    
    	return regmap_write(priv->regmap, priv->mram_start + addr_offset, val);
    }
    
    static int tcan4x5x_power_enable(struct regulator *reg, int enable)
    {
    	if (IS_ERR_OR_NULL(reg))
    		return 0;
    
    	if (enable)
    		return regulator_enable(reg);
    	else
    		return regulator_disable(reg);
    }
    
    static int tcan4x5x_write_tcan_reg(struct m_can_classdev *cdev,
    				   int reg, int val)
    {
    	struct tcan4x5x_priv *priv = cdev->device_data;
    
    	return regmap_write(priv->regmap, reg, val);
    }
    
    static int tcan4x5x_clear_interrupts(struct m_can_classdev *cdev)
    {
    	int ret;
    
    	ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_STATUS,
    				      TCAN4X5X_CLEAR_ALL_INT);
    	if (ret)
    		return ret;
    
    	ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_MCAN_INT_REG,
    				      TCAN4X5X_ENABLE_MCAN_INT);
    	if (ret)
    		return ret;
    
    	ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_INT_FLAGS,
    				      TCAN4X5X_CLEAR_ALL_INT);
    	if (ret)
    		return ret;
    
    	ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_ERROR_STATUS,
    				      TCAN4X5X_CLEAR_ALL_INT);
    	if (ret)
    		return ret;
    
    	return ret;
    }
    
    static int tcan4x5x_init(struct m_can_classdev *cdev)
    {
    	struct tcan4x5x_priv *tcan4x5x = cdev->device_data;
    	int ret;
    
    	tcan4x5x_check_wake(tcan4x5x);
    
    	ret = tcan4x5x_clear_interrupts(cdev);
    	if (ret)
    		return ret;
    
    	ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_INT_EN,
    				      TCAN4X5X_ENABLE_TCAN_INT);
    	if (ret)
    		return ret;
    
    	ret = regmap_update_bits(tcan4x5x->regmap, TCAN4X5X_CONFIG,
    				 TCAN4X5X_MODE_SEL_MASK, TCAN4X5X_MODE_NORMAL);
    	if (ret)
    		return ret;
    
    	/* Zero out the MCAN buffers */
    	m_can_init_ram(cdev);
    
    	return ret;
    }
    
    static int tcan4x5x_disable_wake(struct m_can_classdev *cdev)
    {
    	struct tcan4x5x_priv *tcan4x5x = cdev->device_data;
    
    	return regmap_update_bits(tcan4x5x->regmap, TCAN4X5X_CONFIG,
    				  TCAN4X5X_DISABLE_WAKE_MSK, 0x00);
    }
    
    static int tcan4x5x_disable_state(struct m_can_classdev *cdev)
    {
    	struct tcan4x5x_priv *tcan4x5x = cdev->device_data;
    
    	return regmap_update_bits(tcan4x5x->regmap, TCAN4X5X_CONFIG,
    				  TCAN4X5X_DISABLE_INH_MSK, 0x01);
    }
    
    static int tcan4x5x_parse_config(struct m_can_classdev *cdev)
    {
    	struct tcan4x5x_priv *tcan4x5x = cdev->device_data;
    	int ret;
    
    	tcan4x5x->device_wake_gpio = devm_gpiod_get(cdev->dev, "device-wake",
    						    GPIOD_OUT_HIGH);
    	if (IS_ERR(tcan4x5x->device_wake_gpio)) {
    		if (PTR_ERR(tcan4x5x->device_wake_gpio) == -EPROBE_DEFER)
    			return -EPROBE_DEFER;
    
    		tcan4x5x_disable_wake(cdev);
    	}
    
    	tcan4x5x->reset_gpio = devm_gpiod_get_optional(cdev->dev, "reset",
    						       GPIOD_OUT_LOW);
    	if (IS_ERR(tcan4x5x->reset_gpio))
    		tcan4x5x->reset_gpio = NULL;
    
    	ret = tcan4x5x_reset(tcan4x5x);
    	if (ret)
    		return ret;
    
    	tcan4x5x->device_state_gpio = devm_gpiod_get_optional(cdev->dev,
    							      "device-state",
    							      GPIOD_IN);
    	if (IS_ERR(tcan4x5x->device_state_gpio)) {
    		tcan4x5x->device_state_gpio = NULL;
    		tcan4x5x_disable_state(cdev);
    	}
    
    	return 0;
    }
    
    static const struct regmap_config tcan4x5x_regmap = {
    	.reg_bits = 32,
    	.val_bits = 32,
    	.cache_type = REGCACHE_NONE,
    	.max_register = TCAN4X5X_MAX_REGISTER,
    };
    
    static struct m_can_ops tcan4x5x_ops = {
    	.init = tcan4x5x_init,
    	.read_reg = tcan4x5x_read_reg,
    	.write_reg = tcan4x5x_write_reg,
    	.write_fifo = tcan4x5x_write_fifo,
    	.read_fifo = tcan4x5x_read_fifo,
    	.clear_interrupts = tcan4x5x_clear_interrupts,
    };
    
    static int tcan4x5x_can_probe(struct spi_device *spi)
    {
    	struct tcan4x5x_priv *priv;
    	struct m_can_classdev *mcan_class;
    	int freq, ret;
    
    	mcan_class = m_can_class_allocate_dev(&spi->dev);
    	if (!mcan_class)
    		return -ENOMEM;
    
    	priv = devm_kzalloc(&spi->dev, sizeof(*priv), GFP_KERNEL);
    	if (!priv)
    		return -ENOMEM;
    
    	priv->power = devm_regulator_get_optional(&spi->dev, "vsup");
    	if (PTR_ERR(priv->power) == -EPROBE_DEFER)
    		return -EPROBE_DEFER;
    	else
    		priv->power = NULL;
    
    	mcan_class->device_data = priv;
    
    	m_can_class_get_clocks(mcan_class);
    	if (IS_ERR(mcan_class->cclk)) {
    		dev_err(&spi->dev, "no CAN clock source defined\n");
    		freq = TCAN4X5X_EXT_CLK_DEF;
    	} else {
    		freq = clk_get_rate(mcan_class->cclk);
    	}
    
    	/* Sanity check */
    	if (freq < 20000000 || freq > TCAN4X5X_EXT_CLK_DEF)
    		return -ERANGE;
    
    	priv->reg_offset = TCAN4X5X_MCAN_OFFSET;
    	priv->mram_start = TCAN4X5X_MRAM_START;
    	priv->spi = spi;
    	priv->mcan_dev = mcan_class;
    
    	mcan_class->pm_clock_support = 0;
    	mcan_class->can.clock.freq = freq;
    	mcan_class->dev = &spi->dev;
    	mcan_class->ops = &tcan4x5x_ops;
    	mcan_class->is_peripheral = true;
    	mcan_class->bit_timing = &tcan4x5x_bittiming_const;
    	mcan_class->data_timing = &tcan4x5x_data_bittiming_const;
    	mcan_class->net->irq = spi->irq;
    
    	spi_set_drvdata(spi, priv);
    
    	/* Configure the SPI bus */
    	spi->bits_per_word = 32;
    	ret = spi_setup(spi);
    	if (ret)
    		goto out_clk;
    
    	priv->regmap = devm_regmap_init(&spi->dev, &tcan4x5x_bus,
    					&spi->dev, &tcan4x5x_regmap);
    
    	ret = tcan4x5x_power_enable(priv->power, 1);
    	if (ret)
    		goto out_clk;
    
    	ret = tcan4x5x_parse_config(mcan_class);
    	if (ret)
    		goto out_power;
    
    	ret = tcan4x5x_init(mcan_class);
    	if (ret)
    		goto out_power;
    
    	ret = m_can_class_register(mcan_class);
    	if (ret)
    		goto out_power;
    
    	netdev_info(mcan_class->net, "TCAN4X5X successfully initialized.\n");
    	return 0;
    
    out_power:
    	tcan4x5x_power_enable(priv->power, 0);
    out_clk:
    	if (!IS_ERR(mcan_class->cclk)) {
    		clk_disable_unprepare(mcan_class->cclk);
    		clk_disable_unprepare(mcan_class->hclk);
    	}
    
    	dev_err(&spi->dev, "Probe failed, err=%d\n", ret);
    	return ret;
    }
    
    static int tcan4x5x_can_remove(struct spi_device *spi)
    {
    	struct tcan4x5x_priv *priv = spi_get_drvdata(spi);
    
    	tcan4x5x_power_enable(priv->power, 0);
    
    	m_can_class_unregister(priv->mcan_dev);
    
    	return 0;
    }
    
    static const struct of_device_id tcan4x5x_of_match[] = {
    	{ .compatible = "ti,tcan4x5x", },
    	{ }
    };
    MODULE_DEVICE_TABLE(of, tcan4x5x_of_match);
    
    static const struct spi_device_id tcan4x5x_id_table[] = {
    	{
    		.name		= "tcan4x5x",
    		.driver_data	= 0,
    	},
    	{ }
    };
    MODULE_DEVICE_TABLE(spi, tcan4x5x_id_table);
    
    static struct spi_driver tcan4x5x_can_driver = {
    	.driver = {
    		.name = DEVICE_NAME,
    		.of_match_table = tcan4x5x_of_match,
    		.pm = NULL,
    	},
    	.id_table = tcan4x5x_id_table,
    	.probe = tcan4x5x_can_probe,
    	.remove = tcan4x5x_can_remove,
    };
    module_spi_driver(tcan4x5x_can_driver);
    
    MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
    MODULE_DESCRIPTION("Texas Instruments TCAN4x5x CAN driver");
    MODULE_LICENSE("GPL v2");
    m_can.c
    // SPDX-License-Identifier: GPL-2.0
    // CAN bus driver for Bosch M_CAN controller
    // Copyright (C) 2014 Freescale Semiconductor, Inc.
    //      Dong Aisheng <b29396@freescale.com>
    // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
    
    /* Bosch M_CAN user manual can be obtained from:
     * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
     * mcan_users_manual_v302.pdf
     */
    
    #include <linux/interrupt.h>
    #include <linux/io.h>
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/netdevice.h>
    #include <linux/of.h>
    #include <linux/of_device.h>
    #include <linux/platform_device.h>
    #include <linux/pm_runtime.h>
    #include <linux/iopoll.h>
    #include <linux/can/dev.h>
    #include <linux/pinctrl/consumer.h>
    
    #include "m_can.h"
    
    /* registers definition */
    enum m_can_reg {
    	M_CAN_CREL	= 0x0,
    	M_CAN_ENDN	= 0x4,
    	M_CAN_CUST	= 0x8,
    	M_CAN_DBTP	= 0xc,
    	M_CAN_TEST	= 0x10,
    	M_CAN_RWD	= 0x14,
    	M_CAN_CCCR	= 0x18,
    	M_CAN_NBTP	= 0x1c,
    	M_CAN_TSCC	= 0x20,
    	M_CAN_TSCV	= 0x24,
    	M_CAN_TOCC	= 0x28,
    	M_CAN_TOCV	= 0x2c,
    	M_CAN_ECR	= 0x40,
    	M_CAN_PSR	= 0x44,
    /* TDCR Register only available for version >=3.1.x */
    	M_CAN_TDCR	= 0x48,
    	M_CAN_IR	= 0x50,
    	M_CAN_IE	= 0x54,
    	M_CAN_ILS	= 0x58,
    	M_CAN_ILE	= 0x5c,
    	M_CAN_GFC	= 0x80,
    	M_CAN_SIDFC	= 0x84,
    	M_CAN_XIDFC	= 0x88,
    	M_CAN_XIDAM	= 0x90,
    	M_CAN_HPMS	= 0x94,
    	M_CAN_NDAT1	= 0x98,
    	M_CAN_NDAT2	= 0x9c,
    	M_CAN_RXF0C	= 0xa0,
    	M_CAN_RXF0S	= 0xa4,
    	M_CAN_RXF0A	= 0xa8,
    	M_CAN_RXBC	= 0xac,
    	M_CAN_RXF1C	= 0xb0,
    	M_CAN_RXF1S	= 0xb4,
    	M_CAN_RXF1A	= 0xb8,
    	M_CAN_RXESC	= 0xbc,
    	M_CAN_TXBC	= 0xc0,
    	M_CAN_TXFQS	= 0xc4,
    	M_CAN_TXESC	= 0xc8,
    	M_CAN_TXBRP	= 0xcc,
    	M_CAN_TXBAR	= 0xd0,
    	M_CAN_TXBCR	= 0xd4,
    	M_CAN_TXBTO	= 0xd8,
    	M_CAN_TXBCF	= 0xdc,
    	M_CAN_TXBTIE	= 0xe0,
    	M_CAN_TXBCIE	= 0xe4,
    	M_CAN_TXEFC	= 0xf0,
    	M_CAN_TXEFS	= 0xf4,
    	M_CAN_TXEFA	= 0xf8,
    };
    
    /* napi related */
    #define M_CAN_NAPI_WEIGHT	64
    
    /* message ram configuration data length */
    #define MRAM_CFG_LEN	8
    
    /* Core Release Register (CREL) */
    #define CREL_REL_SHIFT		28
    #define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
    #define CREL_STEP_SHIFT		24
    #define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
    #define CREL_SUBSTEP_SHIFT	20
    #define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)
    
    /* Data Bit Timing & Prescaler Register (DBTP) */
    #define DBTP_TDC		BIT(23)
    #define DBTP_DBRP_SHIFT		16
    #define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
    #define DBTP_DTSEG1_SHIFT	8
    #define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
    #define DBTP_DTSEG2_SHIFT	4
    #define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
    #define DBTP_DSJW_SHIFT		0
    #define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
    
    /* Transmitter Delay Compensation Register (TDCR) */
    #define TDCR_TDCO_SHIFT		8
    #define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
    #define TDCR_TDCF_SHIFT		0
    #define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)
    
    /* Test Register (TEST) */
    #define TEST_LBCK		BIT(4)
    
    /* CC Control Register(CCCR) */
    #define CCCR_CMR_MASK		0x3
    #define CCCR_CMR_SHIFT		10
    #define CCCR_CMR_CANFD		0x1
    #define CCCR_CMR_CANFD_BRS	0x2
    #define CCCR_CMR_CAN		0x3
    #define CCCR_CME_MASK		0x3
    #define CCCR_CME_SHIFT		8
    #define CCCR_CME_CAN		0
    #define CCCR_CME_CANFD		0x1
    #define CCCR_CME_CANFD_BRS	0x2
    #define CCCR_TXP		BIT(14)
    #define CCCR_TEST		BIT(7)
    #define CCCR_DAR		BIT(6)
    #define CCCR_MON		BIT(5)
    #define CCCR_CSR		BIT(4)
    #define CCCR_CSA		BIT(3)
    #define CCCR_ASM		BIT(2)
    #define CCCR_CCE		BIT(1)
    #define CCCR_INIT		BIT(0)
    #define CCCR_CANFD		0x10
    /* for version >=3.1.x */
    #define CCCR_EFBI		BIT(13)
    #define CCCR_PXHD		BIT(12)
    #define CCCR_BRSE		BIT(9)
    #define CCCR_FDOE		BIT(8)
    /* only for version >=3.2.x */
    #define CCCR_NISO		BIT(15)
    
    /* Nominal Bit Timing & Prescaler Register (NBTP) */
    #define NBTP_NSJW_SHIFT		25
    #define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
    #define NBTP_NBRP_SHIFT		16
    #define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
    #define NBTP_NTSEG1_SHIFT	8
    #define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
    #define NBTP_NTSEG2_SHIFT	0
    #define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
    
    /* Error Counter Register(ECR) */
    #define ECR_RP			BIT(15)
    #define ECR_REC_SHIFT		8
    #define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
    #define ECR_TEC_SHIFT		0
    #define ECR_TEC_MASK		0xff
    
    /* Protocol Status Register(PSR) */
    #define PSR_BO		BIT(7)
    #define PSR_EW		BIT(6)
    #define PSR_EP		BIT(5)
    #define PSR_LEC_MASK	0x7
    
    /* Interrupt Register(IR) */
    #define IR_ALL_INT	0xffffffff
    
    /* Renamed bits for versions > 3.1.x */
    #define IR_ARA		BIT(29)
    #define IR_PED		BIT(28)
    #define IR_PEA		BIT(27)
    
    /* Bits for version 3.0.x */
    #define IR_STE		BIT(31)
    #define IR_FOE		BIT(30)
    #define IR_ACKE		BIT(29)
    #define IR_BE		BIT(28)
    #define IR_CRCE		BIT(27)
    #define IR_WDI		BIT(26)
    #define IR_BO		BIT(25)
    #define IR_EW		BIT(24)
    #define IR_EP		BIT(23)
    #define IR_ELO		BIT(22)
    #define IR_BEU		BIT(21)
    #define IR_BEC		BIT(20)
    #define IR_DRX		BIT(19)
    #define IR_TOO		BIT(18)
    #define IR_MRAF		BIT(17)
    #define IR_TSW		BIT(16)
    #define IR_TEFL		BIT(15)
    #define IR_TEFF		BIT(14)
    #define IR_TEFW		BIT(13)
    #define IR_TEFN		BIT(12)
    #define IR_TFE		BIT(11)
    #define IR_TCF		BIT(10)
    #define IR_TC		BIT(9)
    #define IR_HPM		BIT(8)
    #define IR_RF1L		BIT(7)
    #define IR_RF1F		BIT(6)
    #define IR_RF1W		BIT(5)
    #define IR_RF1N		BIT(4)
    #define IR_RF0L		BIT(3)
    #define IR_RF0F		BIT(2)
    #define IR_RF0W		BIT(1)
    #define IR_RF0N		BIT(0)
    #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
    
    /* Interrupts for version 3.0.x */
    #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
    #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
    			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
    			 IR_RF1L | IR_RF0L)
    #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
    /* Interrupts for version >= 3.1.x */
    #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
    #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
    			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
    			 IR_RF1L | IR_RF0L)
    #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
    
    /* Interrupt Line Select (ILS) */
    #define ILS_ALL_INT0	0x0
    #define ILS_ALL_INT1	0xFFFFFFFF
    
    /* Interrupt Line Enable (ILE) */
    #define ILE_EINT1	BIT(1)
    #define ILE_EINT0	BIT(0)
    
    /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
    #define RXFC_FWM_SHIFT	24
    #define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
    #define RXFC_FS_SHIFT	16
    #define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
    
    /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
    #define RXFS_RFL	BIT(25)
    #define RXFS_FF		BIT(24)
    #define RXFS_FPI_SHIFT	16
    #define RXFS_FPI_MASK	0x3f0000
    #define RXFS_FGI_SHIFT	8
    #define RXFS_FGI_MASK	0x3f00
    #define RXFS_FFL_MASK	0x7f
    
    /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
    #define M_CAN_RXESC_8BYTES	0x0
    #define M_CAN_RXESC_64BYTES	0x777
    
    /* Tx Buffer Configuration(TXBC) */
    #define TXBC_NDTB_SHIFT		16
    #define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
    #define TXBC_TFQS_SHIFT		24
    #define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)
    
    /* Tx FIFO/Queue Status (TXFQS) */
    #define TXFQS_TFQF		BIT(21)
    #define TXFQS_TFQPI_SHIFT	16
    #define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
    #define TXFQS_TFGI_SHIFT	8
    #define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
    #define TXFQS_TFFL_SHIFT	0
    #define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
    
    /* Tx Buffer Element Size Configuration(TXESC) */
    #define TXESC_TBDS_8BYTES	0x0
    #define TXESC_TBDS_64BYTES	0x7
    
    /* Tx Event FIFO Configuration (TXEFC) */
    #define TXEFC_EFS_SHIFT		16
    #define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)
    
    /* Tx Event FIFO Status (TXEFS) */
    #define TXEFS_TEFL		BIT(25)
    #define TXEFS_EFF		BIT(24)
    #define TXEFS_EFGI_SHIFT	8
    #define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
    #define TXEFS_EFFL_SHIFT	0
    #define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)
    
    /* Tx Event FIFO Acknowledge (TXEFA) */
    #define TXEFA_EFAI_SHIFT	0
    #define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
    
    /* Message RAM Configuration (in bytes) */
    #define SIDF_ELEMENT_SIZE	4
    #define XIDF_ELEMENT_SIZE	8
    #define RXF0_ELEMENT_SIZE	72
    #define RXF1_ELEMENT_SIZE	72
    #define RXB_ELEMENT_SIZE	72
    #define TXE_ELEMENT_SIZE	8
    #define TXB_ELEMENT_SIZE	72
    
    /* Message RAM Elements */
    #define M_CAN_FIFO_ID		0x0
    #define M_CAN_FIFO_DLC		0x4
    #define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
    
    /* Rx Buffer Element */
    /* R0 */
    #define RX_BUF_ESI		BIT(31)
    #define RX_BUF_XTD		BIT(30)
    #define RX_BUF_RTR		BIT(29)
    /* R1 */
    #define RX_BUF_ANMF		BIT(31)
    #define RX_BUF_FDF		BIT(21)
    #define RX_BUF_BRS		BIT(20)
    
    /* Tx Buffer Element */
    /* T0 */
    #define TX_BUF_ESI		BIT(31)
    #define TX_BUF_XTD		BIT(30)
    #define TX_BUF_RTR		BIT(29)
    /* T1 */
    #define TX_BUF_EFC		BIT(23)
    #define TX_BUF_FDF		BIT(21)
    #define TX_BUF_BRS		BIT(20)
    #define TX_BUF_MM_SHIFT		24
    #define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
    
    /* Tx event FIFO Element */
    /* E1 */
    #define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
    #define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)
    
    static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
    {
    	return cdev->ops->read_reg(cdev, reg);
    }
    
    static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
    			       u32 val)
    {
    	cdev->ops->write_reg(cdev, reg, val);
    }
    
    static u32 m_can_fifo_read(struct m_can_classdev *cdev,
    			   u32 fgi, unsigned int offset)
    {
    	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
    			  offset;
    
    	return cdev->ops->read_fifo(cdev, addr_offset);
    }
    
    static void m_can_fifo_write(struct m_can_classdev *cdev,
    			     u32 fpi, unsigned int offset, u32 val)
    {
    	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
    			  offset;
    
    	cdev->ops->write_fifo(cdev, addr_offset, val);
    }
    
    static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
    					   u32 fpi, u32 val)
    {
    	cdev->ops->write_fifo(cdev, fpi, val);
    }
    
    static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
    {
    	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
    			  offset;
    
    	return cdev->ops->read_fifo(cdev, addr_offset);
    }
    
    static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
    {
    		return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
    }
    
    void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
    {
    	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
    	u32 timeout = 10;
    	u32 val = 0;
    
    	/* Clear the Clock stop request if it was set */
    	if (cccr & CCCR_CSR)
    		cccr &= ~CCCR_CSR;
    
    	if (enable) {
    		/* Clear the Clock stop request if it was set */
    		if (cccr & CCCR_CSR)
    			cccr &= ~CCCR_CSR;
    
    		/* enable m_can configuration */
    		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
    		udelay(5);
    		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
    		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
    	} else {
    		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
    	}
    
    	/* there's a delay for module initialization */
    	if (enable)
    		val = CCCR_INIT | CCCR_CCE;
    
    	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
    		if (timeout == 0) {
    			netdev_warn(cdev->net, "Failed to init module\n");
    			return;
    		}
    		timeout--;
    		udelay(1);
    	}
    }
    
    static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
    {
    	/* Only interrupt line 0 is used in this driver */
    	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
    }
    
    static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
    {
    	m_can_write(cdev, M_CAN_ILE, 0x0);
    }
    
    static void m_can_clean(struct net_device *net)
    {
    	struct m_can_classdev *cdev = netdev_priv(net);
    
    	if (cdev->tx_skb) {
    		int putidx = 0;
    
    		net->stats.tx_errors++;
    		if (cdev->version > 30)
    			putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
    				   TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);
    
    		can_free_echo_skb(cdev->net, putidx);
    		cdev->tx_skb = NULL;
    	}
    }
    
    static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
    {
    	struct net_device_stats *stats = &dev->stats;
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	struct canfd_frame *cf;
    	struct sk_buff *skb;
    	u32 id, fgi, dlc;
    	int i;
    
    	/* calculate the fifo get index for where to read data */
    	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
    	dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
    	if (dlc & RX_BUF_FDF)
    		skb = alloc_canfd_skb(dev, &cf);
    	else
    		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
    	if (!skb) {
    		stats->rx_dropped++;
    		return;
    	}
    
    	if (dlc & RX_BUF_FDF)
    		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
    	else
    		cf->len = get_can_dlc((dlc >> 16) & 0x0F);
    
    	id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
    	if (id & RX_BUF_XTD)
    		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
    	else
    		cf->can_id = (id >> 18) & CAN_SFF_MASK;
    
    	if (id & RX_BUF_ESI) {
    		cf->flags |= CANFD_ESI;
    		netdev_dbg(dev, "ESI Error\n");
    	}
    
    	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
    		cf->can_id |= CAN_RTR_FLAG;
    	} else {
    		if (dlc & RX_BUF_BRS)
    			cf->flags |= CANFD_BRS;
    
    		for (i = 0; i < cf->len; i += 4)
    			*(u32 *)(cf->data + i) =
    				m_can_fifo_read(cdev, fgi,
    						M_CAN_FIFO_DATA(i / 4));
    	}
    
    	/* acknowledge rx fifo 0 */
    	m_can_write(cdev, M_CAN_RXF0A, fgi);
    
    	stats->rx_packets++;
    	stats->rx_bytes += cf->len;
    
    	netif_receive_skb(skb);
    }
    
    static int m_can_do_rx_poll(struct net_device *dev, int quota)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	u32 pkts = 0;
    	u32 rxfs;
    
    	rxfs = m_can_read(cdev, M_CAN_RXF0S);
    	if (!(rxfs & RXFS_FFL_MASK)) {
    		netdev_dbg(dev, "no messages in fifo0\n");
    		return 0;
    	}
    
    	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
    		if (rxfs & RXFS_RFL)
    			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
    
    		m_can_read_fifo(dev, rxfs);
    
    		quota--;
    		pkts++;
    		rxfs = m_can_read(cdev, M_CAN_RXF0S);
    	}
    
    	if (pkts)
    		can_led_event(dev, CAN_LED_EVENT_RX);
    
    	return pkts;
    }
    
    static int m_can_handle_lost_msg(struct net_device *dev)
    {
    	struct net_device_stats *stats = &dev->stats;
    	struct sk_buff *skb;
    	struct can_frame *frame;
    
    	netdev_err(dev, "msg lost in rxf0\n");
    
    	stats->rx_errors++;
    	stats->rx_over_errors++;
    
    	skb = alloc_can_err_skb(dev, &frame);
    	if (unlikely(!skb))
    		return 0;
    
    	frame->can_id |= CAN_ERR_CRTL;
    	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
    
    	netif_receive_skb(skb);
    
    	return 1;
    }
    
    static int m_can_handle_lec_err(struct net_device *dev,
    				enum m_can_lec_type lec_type)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	struct net_device_stats *stats = &dev->stats;
    	struct can_frame *cf;
    	struct sk_buff *skb;
    
    	cdev->can.can_stats.bus_error++;
    	stats->rx_errors++;
    
    	/* propagate the error condition to the CAN stack */
    	skb = alloc_can_err_skb(dev, &cf);
    	if (unlikely(!skb))
    		return 0;
    
    	/* check for 'last error code' which tells us the
    	 * type of the last error to occur on the CAN bus
    	 */
    	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
    
    	switch (lec_type) {
    	case LEC_STUFF_ERROR:
    		netdev_dbg(dev, "stuff error\n");
    		cf->data[2] |= CAN_ERR_PROT_STUFF;
    		break;
    	case LEC_FORM_ERROR:
    		netdev_dbg(dev, "form error\n");
    		cf->data[2] |= CAN_ERR_PROT_FORM;
    		break;
    	case LEC_ACK_ERROR:
    		netdev_dbg(dev, "ack error\n");
    		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
    		break;
    	case LEC_BIT1_ERROR:
    		netdev_dbg(dev, "bit1 error\n");
    		cf->data[2] |= CAN_ERR_PROT_BIT1;
    		break;
    	case LEC_BIT0_ERROR:
    		netdev_dbg(dev, "bit0 error\n");
    		cf->data[2] |= CAN_ERR_PROT_BIT0;
    		break;
    	case LEC_CRC_ERROR:
    		netdev_dbg(dev, "CRC error\n");
    		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
    		break;
    	default:
    		break;
    	}
    
    	stats->rx_packets++;
    	stats->rx_bytes += cf->can_dlc;
    	netif_receive_skb(skb);
    
    	return 1;
    }
    
    static int __m_can_get_berr_counter(const struct net_device *dev,
    				    struct can_berr_counter *bec)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	unsigned int ecr;
    
    	ecr = m_can_read(cdev, M_CAN_ECR);
    	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
    	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
    
    	return 0;
    }
    
    static int m_can_clk_start(struct m_can_classdev *cdev)
    {
    	int err;
    
    	if (cdev->pm_clock_support == 0)
    		return 0;
    
    	err = pm_runtime_get_sync(cdev->dev);
    	if (err < 0) {
    		pm_runtime_put_noidle(cdev->dev);
    		return err;
    	}
    
    	return 0;
    }
    
    static void m_can_clk_stop(struct m_can_classdev *cdev)
    {
    	if (cdev->pm_clock_support)
    		pm_runtime_put_sync(cdev->dev);
    }
    
    static int m_can_get_berr_counter(const struct net_device *dev,
    				  struct can_berr_counter *bec)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	int err;
    
    	err = m_can_clk_start(cdev);
    	if (err)
    		return err;
    
    	__m_can_get_berr_counter(dev, bec);
    
    	m_can_clk_stop(cdev);
    
    	return 0;
    }
    
    static int m_can_handle_state_change(struct net_device *dev,
    				     enum can_state new_state)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	struct net_device_stats *stats = &dev->stats;
    	struct can_frame *cf;
    	struct sk_buff *skb;
    	struct can_berr_counter bec;
    	unsigned int ecr;
    
    	switch (new_state) {
    	case CAN_STATE_ERROR_ACTIVE:
    		/* error warning state */
    		cdev->can.can_stats.error_warning++;
    		cdev->can.state = CAN_STATE_ERROR_WARNING;
    		break;
    	case CAN_STATE_ERROR_PASSIVE:
    		/* error passive state */
    		cdev->can.can_stats.error_passive++;
    		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
    		break;
    	case CAN_STATE_BUS_OFF:
    		/* bus-off state */
    		cdev->can.state = CAN_STATE_BUS_OFF;
    		m_can_disable_all_interrupts(cdev);
    		cdev->can.can_stats.bus_off++;
    		can_bus_off(dev);
    		break;
    	default:
    		break;
    	}
    
    	/* propagate the error condition to the CAN stack */
    	skb = alloc_can_err_skb(dev, &cf);
    	if (unlikely(!skb))
    		return 0;
    
    	__m_can_get_berr_counter(dev, &bec);
    
    	switch (new_state) {
    	case CAN_STATE_ERROR_ACTIVE:
    		/* error warning state */
    		cf->can_id |= CAN_ERR_CRTL;
    		cf->data[1] = (bec.txerr > bec.rxerr) ?
    			CAN_ERR_CRTL_TX_WARNING :
    			CAN_ERR_CRTL_RX_WARNING;
    		cf->data[6] = bec.txerr;
    		cf->data[7] = bec.rxerr;
    		break;
    	case CAN_STATE_ERROR_PASSIVE:
    		/* error passive state */
    		cf->can_id |= CAN_ERR_CRTL;
    		ecr = m_can_read(cdev, M_CAN_ECR);
    		if (ecr & ECR_RP)
    			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
    		if (bec.txerr > 127)
    			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
    		cf->data[6] = bec.txerr;
    		cf->data[7] = bec.rxerr;
    		break;
    	case CAN_STATE_BUS_OFF:
    		/* bus-off state */
    		cf->can_id |= CAN_ERR_BUSOFF;
    		break;
    	default:
    		break;
    	}
    
    	stats->rx_packets++;
    	stats->rx_bytes += cf->can_dlc;
    	netif_receive_skb(skb);
    
    	return 1;
    }
    
    static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	int work_done = 0;
    
    	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
    		netdev_dbg(dev, "entered error warning state\n");
    		work_done += m_can_handle_state_change(dev,
    						       CAN_STATE_ERROR_WARNING);
    	}
    
    	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
    		netdev_dbg(dev, "entered error passive state\n");
    		work_done += m_can_handle_state_change(dev,
    						       CAN_STATE_ERROR_PASSIVE);
    	}
    
    	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
    		netdev_dbg(dev, "entered error bus off state\n");
    		work_done += m_can_handle_state_change(dev,
    						       CAN_STATE_BUS_OFF);
    	}
    
    	return work_done;
    }
    
    static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
    {
    	if (irqstatus & IR_WDI)
    		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
    	if (irqstatus & IR_ELO)
    		netdev_err(dev, "Error Logging Overflow\n");
    	if (irqstatus & IR_BEU)
    		netdev_err(dev, "Bit Error Uncorrected\n");
    	if (irqstatus & IR_BEC)
    		netdev_err(dev, "Bit Error Corrected\n");
    	if (irqstatus & IR_TOO)
    		netdev_err(dev, "Timeout reached\n");
    	if (irqstatus & IR_MRAF)
    		netdev_err(dev, "Message RAM access failure occurred\n");
    }
    
    static inline bool is_lec_err(u32 psr)
    {
    	psr &= LEC_UNUSED;
    
    	return psr && (psr != LEC_UNUSED);
    }
    
    static inline bool m_can_is_protocol_err(u32 irqstatus)
    {
    	return irqstatus & IR_ERR_LEC_31X;
    }
    
    static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
    {
    	struct net_device_stats *stats = &dev->stats;
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	struct can_frame *cf;
    	struct sk_buff *skb;
    
    	/* propagate the error condition to the CAN stack */
    	skb = alloc_can_err_skb(dev, &cf);
    
    	/* update tx error stats since there is protocol error */
    	stats->tx_errors++;
    
    	/* update arbitration lost status */
    	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
    		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
    		cdev->can.can_stats.arbitration_lost++;
    		if (skb) {
    			cf->can_id |= CAN_ERR_LOSTARB;
    			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
    		}
    	}
    
    	if (unlikely(!skb)) {
    		netdev_dbg(dev, "allocation of skb failed\n");
    		return 0;
    	}
    	netif_receive_skb(skb);
    
    	return 1;
    }
    
    static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
    				   u32 psr)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	int work_done = 0;
    
    	if (irqstatus & IR_RF0L)
    		work_done += m_can_handle_lost_msg(dev);
    
    	/* handle lec errors on the bus */
    	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
    	    is_lec_err(psr))
    		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
    
    	/* handle protocol errors in arbitration phase */
    	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
    	    m_can_is_protocol_err(irqstatus))
    		work_done += m_can_handle_protocol_error(dev, irqstatus);
    
    	/* other unproccessed error interrupts */
    	m_can_handle_other_err(dev, irqstatus);
    
    	return work_done;
    }
    
    static int m_can_rx_handler(struct net_device *dev, int quota)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	int work_done = 0;
    	u32 irqstatus, psr;
    
    	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
    	if (!irqstatus)
    		goto end;
    
    	/* Errata workaround for issue "Needless activation of MRAF irq"
    	 * During frame reception while the MCAN is in Error Passive state
    	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
    	 * it may happen that MCAN_IR.MRAF is set although there was no
    	 * Message RAM access failure.
    	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
    	 * The Message RAM Access Failure interrupt routine needs to check
    	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
    	 * In this case, reset MCAN_IR.MRAF. No further action is required.
    	 */
    	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
    	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
    		struct can_berr_counter bec;
    
    		__m_can_get_berr_counter(dev, &bec);
    		if (bec.rxerr == 127) {
    			m_can_write(cdev, M_CAN_IR, IR_MRAF);
    			irqstatus &= ~IR_MRAF;
    		}
    	}
    
    	psr = m_can_read(cdev, M_CAN_PSR);
    
    	if (irqstatus & IR_ERR_STATE)
    		work_done += m_can_handle_state_errors(dev, psr);
    
    	if (irqstatus & IR_ERR_BUS_30X)
    		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
    
    	if (irqstatus & IR_RF0N)
    		work_done += m_can_do_rx_poll(dev, (quota - work_done));
    end:
    	return work_done;
    }
    
    static int m_can_rx_peripheral(struct net_device *dev)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    
    	m_can_rx_handler(dev, 1);
    
    	m_can_enable_all_interrupts(cdev);
    
    	return 0;
    }
    
    static int m_can_poll(struct napi_struct *napi, int quota)
    {
    	struct net_device *dev = napi->dev;
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	int work_done;
    
    	work_done = m_can_rx_handler(dev, quota);
    	if (work_done < quota) {
    		napi_complete_done(napi, work_done);
    		m_can_enable_all_interrupts(cdev);
    	}
    
    	return work_done;
    }
    
    static void m_can_echo_tx_event(struct net_device *dev)
    {
    	u32 txe_count = 0;
    	u32 m_can_txefs;
    	u32 fgi = 0;
    	int i = 0;
    	unsigned int msg_mark;
    
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	struct net_device_stats *stats = &dev->stats;
    
    	/* read tx event fifo status */
    	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
    
    	/* Get Tx Event fifo element count */
    	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
    			>> TXEFS_EFFL_SHIFT;
    
    	/* Get and process all sent elements */
    	for (i = 0; i < txe_count; i++) {
    		/* retrieve get index */
    		fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
    			>> TXEFS_EFGI_SHIFT;
    
    		/* get message marker */
    		msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
    			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
    
    		/* ack txe element */
    		m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
    						(fgi << TXEFA_EFAI_SHIFT)));
    
    		/* update stats */
    		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
    		stats->tx_packets++;
    	}
    }
    
    static irqreturn_t m_can_isr(int irq, void *dev_id)
    {
    	struct net_device *dev = (struct net_device *)dev_id;
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	struct net_device_stats *stats = &dev->stats;
    	u32 ir;
    
    	ir = m_can_read(cdev, M_CAN_IR);
    	if (!ir)
    		return IRQ_NONE;
    
    	/* ACK all irqs */
    	if (ir & IR_ALL_INT)
    		m_can_write(cdev, M_CAN_IR, ir);
    
    	if (cdev->ops->clear_interrupts)
    		cdev->ops->clear_interrupts(cdev);
    
    	/* schedule NAPI in case of
    	 * - rx IRQ
    	 * - state change IRQ
    	 * - bus error IRQ and bus error reporting
    	 */
    	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
    		cdev->irqstatus = ir;
    		m_can_disable_all_interrupts(cdev);
    		if (!cdev->is_peripheral)
    			napi_schedule(&cdev->napi);
    		else
    			m_can_rx_peripheral(dev);
    	}
    
    	if (cdev->version == 30) {
    		if (ir & IR_TC) {
    			/* Transmission Complete Interrupt*/
    			stats->tx_bytes += can_get_echo_skb(dev, 0);
    			stats->tx_packets++;
    			can_led_event(dev, CAN_LED_EVENT_TX);
    			netif_wake_queue(dev);
    		}
    	} else  {
    		if (ir & IR_TEFN) {
    			/* New TX FIFO Element arrived */
    			m_can_echo_tx_event(dev);
    			can_led_event(dev, CAN_LED_EVENT_TX);
    			if (netif_queue_stopped(dev) &&
    			    !m_can_tx_fifo_full(cdev))
    				netif_wake_queue(dev);
    		}
    	}
    
    	return IRQ_HANDLED;
    }
    
    static const struct can_bittiming_const m_can_bittiming_const_30X = {
    	.name = KBUILD_MODNAME,
    	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
    	.tseg1_max = 64,
    	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
    	.tseg2_max = 16,
    	.sjw_max = 16,
    	.brp_min = 1,
    	.brp_max = 1024,
    	.brp_inc = 1,
    };
    
    static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
    	.name = KBUILD_MODNAME,
    	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
    	.tseg1_max = 16,
    	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
    	.tseg2_max = 8,
    	.sjw_max = 4,
    	.brp_min = 1,
    	.brp_max = 32,
    	.brp_inc = 1,
    };
    
    static const struct can_bittiming_const m_can_bittiming_const_31X = {
    	.name = KBUILD_MODNAME,
    	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
    	.tseg1_max = 256,
    	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
    	.tseg2_max = 128,
    	.sjw_max = 128,
    	.brp_min = 1,
    	.brp_max = 512,
    	.brp_inc = 1,
    };
    
    static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
    	.name = KBUILD_MODNAME,
    	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
    	.tseg1_max = 32,
    	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
    	.tseg2_max = 16,
    	.sjw_max = 16,
    	.brp_min = 1,
    	.brp_max = 32,
    	.brp_inc = 1,
    };
    
    static int m_can_set_bittiming(struct net_device *dev)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	const struct can_bittiming *bt = &cdev->can.bittiming;
    	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
    	u16 brp, sjw, tseg1, tseg2;
    	u32 reg_btp;
    
    	brp = bt->brp - 1;
    	sjw = bt->sjw - 1;
    	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
    	tseg2 = bt->phase_seg2 - 1;
    	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
    		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
    	m_can_write(cdev, M_CAN_NBTP, reg_btp);
    
    	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
    		reg_btp = 0;
    		brp = dbt->brp - 1;
    		sjw = dbt->sjw - 1;
    		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
    		tseg2 = dbt->phase_seg2 - 1;
    
    		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
    		 * This is mentioned in the "Bit Time Requirements for CAN FD"
    		 * paper presented at the International CAN Conference 2013
    		 */
    		if (dbt->bitrate > 2500000) {
    			u32 tdco, ssp;
    
    			/* Use the same value of secondary sampling point
    			 * as the data sampling point
    			 */
    			ssp = dbt->sample_point;
    
    			/* Equation based on Bosch's M_CAN User Manual's
    			 * Transmitter Delay Compensation Section
    			 */
    			tdco = (cdev->can.clock.freq / 1000) *
    			       ssp / dbt->bitrate;
    
    			/* Max valid TDCO value is 127 */
    			if (tdco > 127) {
    				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
    					    tdco);
    				tdco = 127;
    			}
    
    			reg_btp |= DBTP_TDC;
    			m_can_write(cdev, M_CAN_TDCR,
    				    tdco << TDCR_TDCO_SHIFT);
    		}
    
    		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
    			   (sjw << DBTP_DSJW_SHIFT) |
    			   (tseg1 << DBTP_DTSEG1_SHIFT) |
    			   (tseg2 << DBTP_DTSEG2_SHIFT);
    
    		m_can_write(cdev, M_CAN_DBTP, reg_btp);
    	}
    
    	return 0;
    }
    
    /* Configure M_CAN chip:
     * - set rx buffer/fifo element size
     * - configure rx fifo
     * - accept non-matching frame into fifo 0
     * - configure tx buffer
     *		- >= v3.1.x: TX FIFO is used
     * - configure mode
     * - setup bittiming
     */
    static void m_can_chip_config(struct net_device *dev)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	u32 cccr, test;
    
    	m_can_config_endisable(cdev, true);
    
    	/* RX Buffer/FIFO Element Size 64 bytes data field */
    	m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
    
    	/* Accept Non-matching Frames Into FIFO 0 */
    	m_can_write(cdev, M_CAN_GFC, 0x0);
    
    	if (cdev->version == 30) {
    		/* only support one Tx Buffer currently */
    		m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
    				cdev->mcfg[MRAM_TXB].off);
    	} else {
    		/* TX FIFO is used for newer IP Core versions */
    		m_can_write(cdev, M_CAN_TXBC,
    			    (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
    			    (cdev->mcfg[MRAM_TXB].off));
    	}
    
    	/* support 64 bytes payload */
    	m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
    
    	/* TX Event FIFO */
    	if (cdev->version == 30) {
    		m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
    				cdev->mcfg[MRAM_TXE].off);
    	} else {
    		/* Full TX Event FIFO is used */
    		m_can_write(cdev, M_CAN_TXEFC,
    			    ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
    			     & TXEFC_EFS_MASK) |
    			    cdev->mcfg[MRAM_TXE].off);
    	}
    
    	/* rx fifo configuration, blocking mode, fifo size 1 */
    	m_can_write(cdev, M_CAN_RXF0C,
    		    (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
    		     cdev->mcfg[MRAM_RXF0].off);
    
    	m_can_write(cdev, M_CAN_RXF1C,
    		    (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
    		     cdev->mcfg[MRAM_RXF1].off);
    
    	cccr = m_can_read(cdev, M_CAN_CCCR);
    	test = m_can_read(cdev, M_CAN_TEST);
    	test &= ~TEST_LBCK;
    	if (cdev->version == 30) {
    	/* Version 3.0.x */
    
    		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
    			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
    			(CCCR_CME_MASK << CCCR_CME_SHIFT));
    
    		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
    			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
    
    	} else {
    	/* Version 3.1.x or 3.2.x */
    		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
    			  CCCR_NISO | CCCR_DAR);
    
    		/* Only 3.2.x has NISO Bit implemented */
    		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
    			cccr |= CCCR_NISO;
    
    		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
    			cccr |= (CCCR_BRSE | CCCR_FDOE);
    	}
    
    	/* Loopback Mode */
    	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
    		cccr |= CCCR_TEST | CCCR_MON;
    		test |= TEST_LBCK;
    	}
    
    	/* Enable Monitoring (all versions) */
    	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
    		cccr |= CCCR_MON;
    
    	/* Disable Auto Retransmission (all versions) */
    	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
    		cccr |= CCCR_DAR;
    
    	/* Write config */
    	m_can_write(cdev, M_CAN_CCCR, cccr);
    	m_can_write(cdev, M_CAN_TEST, test);
    
    	/* Enable interrupts */
    	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
    	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
    		if (cdev->version == 30)
    			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
    				    ~(IR_ERR_LEC_30X));
    		else
    			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
    				    ~(IR_ERR_LEC_31X));
    	else
    		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
    
    	/* route all interrupts to INT0 */
    	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
    
    	/* set bittiming params */
    	m_can_set_bittiming(dev);
    
    	m_can_config_endisable(cdev, false);
    
    	if (cdev->ops->init)
    		cdev->ops->init(cdev);
    }
    
    static void m_can_start(struct net_device *dev)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    
    	/* basic m_can configuration */
    	m_can_chip_config(dev);
    
    	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
    
    	m_can_enable_all_interrupts(cdev);
    }
    
    static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
    {
    	switch (mode) {
    	case CAN_MODE_START:
    		m_can_clean(dev);
    		m_can_start(dev);
    		netif_wake_queue(dev);
    		break;
    	default:
    		return -EOPNOTSUPP;
    	}
    
    	return 0;
    }
    
    /* Checks core release number of M_CAN
     * returns 0 if an unsupported device is detected
     * else it returns the release and step coded as:
     * return value = 10 * <release> + 1 * <step>
     */
    static int m_can_check_core_release(struct m_can_classdev *cdev)
    {
    	u32 crel_reg;
    	u8 rel;
    	u8 step;
    	int res;
    
    	/* Read Core Release Version and split into version number
    	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
    	 */
    	crel_reg = m_can_read(cdev, M_CAN_CREL);
    	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
    	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
    
    	if (rel == 3) {
    		/* M_CAN v3.x.y: create return value */
    		res = 30 + step;
    	} else {
    		/* Unsupported M_CAN version */
    		res = 0;
    	}
    
    	return res;
    }
    
    /* Selectable Non ISO support only in version 3.2.x
     * This function checks if the bit is writable.
     */
    static bool m_can_niso_supported(struct m_can_classdev *cdev)
    {
    	u32 cccr_reg, cccr_poll = 0;
    	int niso_timeout = -ETIMEDOUT;
    	int i;
    
    	m_can_config_endisable(cdev, true);
    	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
    	cccr_reg |= CCCR_NISO;
    	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
    
    	for (i = 0; i <= 10; i++) {
    		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
    		if (cccr_poll == cccr_reg) {
    			niso_timeout = 0;
    			break;
    		}
    
    		usleep_range(1, 5);
    	}
    
    	/* Clear NISO */
    	cccr_reg &= ~(CCCR_NISO);
    	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
    
    	m_can_config_endisable(cdev, false);
    
    	/* return false if time out (-ETIMEDOUT), else return true */
    	return !niso_timeout;
    }
    
    static int m_can_dev_setup(struct m_can_classdev *m_can_dev)
    {
    	struct net_device *dev = m_can_dev->net;
    	int m_can_version;
    
    	m_can_version = m_can_check_core_release(m_can_dev);
    	/* return if unsupported version */
    	if (!m_can_version) {
    		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
    			m_can_version);
    		return -EINVAL;
    	}
    
    	if (!m_can_dev->is_peripheral)
    		netif_napi_add(dev, &m_can_dev->napi,
    			       m_can_poll, M_CAN_NAPI_WEIGHT);
    
    	/* Shared properties of all M_CAN versions */
    	m_can_dev->version = m_can_version;
    	m_can_dev->can.do_set_mode = m_can_set_mode;
    	m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
    
    	/* Set M_CAN supported operations */
    	m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
    					CAN_CTRLMODE_LISTENONLY |
    					CAN_CTRLMODE_BERR_REPORTING |
    					CAN_CTRLMODE_FD |
    					CAN_CTRLMODE_ONE_SHOT;
    
    	/* Set properties depending on M_CAN version */
    	switch (m_can_dev->version) {
    	case 30:
    		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
    		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
    		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
    			m_can_dev->bit_timing : &m_can_bittiming_const_30X;
    
    		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
    						m_can_dev->data_timing :
    						&m_can_data_bittiming_const_30X;
    		break;
    	case 31:
    		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
    		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
    		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
    			m_can_dev->bit_timing : &m_can_bittiming_const_31X;
    
    		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
    						m_can_dev->data_timing :
    						&m_can_data_bittiming_const_31X;
    		break;
    	case 32:
    		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
    			m_can_dev->bit_timing : &m_can_bittiming_const_31X;
    
    		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
    						m_can_dev->data_timing :
    						&m_can_data_bittiming_const_31X;
    
    		m_can_dev->can.ctrlmode_supported |=
    						(m_can_niso_supported(m_can_dev)
    						? CAN_CTRLMODE_FD_NON_ISO
    						: 0);
    		break;
    	default:
    		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
    			m_can_dev->version);
    		return -EINVAL;
    	}
    
    	if (m_can_dev->ops->init)
    		m_can_dev->ops->init(m_can_dev);
    
    	return 0;
    }
    
    static void m_can_stop(struct net_device *dev)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    
    	/* disable all interrupts */
    	m_can_disable_all_interrupts(cdev);
    
    	/* set the state as STOPPED */
    	cdev->can.state = CAN_STATE_STOPPED;
    }
    
    static int m_can_close(struct net_device *dev)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    
    	netif_stop_queue(dev);
    
    	if (!cdev->is_peripheral)
    		napi_disable(&cdev->napi);
    
    	m_can_stop(dev);
    	m_can_clk_stop(cdev);
    	free_irq(dev->irq, dev);
    
    	if (cdev->is_peripheral) {
    		cdev->tx_skb = NULL;
    		destroy_workqueue(cdev->tx_wq);
    		cdev->tx_wq = NULL;
    	}
    
    	close_candev(dev);
    	can_led_event(dev, CAN_LED_EVENT_STOP);
    
    	return 0;
    }
    
    static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	/*get wrap around for loopback skb index */
    	unsigned int wrap = cdev->can.echo_skb_max;
    	int next_idx;
    
    	/* calculate next index */
    	next_idx = (++putidx >= wrap ? 0 : putidx);
    
    	/* check if occupied */
    	return !!cdev->can.echo_skb[next_idx];
    }
    
    static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
    {
    	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
    	struct net_device *dev = cdev->net;
    	struct sk_buff *skb = cdev->tx_skb;
    	u32 id, cccr, fdflags;
    	int i;
    	int putidx;
    
    	/* Generate ID field for TX buffer Element */
    	/* Common to all supported M_CAN versions */
    	if (cf->can_id & CAN_EFF_FLAG) {
    		id = cf->can_id & CAN_EFF_MASK;
    		id |= TX_BUF_XTD;
    	} else {
    		id = ((cf->can_id & CAN_SFF_MASK) << 18);
    	}
    
    	if (cf->can_id & CAN_RTR_FLAG)
    		id |= TX_BUF_RTR;
    
    	if (cdev->version == 30) {
    		netif_stop_queue(dev);
    
    		/* message ram configuration */
    		m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
    		m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
    				 can_len2dlc(cf->len) << 16);
    
    		for (i = 0; i < cf->len; i += 4)
    			m_can_fifo_write(cdev, 0,
    					 M_CAN_FIFO_DATA(i / 4),
    					 *(u32 *)(cf->data + i));
    
    		can_put_echo_skb(skb, dev, 0);
    
    		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
    			cccr = m_can_read(cdev, M_CAN_CCCR);
    			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
    			if (can_is_canfd_skb(skb)) {
    				if (cf->flags & CANFD_BRS)
    					cccr |= CCCR_CMR_CANFD_BRS <<
    						CCCR_CMR_SHIFT;
    				else
    					cccr |= CCCR_CMR_CANFD <<
    						CCCR_CMR_SHIFT;
    			} else {
    				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
    			}
    			m_can_write(cdev, M_CAN_CCCR, cccr);
    		}
    		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
    		m_can_write(cdev, M_CAN_TXBAR, 0x1);
    		/* End of xmit function for version 3.0.x */
    	} else {
    		/* Transmit routine for version >= v3.1.x */
    
    		/* Check if FIFO full */
    		if (m_can_tx_fifo_full(cdev)) {
    			/* This shouldn't happen */
    			netif_stop_queue(dev);
    			netdev_warn(dev,
    				    "TX queue active although FIFO is full.");
    
    			if (cdev->is_peripheral) {
    				kfree_skb(skb);
    				dev->stats.tx_dropped++;
    				return NETDEV_TX_OK;
    			} else {
    				return NETDEV_TX_BUSY;
    			}
    		}
    
    		/* get put index for frame */
    		putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
    				  >> TXFQS_TFQPI_SHIFT);
    		/* Write ID Field to FIFO Element */
    		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
    
    		/* get CAN FD configuration of frame */
    		fdflags = 0;
    		if (can_is_canfd_skb(skb)) {
    			fdflags |= TX_BUF_FDF;
    			if (cf->flags & CANFD_BRS)
    				fdflags |= TX_BUF_BRS;
    		}
    
    		/* Construct DLC Field. Also contains CAN-FD configuration
    		 * use put index of fifo as message marker
    		 * it is used in TX interrupt for
    		 * sending the correct echo frame
    		 */
    		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
    				 ((putidx << TX_BUF_MM_SHIFT) &
    				  TX_BUF_MM_MASK) |
    				 (can_len2dlc(cf->len) << 16) |
    				 fdflags | TX_BUF_EFC);
    
    		for (i = 0; i < cf->len; i += 4)
    			m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
    					 *(u32 *)(cf->data + i));
    
    		/* Push loopback echo.
    		 * Will be looped back on TX interrupt based on message marker
    		 */
    		can_put_echo_skb(skb, dev, putidx);
    
    		/* Enable TX FIFO element to start transfer  */
    		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
    
    		/* stop network queue if fifo full */
    		if (m_can_tx_fifo_full(cdev) ||
    		    m_can_next_echo_skb_occupied(dev, putidx))
    			netif_stop_queue(dev);
    	}
    
    	return NETDEV_TX_OK;
    }
    
    static void m_can_tx_work_queue(struct work_struct *ws)
    {
    	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
    						tx_work);
    
    	m_can_tx_handler(cdev);
    	cdev->tx_skb = NULL;
    }
    
    static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
    				    struct net_device *dev)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    
    	if (can_dropped_invalid_skb(dev, skb))
    		return NETDEV_TX_OK;
    
    	if (cdev->is_peripheral) {
    		if (cdev->tx_skb) {
    			netdev_err(dev, "hard_xmit called while tx busy\n");
    			return NETDEV_TX_BUSY;
    		}
    
    		if (cdev->can.state == CAN_STATE_BUS_OFF) {
    			m_can_clean(dev);
    		} else {
    			/* Need to stop the queue to avoid numerous requests
    			 * from being sent.  Suggested improvement is to create
    			 * a queueing mechanism that will queue the skbs and
    			 * process them in order.
    			 */
    			cdev->tx_skb = skb;
    			netif_stop_queue(cdev->net);
    			queue_work(cdev->tx_wq, &cdev->tx_work);
    		}
    	} else {
    		cdev->tx_skb = skb;
    		return m_can_tx_handler(cdev);
    	}
    
    	return NETDEV_TX_OK;
    }
    
    static int m_can_open(struct net_device *dev)
    {
    	struct m_can_classdev *cdev = netdev_priv(dev);
    	int err;
    
    	err = m_can_clk_start(cdev);
    	if (err)
    		return err;
    
    	/* open the can device */
    	err = open_candev(dev);
    	if (err) {
    		netdev_err(dev, "failed to open can device\n");
    		goto exit_disable_clks;
    	}
    
    	/* register interrupt handler */
    	if (cdev->is_peripheral) {
    		cdev->tx_skb = NULL;
    		cdev->tx_wq = alloc_workqueue("mcan_wq",
    					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
    		if (!cdev->tx_wq) {
    			err = -ENOMEM;
    			goto out_wq_fail;
    		}
    
    		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
    
    		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
    					   IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
    					   dev->name, dev);
    	} else {
    		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
    				  dev);
    	}
    
    	if (err < 0) {
    		netdev_err(dev, "failed to request interrupt\n");
    		goto exit_irq_fail;
    	}
    
    	/* start the m_can controller */
    	m_can_start(dev);
    
    	can_led_event(dev, CAN_LED_EVENT_OPEN);
    
    	if (!cdev->is_peripheral)
    		napi_enable(&cdev->napi);
    
    	netif_start_queue(dev);
    
    	return 0;
    
    exit_irq_fail:
    	if (cdev->is_peripheral)
    		destroy_workqueue(cdev->tx_wq);
    out_wq_fail:
    	close_candev(dev);
    exit_disable_clks:
    	m_can_clk_stop(cdev);
    	return err;
    }
    
    static const struct net_device_ops m_can_netdev_ops = {
    	.ndo_open = m_can_open,
    	.ndo_stop = m_can_close,
    	.ndo_start_xmit = m_can_start_xmit,
    	.ndo_change_mtu = can_change_mtu,
    };
    
    static int register_m_can_dev(struct net_device *dev)
    {
    	dev->flags |= IFF_ECHO;	/* we support local echo */
    	dev->netdev_ops = &m_can_netdev_ops;
    
    	return register_candev(dev);
    }
    
    static void m_can_of_parse_mram(struct m_can_classdev *cdev,
    				const u32 *mram_config_vals)
    {
    	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
    	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
    	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
    			cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
    	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
    	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
    			cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
    	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
    			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
    	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
    			cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
    	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
    			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
    	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
    			cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
    	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
    	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
    			cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
    	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
    	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
    			cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
    	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
    			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
    
    	dev_dbg(cdev->dev,
    		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
    		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
    		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
    		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
    		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
    		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
    		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
    		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
    }
    
    void m_can_init_ram(struct m_can_classdev *cdev)
    {
    	int end, i, start;
    
    	/* initialize the entire Message RAM in use to avoid possible
    	 * ECC/parity checksum errors when reading an uninitialized buffer
    	 */
    	start = cdev->mcfg[MRAM_SIDF].off;
    	end = cdev->mcfg[MRAM_TXB].off +
    		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
    
    	for (i = start; i < end; i += 4)
    		m_can_fifo_write_no_off(cdev, i, 0x0);
    }
    EXPORT_SYMBOL_GPL(m_can_init_ram);
    
    int m_can_class_get_clocks(struct m_can_classdev *m_can_dev)
    {
    	int ret = 0;
    
    	m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
    	m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
    
    	if (IS_ERR(m_can_dev->cclk)) {
    		dev_err(m_can_dev->dev, "no clock found\n");
    		ret = -ENODEV;
    	}
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
    
    struct m_can_classdev *m_can_class_allocate_dev(struct device *dev)
    {
    	struct m_can_classdev *class_dev = NULL;
    	u32 mram_config_vals[MRAM_CFG_LEN];
    	struct net_device *net_dev;
    	u32 tx_fifo_size;
    	int ret;
    
    	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
    					     "bosch,mram-cfg",
    					     mram_config_vals,
    					     sizeof(mram_config_vals) / 4);
    	if (ret) {
    		dev_err(dev, "Could not get Message RAM configuration.");
    		goto out;
    	}
    
    	/* Get TX FIFO size
    	 * Defines the total amount of echo buffers for loopback
    	 */
    	tx_fifo_size = mram_config_vals[7];
    
    	/* allocate the m_can device */
    	net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
    	if (!net_dev) {
    		dev_err(dev, "Failed to allocate CAN device");
    		goto out;
    	}
    
    	class_dev = netdev_priv(net_dev);
    	if (!class_dev) {
    		dev_err(dev, "Failed to init netdev cdevate");
    		goto out;
    	}
    
    	class_dev->net = net_dev;
    	class_dev->dev = dev;
    	SET_NETDEV_DEV(net_dev, dev);
    
    	m_can_of_parse_mram(class_dev, mram_config_vals);
    out:
    	return class_dev;
    }
    EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
    
    int m_can_class_register(struct m_can_classdev *m_can_dev)
    {
    	int ret;
    
    	if (m_can_dev->pm_clock_support) {
    		pm_runtime_enable(m_can_dev->dev);
    		ret = m_can_clk_start(m_can_dev);
    		if (ret)
    			goto pm_runtime_fail;
    	}
    
    	ret = m_can_dev_setup(m_can_dev);
    	if (ret)
    		goto clk_disable;
    
    	ret = register_m_can_dev(m_can_dev->net);
    	if (ret) {
    		dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
    			m_can_dev->net->name, ret);
    		goto clk_disable;
    	}
    
    	devm_can_led_init(m_can_dev->net);
    
    	of_can_transceiver(m_can_dev->net);
    
    	dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
    		 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
    
    	/* Probe finished
    	 * Stop clocks. They will be reactivated once the M_CAN device is opened
    	 */
    clk_disable:
    	m_can_clk_stop(m_can_dev);
    pm_runtime_fail:
    	if (ret) {
    		if (m_can_dev->pm_clock_support)
    			pm_runtime_disable(m_can_dev->dev);
    		free_candev(m_can_dev->net);
    	}
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(m_can_class_register);
    
    int m_can_class_suspend(struct device *dev)
    {
    	struct net_device *ndev = dev_get_drvdata(dev);
    	struct m_can_classdev *cdev = netdev_priv(ndev);
    
    	if (netif_running(ndev)) {
    		netif_stop_queue(ndev);
    		netif_device_detach(ndev);
    		m_can_stop(ndev);
    		m_can_clk_stop(cdev);
    	}
    
    	pinctrl_pm_select_sleep_state(dev);
    
    	cdev->can.state = CAN_STATE_SLEEPING;
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(m_can_class_suspend);
    
    int m_can_class_resume(struct device *dev)
    {
    	struct net_device *ndev = dev_get_drvdata(dev);
    	struct m_can_classdev *cdev = netdev_priv(ndev);
    
    	pinctrl_pm_select_default_state(dev);
    
    	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
    
    	if (netif_running(ndev)) {
    		int ret;
    
    		ret = m_can_clk_start(cdev);
    		if (ret)
    			return ret;
    
    		m_can_init_ram(cdev);
    		m_can_start(ndev);
    		netif_device_attach(ndev);
    		netif_start_queue(ndev);
    	}
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(m_can_class_resume);
    
    void m_can_class_unregister(struct m_can_classdev *m_can_dev)
    {
    	unregister_candev(m_can_dev->net);
    
    	m_can_clk_stop(m_can_dev);
    
    	free_candev(m_can_dev->net);
    }
    EXPORT_SYMBOL_GPL(m_can_class_unregister);
    
    MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
    MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
    MODULE_LICENSE("GPL v2");
    MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");

  • 由于问题比较复杂,已将您的问题上传给产品工程师,你可以点击下帖查看进展:

    https://e2e.ti.com/support/interface/f/138/t/907268

    一旦收到回复,我也会给您更新。

  • 请问您是否尝试过:sudo ifconfig can0 txqueuelen 1000

    另外,请确保至少有两个节点连接到总线。 这是正确操作所必需的,因为每个TX帧都将期待来自接收节点的ACK。

  • 当然,这些我都试过,现在问题有进展了,发送数据已经正常,接收数据还在修改中。

    基本问题如下:

    1、e2e.ti.com/.../3171152下参考配置的

    bosch,mram-cfg会使驱动配置的MRAM远大于实际MRAM的2k,造成配置的TX缓冲buf为非法地址;
    2、m_can_open()中有部分初始化有问题,根据手册修改后正常;

    现有的接收数据异常导致rx fifo满的问题我相信应该也是配置问题,通过修改寄存器配置应该可以搞定。

  • 处理这些问题相对有些难度,更具体的信息可以帮助我们找到问题所在。请您提供

    • 完整的device tree,TCAN4550寄存器和MRAM配置
    • 您收到的确切错误消息

    以便我们检查它们的错误吗?

  • 当然,之前提的问题我基本都解决了,主要还是MRAM配置与驱动中有些寄存器配置的问题,接收数据时quota变量被固定赋值为1被我修改了,根据一次接受的数据数量来赋值或者读取0x1050来决定,现在解决后数据收发都正常了,奉上修改后的代码与配置,感谢。3757.m_can.c

    7026.tcan4x5x.c
    // SPDX-License-Identifier: GPL-2.0
    // SPI to CAN driver for the Texas Instruments TCAN4x5x
    // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
    
    #include <linux/regmap.h>
    #include <linux/spi/spi.h>
    
    #include <linux/regulator/consumer.h>
    #include <linux/gpio/consumer.h>
    
    #include <linux/gpio.h>
    
    #include <linux/byteorder/little_endian.h>
    //#include <linux/byteorder/big_endian.h>
    
    
    #include "m_can.h"
    
    
    //2020.5.6 add by Mark
    #define	DEFINE_BASE		(0x14c)
    #define	RESET_GPIO_M	(165 + DEFINE_BASE)
    #define	EINT_GPIO_M		(71 + DEFINE_BASE)
    #define	NPW_GPIO_M		(163 + DEFINE_BASE)
    #define	STATUS_GPIO_M	(166 + DEFINE_BASE)
    #define	EXCHANGE_EN_M	(10 + DEFINE_BASE)
    
    
    #define DEVICE_NAME "tcan4x5x"
    //#define TCAN4X5X_EXT_CLK_DEF 40000000
    #define TCAN4X5X_EXT_CLK_DEF 8000000
    
    
    #define TCAN4X5X_DEV_ID0 0x00
    #define TCAN4X5X_DEV_ID1 0x04
    #define TCAN4X5X_REV 0x08
    #define TCAN4X5X_STATUS 0x0C
    #define TCAN4X5X_ERROR_STATUS 0x10
    #define TCAN4X5X_CONTROL 0x14
    
    #define TCAN4X5X_CONFIG 0x800
    #define TCAN4X5X_TS_PRESCALE 0x804
    #define TCAN4X5X_TEST_REG 0x808
    #define TCAN4X5X_INT_FLAGS 0x820
    #define TCAN4X5X_MCAN_INT_REG 0x824
    #define TCAN4X5X_INT_EN 0x830
    
    /* Interrupt bits */
    #define TCAN4X5X_CANBUSTERMOPEN_INT_EN BIT(30)
    #define TCAN4X5X_CANHCANL_INT_EN BIT(29)
    #define TCAN4X5X_CANHBAT_INT_EN BIT(28)
    #define TCAN4X5X_CANLGND_INT_EN BIT(27)
    #define TCAN4X5X_CANBUSOPEN_INT_EN BIT(26)
    #define TCAN4X5X_CANBUSGND_INT_EN BIT(25)
    #define TCAN4X5X_CANBUSBAT_INT_EN BIT(24)
    #define TCAN4X5X_UVSUP_INT_EN BIT(22)
    #define TCAN4X5X_UVIO_INT_EN BIT(21)
    #define TCAN4X5X_TSD_INT_EN BIT(19)
    #define TCAN4X5X_ECCERR_INT_EN BIT(16)
    #define TCAN4X5X_CANINT_INT_EN BIT(15)
    #define TCAN4X5X_LWU_INT_EN BIT(14)
    #define TCAN4X5X_CANSLNT_INT_EN BIT(10)
    #define TCAN4X5X_CANDOM_INT_EN BIT(8)
    #define TCAN4X5X_CANBUS_ERR_INT_EN BIT(5)
    #define TCAN4X5X_BUS_FAULT BIT(4)
    #define TCAN4X5X_MCAN_INT BIT(1)
    #define TCAN4X5X_ENABLE_TCAN_INT \
    	(TCAN4X5X_MCAN_INT | TCAN4X5X_BUS_FAULT | \
    	 TCAN4X5X_CANBUS_ERR_INT_EN | TCAN4X5X_CANINT_INT_EN)
    
    /* MCAN Interrupt bits */
    #define TCAN4X5X_MCAN_IR_ARA BIT(29)
    #define TCAN4X5X_MCAN_IR_PED BIT(28)
    #define TCAN4X5X_MCAN_IR_PEA BIT(27)
    #define TCAN4X5X_MCAN_IR_WD BIT(26)
    #define TCAN4X5X_MCAN_IR_BO BIT(25)
    #define TCAN4X5X_MCAN_IR_EW BIT(24)
    #define TCAN4X5X_MCAN_IR_EP BIT(23)
    #define TCAN4X5X_MCAN_IR_ELO BIT(22)
    #define TCAN4X5X_MCAN_IR_BEU BIT(21)
    #define TCAN4X5X_MCAN_IR_BEC BIT(20)
    #define TCAN4X5X_MCAN_IR_DRX BIT(19)
    #define TCAN4X5X_MCAN_IR_TOO BIT(18)
    #define TCAN4X5X_MCAN_IR_MRAF BIT(17)
    #define TCAN4X5X_MCAN_IR_TSW BIT(16)
    #define TCAN4X5X_MCAN_IR_TEFL BIT(15)
    #define TCAN4X5X_MCAN_IR_TEFF BIT(14)
    #define TCAN4X5X_MCAN_IR_TEFW BIT(13)
    #define TCAN4X5X_MCAN_IR_TEFN BIT(12)
    #define TCAN4X5X_MCAN_IR_TFE BIT(11)
    #define TCAN4X5X_MCAN_IR_TCF BIT(10)
    #define TCAN4X5X_MCAN_IR_TC BIT(9)
    #define TCAN4X5X_MCAN_IR_HPM BIT(8)
    #define TCAN4X5X_MCAN_IR_RF1L BIT(7)
    #define TCAN4X5X_MCAN_IR_RF1F BIT(6)
    #define TCAN4X5X_MCAN_IR_RF1W BIT(5)
    #define TCAN4X5X_MCAN_IR_RF1N BIT(4)
    #define TCAN4X5X_MCAN_IR_RF0L BIT(3)
    #define TCAN4X5X_MCAN_IR_RF0F BIT(2)
    #define TCAN4X5X_MCAN_IR_RF0W BIT(1)
    #define TCAN4X5X_MCAN_IR_RF0N BIT(0)
    #define TCAN4X5X_ENABLE_MCAN_INT \
    	(TCAN4X5X_MCAN_IR_TC | TCAN4X5X_MCAN_IR_RF0N | \
    	 TCAN4X5X_MCAN_IR_RF1N | TCAN4X5X_MCAN_IR_RF0F | \
    	 TCAN4X5X_MCAN_IR_RF1F)
    
    #define TCAN4X5X_MRAM_START 0x8000
    #define TCAN4X5X_MCAN_OFFSET 0x1000
    #define TCAN4X5X_MAX_REGISTER 0x8fff
    
    #define TCAN4X5X_CLEAR_ALL_INT 0xffffffff
    #define TCAN4X5X_SET_ALL_INT 0xffffffff
    
    #define TCAN4X5X_WRITE_CMD (0x61 << 24)
    #define TCAN4X5X_READ_CMD (0x41 << 24)
    
    #define TCAN4X5X_MODE_SEL_MASK (BIT(7) | BIT(6))
    #define TCAN4X5X_MODE_SLEEP 0x00
    #define TCAN4X5X_MODE_STANDBY BIT(6)
    #define TCAN4X5X_MODE_NORMAL BIT(7)
    
    #define TCAN4X5X_DISABLE_WAKE_MSK	(BIT(31) | BIT(30))
    #define TCAN4X5X_DISABLE_INH_MSK	BIT(9)
    
    #define TCAN4X5X_SW_RESET BIT(2)
    
    #define TCAN4X5X_MCAN_CONFIGURED BIT(5)
    #define TCAN4X5X_WATCHDOG_EN BIT(3)
    #define TCAN4X5X_WD_60_MS_TIMER 0
    #define TCAN4X5X_WD_600_MS_TIMER BIT(28)
    #define TCAN4X5X_WD_3_S_TIMER BIT(29)
    #define TCAN4X5X_WD_6_S_TIMER (BIT(28) | BIT(29))
    
    struct tcan4x5x_priv {
    	struct regmap *regmap;
    	struct spi_device *spi;
    
    	struct m_can_classdev *mcan_dev;
    
    	struct gpio_desc *reset_gpio;
    	struct gpio_desc *device_wake_gpio;
    	struct gpio_desc *device_state_gpio;
    #ifdef	REGULATOR_TCAN4X5X
    	struct regulator *power;
    #endif
    	/* Register based ip */
    	int mram_start;
    	int reg_offset;
    };
    
    static struct can_bittiming_const tcan4x5x_bittiming_const = {
    	.name = DEVICE_NAME,
    	.tseg1_min = 2,
    	.tseg1_max = 31,
    	.tseg2_min = 2,
    	.tseg2_max = 16,
    	.sjw_max = 16,
    	.brp_min = 1,
    	.brp_max = 32,
    	.brp_inc = 1,
    };
    
    static struct can_bittiming_const tcan4x5x_data_bittiming_const = {
    	.name = DEVICE_NAME,
    	.tseg1_min = 1,
    	.tseg1_max = 32,
    	.tseg2_min = 1,
    	.tseg2_max = 16,
    	.sjw_max = 16,
    	.brp_min = 1,
    	.brp_max = 32,
    	.brp_inc = 1,
    };
    
    static void tcan4x5x_check_wake(struct tcan4x5x_priv *priv)
    {
    	int wake_state = 0;
    
    	if (priv->device_state_gpio)
    		wake_state = gpiod_get_value(priv->device_state_gpio);
    
    	if (priv->device_wake_gpio && wake_state) {
    		gpiod_set_value(priv->device_wake_gpio, 0);
    		usleep_range(5, 50);
    		gpiod_set_value(priv->device_wake_gpio, 1);
    	}
    }
    
    static int tcan4x5x_reset(struct tcan4x5x_priv *priv)
    {
    	int ret = 0;
    
    	if (priv->reset_gpio) {
    		TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    
    		gpio_direction_output(RESET_GPIO_M, 0);
    		pr_info("### Reset pin pull down~\n");
    
    		usleep_range(30, 1000);
    
    		gpio_direction_output(RESET_GPIO_M, 1);
    		pr_info("### Reset pin pull up~\n");
    
    		/* tpulse_width minimum 30us */
    		usleep_range(30, 1000);
    
    		gpio_direction_output(RESET_GPIO_M, 0);
    		pr_info("### Reset pin pull down~\n");
    
    	} else {
    		TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    		ret = regmap_write(priv->regmap, TCAN4X5X_CONFIG,
    				   TCAN4X5X_SW_RESET);
    		if (ret){
    			TCAN4550_DBG("%s(%d) regmap_write error!\n", __func__, __LINE__);
    			return ret;
    		}
    	}
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    
    	usleep_range(900, 1000);
    
    	return ret;
    }
    
    static u32 big_2_little_endian(u32 src)
    {
    	u32 tmp = 0;
    
    	tmp |= ((src & 0xff000000) >> 24) & 0x000000ff;
    	tmp |= ((src & 0x00ff0000) >> 8) & 0x0000ff00;
    	tmp |= ((src & 0x0000ff00) << 8) & 0x00ff0000;
    	tmp |= ((src & 0x000000ff) << 24) & 0xff000000;
    
    	return tmp;
    }
    
    static int regmap_spi_gather_write(void *context, const void *reg,
    				   size_t reg_len, const void *val,
    				   size_t val_len)
    {
    	//TCAN4550_DBG("1----!!!@@@###$$$%%%^^^&&&***\n");
    	struct device *dev = context;
    	struct spi_device *spi = to_spi_device(dev);
    	struct spi_message m;
    	u32 addr, tmp = 0, tmp_val = 0, val_val = *((u32 *)val);
    
    	//TCAN4550_DBG("2----!!!@@@###$$$%%%^^^&&&***\n");
    
    	*((u32 *)val) = big_2_little_endian(val_val);	// = tmp_val;
    
    	//TCAN4550_DBG("3----!!!@@@###$$$%%%^^^&&&***\n");
    	
    	struct spi_transfer t[2] = {
    		{ .tx_buf = &addr, .len = reg_len, .cs_change = 0,},
    		{ .tx_buf = val, .len = val_len, },
    	};
    
    	//TCAN4550_DBG("4----!!!@@@###$$$%%%^^^&&&***\n");
    
    	addr = TCAN4X5X_WRITE_CMD | (*((u16 *)reg) << 8) | val_len >> 2;
    
    	//TCAN4550_DBG("5----!!!@@@###$$$%%%^^^&&&***\n");
    
    	addr = big_2_little_endian(addr);
    
    	//TCAN4550_DBG("6----!!!@@@###$$$%%%^^^&&&***\n");
    	
    	spi_message_init(&m);
    	spi_message_add_tail(&t[0], &m);
    	spi_message_add_tail(&t[1], &m);
    
    	//TCAN4550_DBG("7----!!!@@@###$$$%%%^^^&&&***\n");
    
    	return spi_sync(spi, &m);
    }
    
    static int tcan4x5x_regmap_write(void *context, const void *data, size_t count)
    {
    	u16 *reg = (u16 *)(data);
    	const u32 *val = data + 4;
    
    	return regmap_spi_gather_write(context, reg, 4, val, count - 4);
    }
    
    static int regmap_spi_async_write(void *context,
    				  const void *reg, size_t reg_len,
    				  const void *val, size_t val_len,
    				  struct regmap_async *a)
    {
    	return -ENOTSUPP;
    }
    
    static struct regmap_async *regmap_spi_async_alloc(void)
    {
    	return NULL;
    }
    
    static int tcan4x5x_regmap_read(void *context,
    				const void *reg, size_t reg_size,
    				void *val, size_t val_size)
    {
    	struct device *dev = context;
    	struct spi_device *spi = to_spi_device(dev);
    	u32 tmp = 0;
    
    	u32 addr = TCAN4X5X_READ_CMD | (*((u16 *)reg) << 8) | val_size >> 2;
    
    	//addr = __le32_to_cpu(addr);
    
    	addr = big_2_little_endian(addr);
    
    	return spi_write_then_read(spi, &addr, reg_size, (u32 *)val, val_size);
    }
    
    static struct regmap_bus tcan4x5x_bus = {
    	.write = tcan4x5x_regmap_write,
    	.gather_write = regmap_spi_gather_write,
    	.async_write = regmap_spi_async_write,
    	.async_alloc = regmap_spi_async_alloc,
    	.read = tcan4x5x_regmap_read,
    	.read_flag_mask = 0x00,
    	.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
    	.val_format_endian_default = REGMAP_ENDIAN_NATIVE,
    };
    
    static u32 tcan4x5x_read_reg(struct m_can_classdev *cdev, int reg)
    {
    	struct tcan4x5x_priv *priv = cdev->device_data;
    	u32 val, tmp = 0;
    
    	regmap_read(priv->regmap, priv->reg_offset + reg, &val);
    
    	val = big_2_little_endian(val);
    	
    	return val;
    }
    
    static u32 tcan4x5x_read_fifo(struct m_can_classdev *cdev, int addr_offset)
    {
    	struct tcan4x5x_priv *priv = cdev->device_data;
    	u32 val, tmp = 0;
    
    	regmap_read(priv->regmap, priv->mram_start + addr_offset, &val);
    
    	val = big_2_little_endian(val);
    
    	return val;
    }
    
    static int tcan4x5x_write_reg(struct m_can_classdev *cdev, int reg, int val)
    {
    	struct tcan4x5x_priv *priv = cdev->device_data;
    	u32 ret = 0;
    
    	return regmap_write(priv->regmap, priv->reg_offset + reg, val);
    }
    
    static int tcan4x5x_write_fifo(struct m_can_classdev *cdev,
    			       int addr_offset, int val)
    {
    	u32 ret = 0;
    	struct tcan4x5x_priv *priv = cdev->device_data;
    
    	ret = regmap_write(priv->regmap, priv->mram_start + addr_offset, val);
    
    	return ret;
    }
    
    #ifdef	REGULATOR_TCAN4X5X
    static int tcan4x5x_power_enable(struct regulator *reg, int enable)
    {
    	if (IS_ERR_OR_NULL(reg))
    		return 0;
    
    	if (enable)
    		return regulator_enable(reg);
    	else
    		return regulator_disable(reg);
    	return 1;
    }
    #endif
    
    static int tcan4x5x_write_tcan_reg(struct m_can_classdev *cdev,
    				   int reg, int val)
    {
    	struct tcan4x5x_priv *priv = cdev->device_data;
    
    	//TCAN4550_DBG("!!!@@@###$$$%%%^^^&&& %s(%d) called.\n", __func__, __LINE__);
    
    	return regmap_write(priv->regmap, reg, val);
    }
    
    static int tcan4x5x_clear_interrupts(struct m_can_classdev *cdev)
    {
    	int ret;
    
    	ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_STATUS,
    				      TCAN4X5X_CLEAR_ALL_INT);
    	if (ret){
    		pr_info("%s(%d) tcan4x5x_write_tcan_reg TCAN4X5X_STATUS error!\n", __func__, __LINE__);
    		return ret;
    	}
    
    	ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_MCAN_INT_REG,
    				      TCAN4X5X_ENABLE_MCAN_INT);
    	if (ret){
    		pr_info("%s(%d) tcan4x5x_write_tcan_reg TCAN4X5X_MCAN_INT_REG error!\n", __func__, __LINE__);
    		return ret;
    	}
    
    	ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_INT_FLAGS,
    				      TCAN4X5X_CLEAR_ALL_INT);
    	if (ret){
    		pr_info("%s(%d) tcan4x5x_write_tcan_reg TCAN4X5X_INT_FLAGS error!\n", __func__, __LINE__);
    		return ret;
    	}
    
    	ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_ERROR_STATUS,
    				      TCAN4X5X_CLEAR_ALL_INT);
    	if (ret){
    		pr_info("%s(%d) tcan4x5x_write_tcan_reg TCAN4X5X_ERROR_STATUS error!\n", __func__, __LINE__);
    		return ret;
    	}
    
    	return ret;
    }
    
    static int tcan4x5x_init(struct m_can_classdev *cdev)
    {
    	struct tcan4x5x_priv *tcan4x5x = cdev->device_data;
    	int ret;
    
    	tcan4x5x_check_wake(tcan4x5x);
    
    	ret = tcan4x5x_clear_interrupts(cdev);
    	if (ret)
    		return ret;
    
    	ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_INT_EN,
    				      TCAN4X5X_ENABLE_TCAN_INT);
    	if (ret)
    		return ret;
    
    	ret = regmap_update_bits(tcan4x5x->regmap, TCAN4X5X_CONFIG,
    				 TCAN4X5X_MODE_SEL_MASK, TCAN4X5X_MODE_NORMAL);
    	if (ret)
    		return ret;
    
    	/* Zero out the MCAN buffers */
    	m_can_init_ram(cdev);
    
    	return ret;
    }
    
    static int tcan4x5x_disable_wake(struct m_can_classdev *cdev)
    {
    	struct tcan4x5x_priv *tcan4x5x = cdev->device_data;
    
    	return regmap_update_bits(tcan4x5x->regmap, TCAN4X5X_CONFIG,
    				  TCAN4X5X_DISABLE_WAKE_MSK, 0x00);
    }
    
    static int tcan4x5x_disable_state(struct m_can_classdev *cdev)
    {
    	struct tcan4x5x_priv *tcan4x5x = cdev->device_data;
    
    	return regmap_update_bits(tcan4x5x->regmap, TCAN4X5X_CONFIG,
    				  TCAN4X5X_DISABLE_INH_MSK, 0x01);
    }
    
    static int tcan4x5x_parse_config(struct m_can_classdev *cdev)
    {
    	struct tcan4x5x_priv *tcan4x5x = cdev->device_data;
    	int ret;
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    	
    #if 0
    	tcan4x5x->device_wake_gpio = devm_gpiod_get(cdev->dev, "device-wake",
    						    GPIOD_OUT_HIGH);
    /*
    	tcan4x5x->device_wake_gpio = devm_gpiod_get_optional(cdev->dev, "device-wake",
    						    GPIOD_OUT_HIGH);
    */
    	if (IS_ERR(tcan4x5x->device_wake_gpio)) {
    		pr_info("%s(%d) devm_gpiod_get_optional device-wake error!\n", __func__, __LINE__);
    		if (PTR_ERR(tcan4x5x->device_wake_gpio) == -EPROBE_DEFER){
    			pr_err("%s(%d) devm_gpiod_get_optional device-wake error!\n", __func__, __LINE__);
    			return -EPROBE_DEFER;
    		}
    
    		tcan4x5x_disable_wake(cdev);
    	}
    	//pr_info("tcan4x5x->device_wake_gpio : %d\n", tcan4x5x->device_wake_gpio->chip.ngpio);
    
    	pr_info("%s(%d) called.\n", __func__, __LINE__);
    
    	tcan4x5x->reset_gpio = devm_gpiod_get_optional(cdev->dev, "reset",
    						       GPIOD_OUT_LOW);
    	if (IS_ERR(tcan4x5x->reset_gpio)){
    		pr_info("%s(%d) devm_gpiod_get_optional reset error!\n", __func__, __LINE__);
    		tcan4x5x->reset_gpio = NULL;
    	}
    	//pr_info("tcan4x5x->reset_gpio : %d\n", tcan4x5x->reset_gpio->chip.ngpio);
    #endif
    
    	tcan4x5x->reset_gpio = gpio_to_desc(165);//gpio_to_desc(RESET_GPIO_M);
    
    	tcan4x5x->device_wake_gpio = gpio_to_desc(163);//gpio_to_desc(NPW_GPIO_M);
    
    //	tcan4x5x->device_state_gpio = gpio_to_desc(STATUS_GPIO_M);
    
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    
    	ret = tcan4x5x_reset(tcan4x5x);
    	if (ret){
    		pr_info("%s(%d) tcan4x5x_reset error!\n", __func__, __LINE__);
    		return ret;
    	}
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    
    	tcan4x5x->device_state_gpio = devm_gpiod_get_optional(cdev->dev,
    							      "device-state",
    							      GPIOD_IN);
    	if (IS_ERR(tcan4x5x->device_state_gpio)) {
    		pr_info("%s(%d) devm_gpiod_get_optional device-state error!\n", __func__, __LINE__);
    		tcan4x5x->device_state_gpio = NULL;
    		tcan4x5x_disable_state(cdev);
    	}
    	//pr_info("tcan4x5x->device_state_gpio : %d\n", tcan4x5x->device_state_gpio->chip.ngpio);
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    
    	return 0;
    }
    
    static const struct regmap_config tcan4x5x_regmap = {
    	.reg_bits = 32,
    	.val_bits = 32,
    	.cache_type = REGCACHE_NONE,
    	.max_register = TCAN4X5X_MAX_REGISTER,
    };
    
    static struct m_can_ops tcan4x5x_ops = {
    	.init = tcan4x5x_init,
    	.read_reg = tcan4x5x_read_reg,
    	.write_reg = tcan4x5x_write_reg,
    	.write_fifo = tcan4x5x_write_fifo,
    	.read_fifo = tcan4x5x_read_fifo,
    	.clear_interrupts = tcan4x5x_clear_interrupts,
    };
    
    static int tcan4x5x_can_probe(struct spi_device *spi)
    {
    	struct tcan4x5x_priv *priv;
    	struct m_can_classdev *mcan_class;
    	int freq, ret;
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    
    	
    //	pr_info("******** exit test **********\n");
    //	return 0;
    
    	spi->master->bus_num = 2;
    	spi->chip_select = 20;	//2020.4.29 add by Mark
    	spi->mode = SPI_MODE_0;
    
    	
    	ret = gpio_request(EXCHANGE_EN_M, "exchange_ic_enable");
    	if(ret){
    		pr_info("%s(%d) called. gpio_request error!\n", __func__, __LINE__);
    		return ret;
    	}
    	gpio_direction_output(EXCHANGE_EN_M, 1);
    	
    	ret = gpio_request(RESET_GPIO_M, "tcan4x5x_reset");
    	if(ret){
    		pr_info("%s(%d) called. gpio_request error!\n", __func__, __LINE__);
    		gpio_free(EXCHANGE_EN_M);
    		return ret;
    	}
    	gpio_direction_output(RESET_GPIO_M, 0);
    
    	usleep_range(20, 1000);
    
    
    	TCAN4550_DBG("######### %s spi->bus_num = %d\n", __func__, spi->master->bus_num);
    	TCAN4550_DBG("######### %s spi->chip_select = %d\n", __func__, spi->chip_select);
    	//TCAN4550_DBG("######### %s spi->cs_gpios[%d] = %d\n", __func__, 0, spi->master->cs_gpios[0]);
    	TCAN4550_DBG("######### %s spi->mode = %d\n", __func__, spi->mode);
    
    	mcan_class = m_can_class_allocate_dev(&spi->dev);
    	if (!mcan_class)
    		return -ENOMEM;
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    	priv = devm_kzalloc(&spi->dev, sizeof(*priv), GFP_KERNEL);
    	if (!priv)
    		return -ENOMEM;
    
    #ifdef	REGULATOR_TCAN4X5X
    	priv->power = devm_regulator_get_optional(&spi->dev, "vsup");
    	if (PTR_ERR(priv->power) == -EPROBE_DEFER)
    		return -EPROBE_DEFER;
    	else
    		priv->power = NULL;
    #endif
    	mcan_class->device_data = priv;
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    	m_can_class_get_clocks(mcan_class);
    	if (IS_ERR(mcan_class->cclk)) {
    		dev_err(&spi->dev, "no CAN clock source defined\n");
    		freq = TCAN4X5X_EXT_CLK_DEF;
    	} else {
    		freq = clk_get_rate(mcan_class->cclk);
    	}
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    	/* Sanity check */
    	//if (freq < 20000000 || freq > TCAN4X5X_EXT_CLK_DEF)
    	if (freq < 900000 || freq > TCAN4X5X_EXT_CLK_DEF)
    		return -ERANGE;
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    	priv->reg_offset = TCAN4X5X_MCAN_OFFSET;
    	priv->mram_start = TCAN4X5X_MRAM_START;
    	priv->spi = spi;
    	priv->mcan_dev = mcan_class;
    
    	mcan_class->pm_clock_support = 0;
    	mcan_class->can.clock.freq = freq;
    	mcan_class->dev = &spi->dev;
    	mcan_class->ops = &tcan4x5x_ops;
    	mcan_class->is_peripheral = true;
    	mcan_class->bit_timing = &tcan4x5x_bittiming_const;
    	mcan_class->data_timing = &tcan4x5x_data_bittiming_const;
    	TCAN4550_DBG("Used spi irq = %d*********\n", spi->irq);
    	//spi->irq = 71  + 0x14c;
    	//spi->irq = 54  + 0x14c;
    	spi->irq = gpio_to_irq(7 + 0x14c);
    	TCAN4550_DBG("Used spi irq = %d*********\n", spi->irq);
    	mcan_class->net->irq = spi->irq;
    
    	spi_set_drvdata(spi, priv);
    
    	/* Configure the SPI bus */
    	spi->bits_per_word = 32;
    	ret = spi_setup(spi);
    	if (ret)
    		goto out_clk;
    
    	priv->regmap = devm_regmap_init(&spi->dev, &tcan4x5x_bus,
    					&spi->dev, &tcan4x5x_regmap);
    
    /*
    	priv->regmap = devm_regmap_init_spi(spi, &tcan4x5x_regmap);
    */
    #ifdef	REGULATOR_TCAN4X5X
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    	ret = tcan4x5x_power_enable(priv->power, 1);
    	if (ret)
    		goto out_clk;
    #endif
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    	ret = tcan4x5x_parse_config(mcan_class);
    	if (ret){
    		pr_info("%s(%d) tcan4x5x_parse_config error!\n", __func__, __LINE__);
    		goto out_power;
    	}
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    	ret = tcan4x5x_init(mcan_class);
    	if (ret){
    		pr_info("%s(%d) tcan4x5x_init error!\n", __func__, __LINE__);
    		goto out_power;
    	}
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    	ret = m_can_class_register(mcan_class);
    	if (ret){
    		pr_info("%s(%d) m_can_class_register error!\n", __func__, __LINE__);
    		goto out_power;
    	}
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    	netdev_info(mcan_class->net, "TCAN4X5X successfully initialized.\n");
    /*
    	pr_info("###@@@### Read 0x%04X : 0x%X\n", tmpp, tcan4x5x_read_reg(priv->mcan_dev, tmpp));
    	pr_info("###@@@### Write 0x%04X : %X | 0x0055 (%d)\n", tmpp, vall | 0x0055, tcan4x5x_write_reg(priv->mcan_dev, tmpp, vall | 0x0055));
    	udelay(20);
    	pr_info("###@@@### Read 0x0808 : 0x%X\n", tcan4x5x_read_reg(priv->mcan_dev, tmpp));
    */
    	return 0;
    
    out_power:
    #ifdef	REGULATOR_TCAN4X5X
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    	tcan4x5x_power_enable(priv->power, 0);
    #endif
    out_clk:
    	if (!IS_ERR(mcan_class->cclk)) {
    		clk_disable_unprepare(mcan_class->cclk);
    		clk_disable_unprepare(mcan_class->hclk);
    	}
    
    	dev_err(&spi->dev, "Probe failed, err=%d\n", ret);
    	return ret;
    }
    
    static int tcan4x5x_can_remove(struct spi_device *spi)
    {
    	struct tcan4x5x_priv *priv = spi_get_drvdata(spi);
    
    	//temp
    	gpio_free(RESET_GPIO_M);
    	gpio_free(EXCHANGE_EN_M);
    
    #ifdef	REGULATOR_TCAN4X5X
    	tcan4x5x_power_enable(priv->power, 0);
    #endif
    
    	m_can_class_unregister(priv->mcan_dev);
    
    	return 0;
    }
    
    static const struct of_device_id tcan4x5x_of_match[] = {
    	{ .compatible = "ti,tcan4x5x", },
    	{ .compatible = "mediatek,tcan4x5x", }
    };
    MODULE_DEVICE_TABLE(of, tcan4x5x_of_match);
    
    static const struct spi_device_id tcan4x5x_id_table = {	"tcan4x5x", 0};
    MODULE_DEVICE_TABLE(spi, tcan4x5x_id_table);
    
    static struct spi_driver tcan4x5x_can_driver = {
    	.driver = {
    		.owner = THIS_MODULE,
    		.name = DEVICE_NAME,
    		.of_match_table = tcan4x5x_of_match,
    		//.bus = &spi_bus_type,
    		.pm = NULL,
    	},
    	.id_table = &tcan4x5x_id_table,
    	.probe = tcan4x5x_can_probe,
    	.remove = tcan4x5x_can_remove,
    };
    //module_spi_driver(tcan4x5x_can_driver);
    
    static int __init tcan4x5x_can_init(void)
    {
    	int status = -1;
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    
    	status = spi_register_driver(&tcan4x5x_can_driver);
    	TCAN4550_DBG("%s(%d) called.status = %d\n", __func__, __LINE__, status);
    	if (status < 0) {
    		pr_info("%s, Failed to register SPI driver.\n", __func__);
    		return -EINVAL;
    	}
    
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    	return status;
    }
    
    static void __exit tcan4x5x_can_exit(void)
    {
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    
    	spi_unregister_driver(&tcan4x5x_can_driver);
    	
    	TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__);
    }
    
    module_init(tcan4x5x_can_init);
    module_exit(tcan4x5x_can_exit);
    
    MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
    MODULE_DESCRIPTION("Texas Instruments TCAN4x5x CAN driver");
    MODULE_LICENSE("GPL v2");
    

  • 很高兴您的问题已经解决,并且谢谢您的分享!
  • 你好,我这边也遇到接收异常问题,按照你的配置文件修改也不行,想咨询下你还修改了别的地方吗?