This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
hi,
tcan4550调试,从linux-5.14版本获取了tcan4x5x的驱动,调试发现如下问题:
1、设备驱动在读取ID作为匹配时,调用tcan4x5x_read_reg,此函数在地址位中对所有地址偏移加0x1000,发送地址数据为0x41100001,而根据手册实际应该为0x41000001,修改后读取ID正常;
2、根据m_can_check_core_release()中读取ID后的逻辑判断,读取ID0的ID根据手册与实际测量结果应该为0x4e414354,恒无法满足后面的版本判断的30--32的判断逻辑,我推测是否要读取ID1的值0x30353534,后面逻辑判断为30,符合后面版本的判断;
3、驱动修改部分后能够正常加载,结合can设备加载成功后在应用层socket调用,应用程序write提示“No buffer space available”;
4、spi为大端传输(spi问题),芯片无响应,修改后响应正常;
目前未解决的问题是3。
// SPDX-License-Identifier: GPL-2.0 // SPI to CAN driver for the Texas Instruments TCAN4x5x // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ #include <linux/regmap.h> #include <linux/spi/spi.h> #include <linux/regulator/consumer.h> #include <linux/gpio/consumer.h> #include "m_can.h" #define DEVICE_NAME "tcan4x5x" #define TCAN4X5X_EXT_CLK_DEF 40000000 #define TCAN4X5X_DEV_ID0 0x00 #define TCAN4X5X_DEV_ID1 0x04 #define TCAN4X5X_REV 0x08 #define TCAN4X5X_STATUS 0x0C #define TCAN4X5X_ERROR_STATUS 0x10 #define TCAN4X5X_CONTROL 0x14 #define TCAN4X5X_CONFIG 0x800 #define TCAN4X5X_TS_PRESCALE 0x804 #define TCAN4X5X_TEST_REG 0x808 #define TCAN4X5X_INT_FLAGS 0x820 #define TCAN4X5X_MCAN_INT_REG 0x824 #define TCAN4X5X_INT_EN 0x830 /* Interrupt bits */ #define TCAN4X5X_CANBUSTERMOPEN_INT_EN BIT(30) #define TCAN4X5X_CANHCANL_INT_EN BIT(29) #define TCAN4X5X_CANHBAT_INT_EN BIT(28) #define TCAN4X5X_CANLGND_INT_EN BIT(27) #define TCAN4X5X_CANBUSOPEN_INT_EN BIT(26) #define TCAN4X5X_CANBUSGND_INT_EN BIT(25) #define TCAN4X5X_CANBUSBAT_INT_EN BIT(24) #define TCAN4X5X_UVSUP_INT_EN BIT(22) #define TCAN4X5X_UVIO_INT_EN BIT(21) #define TCAN4X5X_TSD_INT_EN BIT(19) #define TCAN4X5X_ECCERR_INT_EN BIT(16) #define TCAN4X5X_CANINT_INT_EN BIT(15) #define TCAN4X5X_LWU_INT_EN BIT(14) #define TCAN4X5X_CANSLNT_INT_EN BIT(10) #define TCAN4X5X_CANDOM_INT_EN BIT(8) #define TCAN4X5X_CANBUS_ERR_INT_EN BIT(5) #define TCAN4X5X_BUS_FAULT BIT(4) #define TCAN4X5X_MCAN_INT BIT(1) #define TCAN4X5X_ENABLE_TCAN_INT \ (TCAN4X5X_MCAN_INT | TCAN4X5X_BUS_FAULT | \ TCAN4X5X_CANBUS_ERR_INT_EN | TCAN4X5X_CANINT_INT_EN) /* MCAN Interrupt bits */ #define TCAN4X5X_MCAN_IR_ARA BIT(29) #define TCAN4X5X_MCAN_IR_PED BIT(28) #define TCAN4X5X_MCAN_IR_PEA BIT(27) #define TCAN4X5X_MCAN_IR_WD BIT(26) #define TCAN4X5X_MCAN_IR_BO BIT(25) #define TCAN4X5X_MCAN_IR_EW BIT(24) #define TCAN4X5X_MCAN_IR_EP BIT(23) #define TCAN4X5X_MCAN_IR_ELO BIT(22) #define TCAN4X5X_MCAN_IR_BEU BIT(21) #define TCAN4X5X_MCAN_IR_BEC BIT(20) #define TCAN4X5X_MCAN_IR_DRX BIT(19) #define TCAN4X5X_MCAN_IR_TOO BIT(18) #define TCAN4X5X_MCAN_IR_MRAF BIT(17) #define TCAN4X5X_MCAN_IR_TSW BIT(16) #define TCAN4X5X_MCAN_IR_TEFL BIT(15) #define TCAN4X5X_MCAN_IR_TEFF BIT(14) #define TCAN4X5X_MCAN_IR_TEFW BIT(13) #define TCAN4X5X_MCAN_IR_TEFN BIT(12) #define TCAN4X5X_MCAN_IR_TFE BIT(11) #define TCAN4X5X_MCAN_IR_TCF BIT(10) #define TCAN4X5X_MCAN_IR_TC BIT(9) #define TCAN4X5X_MCAN_IR_HPM BIT(8) #define TCAN4X5X_MCAN_IR_RF1L BIT(7) #define TCAN4X5X_MCAN_IR_RF1F BIT(6) #define TCAN4X5X_MCAN_IR_RF1W BIT(5) #define TCAN4X5X_MCAN_IR_RF1N BIT(4) #define TCAN4X5X_MCAN_IR_RF0L BIT(3) #define TCAN4X5X_MCAN_IR_RF0F BIT(2) #define TCAN4X5X_MCAN_IR_RF0W BIT(1) #define TCAN4X5X_MCAN_IR_RF0N BIT(0) #define TCAN4X5X_ENABLE_MCAN_INT \ (TCAN4X5X_MCAN_IR_TC | TCAN4X5X_MCAN_IR_RF0N | \ TCAN4X5X_MCAN_IR_RF1N | TCAN4X5X_MCAN_IR_RF0F | \ TCAN4X5X_MCAN_IR_RF1F) #define TCAN4X5X_MRAM_START 0x8000 #define TCAN4X5X_MCAN_OFFSET 0x1000 #define TCAN4X5X_MAX_REGISTER 0x8fff #define TCAN4X5X_CLEAR_ALL_INT 0xffffffff #define TCAN4X5X_SET_ALL_INT 0xffffffff #define TCAN4X5X_WRITE_CMD (0x61 << 24) #define TCAN4X5X_READ_CMD (0x41 << 24) #define TCAN4X5X_MODE_SEL_MASK (BIT(7) | BIT(6)) #define TCAN4X5X_MODE_SLEEP 0x00 #define TCAN4X5X_MODE_STANDBY BIT(6) #define TCAN4X5X_MODE_NORMAL BIT(7) #define TCAN4X5X_DISABLE_WAKE_MSK (BIT(31) | BIT(30)) #define TCAN4X5X_DISABLE_INH_MSK BIT(9) #define TCAN4X5X_SW_RESET BIT(2) #define TCAN4X5X_MCAN_CONFIGURED BIT(5) #define TCAN4X5X_WATCHDOG_EN BIT(3) #define TCAN4X5X_WD_60_MS_TIMER 0 #define TCAN4X5X_WD_600_MS_TIMER BIT(28) #define TCAN4X5X_WD_3_S_TIMER BIT(29) #define TCAN4X5X_WD_6_S_TIMER (BIT(28) | BIT(29)) struct tcan4x5x_priv { struct regmap *regmap; struct spi_device *spi; struct m_can_classdev *mcan_dev; struct gpio_desc *reset_gpio; struct gpio_desc *device_wake_gpio; struct gpio_desc *device_state_gpio; struct regulator *power; /* Register based ip */ int mram_start; int reg_offset; }; static struct can_bittiming_const tcan4x5x_bittiming_const = { .name = DEVICE_NAME, .tseg1_min = 2, .tseg1_max = 31, .tseg2_min = 2, .tseg2_max = 16, .sjw_max = 16, .brp_min = 1, .brp_max = 32, .brp_inc = 1, }; static struct can_bittiming_const tcan4x5x_data_bittiming_const = { .name = DEVICE_NAME, .tseg1_min = 1, .tseg1_max = 32, .tseg2_min = 1, .tseg2_max = 16, .sjw_max = 16, .brp_min = 1, .brp_max = 32, .brp_inc = 1, }; static void tcan4x5x_check_wake(struct tcan4x5x_priv *priv) { int wake_state = 0; if (priv->device_state_gpio) wake_state = gpiod_get_value(priv->device_state_gpio); if (priv->device_wake_gpio && wake_state) { gpiod_set_value(priv->device_wake_gpio, 0); usleep_range(5, 50); gpiod_set_value(priv->device_wake_gpio, 1); } } static int tcan4x5x_reset(struct tcan4x5x_priv *priv) { int ret = 0; if (priv->reset_gpio) { gpiod_set_value(priv->reset_gpio, 1); /* tpulse_width minimum 30us */ usleep_range(30, 100); gpiod_set_value(priv->reset_gpio, 0); } else { ret = regmap_write(priv->regmap, TCAN4X5X_CONFIG, TCAN4X5X_SW_RESET); if (ret) return ret; } usleep_range(700, 1000); return ret; } static int regmap_spi_gather_write(void *context, const void *reg, size_t reg_len, const void *val, size_t val_len) { struct device *dev = context; struct spi_device *spi = to_spi_device(dev); struct spi_message m; u32 addr; struct spi_transfer t[2] = { { .tx_buf = &addr, .len = reg_len, .cs_change = 0,}, { .tx_buf = val, .len = val_len, }, }; addr = TCAN4X5X_WRITE_CMD | (*((u16 *)reg) << 8) | val_len >> 2; spi_message_init(&m); spi_message_add_tail(&t[0], &m); spi_message_add_tail(&t[1], &m); return spi_sync(spi, &m); } static int tcan4x5x_regmap_write(void *context, const void *data, size_t count) { u16 *reg = (u16 *)(data); const u32 *val = data + 4; return regmap_spi_gather_write(context, reg, 4, val, count - 4); } static int regmap_spi_async_write(void *context, const void *reg, size_t reg_len, const void *val, size_t val_len, struct regmap_async *a) { return -ENOTSUPP; } static struct regmap_async *regmap_spi_async_alloc(void) { return NULL; } static int tcan4x5x_regmap_read(void *context, const void *reg, size_t reg_size, void *val, size_t val_size) { struct device *dev = context; struct spi_device *spi = to_spi_device(dev); u32 addr = TCAN4X5X_READ_CMD | (*((u16 *)reg) << 8) | val_size >> 2; return spi_write_then_read(spi, &addr, reg_size, (u32 *)val, val_size); } static struct regmap_bus tcan4x5x_bus = { .write = tcan4x5x_regmap_write, .gather_write = regmap_spi_gather_write, .async_write = regmap_spi_async_write, .async_alloc = regmap_spi_async_alloc, .read = tcan4x5x_regmap_read, .read_flag_mask = 0x00, .reg_format_endian_default = REGMAP_ENDIAN_NATIVE, .val_format_endian_default = REGMAP_ENDIAN_NATIVE, }; static u32 tcan4x5x_read_reg(struct m_can_classdev *cdev, int reg) { struct tcan4x5x_priv *priv = cdev->device_data; u32 val; regmap_read(priv->regmap, priv->reg_offset + reg, &val); return val; } static u32 tcan4x5x_read_fifo(struct m_can_classdev *cdev, int addr_offset) { struct tcan4x5x_priv *priv = cdev->device_data; u32 val; regmap_read(priv->regmap, priv->mram_start + addr_offset, &val); return val; } static int tcan4x5x_write_reg(struct m_can_classdev *cdev, int reg, int val) { struct tcan4x5x_priv *priv = cdev->device_data; return regmap_write(priv->regmap, priv->reg_offset + reg, val); } static int tcan4x5x_write_fifo(struct m_can_classdev *cdev, int addr_offset, int val) { struct tcan4x5x_priv *priv = cdev->device_data; return regmap_write(priv->regmap, priv->mram_start + addr_offset, val); } static int tcan4x5x_power_enable(struct regulator *reg, int enable) { if (IS_ERR_OR_NULL(reg)) return 0; if (enable) return regulator_enable(reg); else return regulator_disable(reg); } static int tcan4x5x_write_tcan_reg(struct m_can_classdev *cdev, int reg, int val) { struct tcan4x5x_priv *priv = cdev->device_data; return regmap_write(priv->regmap, reg, val); } static int tcan4x5x_clear_interrupts(struct m_can_classdev *cdev) { int ret; ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_STATUS, TCAN4X5X_CLEAR_ALL_INT); if (ret) return ret; ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_MCAN_INT_REG, TCAN4X5X_ENABLE_MCAN_INT); if (ret) return ret; ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_INT_FLAGS, TCAN4X5X_CLEAR_ALL_INT); if (ret) return ret; ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_ERROR_STATUS, TCAN4X5X_CLEAR_ALL_INT); if (ret) return ret; return ret; } static int tcan4x5x_init(struct m_can_classdev *cdev) { struct tcan4x5x_priv *tcan4x5x = cdev->device_data; int ret; tcan4x5x_check_wake(tcan4x5x); ret = tcan4x5x_clear_interrupts(cdev); if (ret) return ret; ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_INT_EN, TCAN4X5X_ENABLE_TCAN_INT); if (ret) return ret; ret = regmap_update_bits(tcan4x5x->regmap, TCAN4X5X_CONFIG, TCAN4X5X_MODE_SEL_MASK, TCAN4X5X_MODE_NORMAL); if (ret) return ret; /* Zero out the MCAN buffers */ m_can_init_ram(cdev); return ret; } static int tcan4x5x_disable_wake(struct m_can_classdev *cdev) { struct tcan4x5x_priv *tcan4x5x = cdev->device_data; return regmap_update_bits(tcan4x5x->regmap, TCAN4X5X_CONFIG, TCAN4X5X_DISABLE_WAKE_MSK, 0x00); } static int tcan4x5x_disable_state(struct m_can_classdev *cdev) { struct tcan4x5x_priv *tcan4x5x = cdev->device_data; return regmap_update_bits(tcan4x5x->regmap, TCAN4X5X_CONFIG, TCAN4X5X_DISABLE_INH_MSK, 0x01); } static int tcan4x5x_parse_config(struct m_can_classdev *cdev) { struct tcan4x5x_priv *tcan4x5x = cdev->device_data; int ret; tcan4x5x->device_wake_gpio = devm_gpiod_get(cdev->dev, "device-wake", GPIOD_OUT_HIGH); if (IS_ERR(tcan4x5x->device_wake_gpio)) { if (PTR_ERR(tcan4x5x->device_wake_gpio) == -EPROBE_DEFER) return -EPROBE_DEFER; tcan4x5x_disable_wake(cdev); } tcan4x5x->reset_gpio = devm_gpiod_get_optional(cdev->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(tcan4x5x->reset_gpio)) tcan4x5x->reset_gpio = NULL; ret = tcan4x5x_reset(tcan4x5x); if (ret) return ret; tcan4x5x->device_state_gpio = devm_gpiod_get_optional(cdev->dev, "device-state", GPIOD_IN); if (IS_ERR(tcan4x5x->device_state_gpio)) { tcan4x5x->device_state_gpio = NULL; tcan4x5x_disable_state(cdev); } return 0; } static const struct regmap_config tcan4x5x_regmap = { .reg_bits = 32, .val_bits = 32, .cache_type = REGCACHE_NONE, .max_register = TCAN4X5X_MAX_REGISTER, }; static struct m_can_ops tcan4x5x_ops = { .init = tcan4x5x_init, .read_reg = tcan4x5x_read_reg, .write_reg = tcan4x5x_write_reg, .write_fifo = tcan4x5x_write_fifo, .read_fifo = tcan4x5x_read_fifo, .clear_interrupts = tcan4x5x_clear_interrupts, }; static int tcan4x5x_can_probe(struct spi_device *spi) { struct tcan4x5x_priv *priv; struct m_can_classdev *mcan_class; int freq, ret; mcan_class = m_can_class_allocate_dev(&spi->dev); if (!mcan_class) return -ENOMEM; priv = devm_kzalloc(&spi->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->power = devm_regulator_get_optional(&spi->dev, "vsup"); if (PTR_ERR(priv->power) == -EPROBE_DEFER) return -EPROBE_DEFER; else priv->power = NULL; mcan_class->device_data = priv; m_can_class_get_clocks(mcan_class); if (IS_ERR(mcan_class->cclk)) { dev_err(&spi->dev, "no CAN clock source defined\n"); freq = TCAN4X5X_EXT_CLK_DEF; } else { freq = clk_get_rate(mcan_class->cclk); } /* Sanity check */ if (freq < 20000000 || freq > TCAN4X5X_EXT_CLK_DEF) return -ERANGE; priv->reg_offset = TCAN4X5X_MCAN_OFFSET; priv->mram_start = TCAN4X5X_MRAM_START; priv->spi = spi; priv->mcan_dev = mcan_class; mcan_class->pm_clock_support = 0; mcan_class->can.clock.freq = freq; mcan_class->dev = &spi->dev; mcan_class->ops = &tcan4x5x_ops; mcan_class->is_peripheral = true; mcan_class->bit_timing = &tcan4x5x_bittiming_const; mcan_class->data_timing = &tcan4x5x_data_bittiming_const; mcan_class->net->irq = spi->irq; spi_set_drvdata(spi, priv); /* Configure the SPI bus */ spi->bits_per_word = 32; ret = spi_setup(spi); if (ret) goto out_clk; priv->regmap = devm_regmap_init(&spi->dev, &tcan4x5x_bus, &spi->dev, &tcan4x5x_regmap); ret = tcan4x5x_power_enable(priv->power, 1); if (ret) goto out_clk; ret = tcan4x5x_parse_config(mcan_class); if (ret) goto out_power; ret = tcan4x5x_init(mcan_class); if (ret) goto out_power; ret = m_can_class_register(mcan_class); if (ret) goto out_power; netdev_info(mcan_class->net, "TCAN4X5X successfully initialized.\n"); return 0; out_power: tcan4x5x_power_enable(priv->power, 0); out_clk: if (!IS_ERR(mcan_class->cclk)) { clk_disable_unprepare(mcan_class->cclk); clk_disable_unprepare(mcan_class->hclk); } dev_err(&spi->dev, "Probe failed, err=%d\n", ret); return ret; } static int tcan4x5x_can_remove(struct spi_device *spi) { struct tcan4x5x_priv *priv = spi_get_drvdata(spi); tcan4x5x_power_enable(priv->power, 0); m_can_class_unregister(priv->mcan_dev); return 0; } static const struct of_device_id tcan4x5x_of_match[] = { { .compatible = "ti,tcan4x5x", }, { } }; MODULE_DEVICE_TABLE(of, tcan4x5x_of_match); static const struct spi_device_id tcan4x5x_id_table[] = { { .name = "tcan4x5x", .driver_data = 0, }, { } }; MODULE_DEVICE_TABLE(spi, tcan4x5x_id_table); static struct spi_driver tcan4x5x_can_driver = { .driver = { .name = DEVICE_NAME, .of_match_table = tcan4x5x_of_match, .pm = NULL, }, .id_table = tcan4x5x_id_table, .probe = tcan4x5x_can_probe, .remove = tcan4x5x_can_remove, }; module_spi_driver(tcan4x5x_can_driver); MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); MODULE_DESCRIPTION("Texas Instruments TCAN4x5x CAN driver"); MODULE_LICENSE("GPL v2");
// SPDX-License-Identifier: GPL-2.0 // CAN bus driver for Bosch M_CAN controller // Copyright (C) 2014 Freescale Semiconductor, Inc. // Dong Aisheng <b29396@freescale.com> // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ /* Bosch M_CAN user manual can be obtained from: * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/ * mcan_users_manual_v302.pdf */ #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/iopoll.h> #include <linux/can/dev.h> #include <linux/pinctrl/consumer.h> #include "m_can.h" /* registers definition */ enum m_can_reg { M_CAN_CREL = 0x0, M_CAN_ENDN = 0x4, M_CAN_CUST = 0x8, M_CAN_DBTP = 0xc, M_CAN_TEST = 0x10, M_CAN_RWD = 0x14, M_CAN_CCCR = 0x18, M_CAN_NBTP = 0x1c, M_CAN_TSCC = 0x20, M_CAN_TSCV = 0x24, M_CAN_TOCC = 0x28, M_CAN_TOCV = 0x2c, M_CAN_ECR = 0x40, M_CAN_PSR = 0x44, /* TDCR Register only available for version >=3.1.x */ M_CAN_TDCR = 0x48, M_CAN_IR = 0x50, M_CAN_IE = 0x54, M_CAN_ILS = 0x58, M_CAN_ILE = 0x5c, M_CAN_GFC = 0x80, M_CAN_SIDFC = 0x84, M_CAN_XIDFC = 0x88, M_CAN_XIDAM = 0x90, M_CAN_HPMS = 0x94, M_CAN_NDAT1 = 0x98, M_CAN_NDAT2 = 0x9c, M_CAN_RXF0C = 0xa0, M_CAN_RXF0S = 0xa4, M_CAN_RXF0A = 0xa8, M_CAN_RXBC = 0xac, M_CAN_RXF1C = 0xb0, M_CAN_RXF1S = 0xb4, M_CAN_RXF1A = 0xb8, M_CAN_RXESC = 0xbc, M_CAN_TXBC = 0xc0, M_CAN_TXFQS = 0xc4, M_CAN_TXESC = 0xc8, M_CAN_TXBRP = 0xcc, M_CAN_TXBAR = 0xd0, M_CAN_TXBCR = 0xd4, M_CAN_TXBTO = 0xd8, M_CAN_TXBCF = 0xdc, M_CAN_TXBTIE = 0xe0, M_CAN_TXBCIE = 0xe4, M_CAN_TXEFC = 0xf0, M_CAN_TXEFS = 0xf4, M_CAN_TXEFA = 0xf8, }; /* napi related */ #define M_CAN_NAPI_WEIGHT 64 /* message ram configuration data length */ #define MRAM_CFG_LEN 8 /* Core Release Register (CREL) */ #define CREL_REL_SHIFT 28 #define CREL_REL_MASK (0xF << CREL_REL_SHIFT) #define CREL_STEP_SHIFT 24 #define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT) #define CREL_SUBSTEP_SHIFT 20 #define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT) /* Data Bit Timing & Prescaler Register (DBTP) */ #define DBTP_TDC BIT(23) #define DBTP_DBRP_SHIFT 16 #define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT) #define DBTP_DTSEG1_SHIFT 8 #define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT) #define DBTP_DTSEG2_SHIFT 4 #define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT) #define DBTP_DSJW_SHIFT 0 #define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT) /* Transmitter Delay Compensation Register (TDCR) */ #define TDCR_TDCO_SHIFT 8 #define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT) #define TDCR_TDCF_SHIFT 0 #define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT) /* Test Register (TEST) */ #define TEST_LBCK BIT(4) /* CC Control Register(CCCR) */ #define CCCR_CMR_MASK 0x3 #define CCCR_CMR_SHIFT 10 #define CCCR_CMR_CANFD 0x1 #define CCCR_CMR_CANFD_BRS 0x2 #define CCCR_CMR_CAN 0x3 #define CCCR_CME_MASK 0x3 #define CCCR_CME_SHIFT 8 #define CCCR_CME_CAN 0 #define CCCR_CME_CANFD 0x1 #define CCCR_CME_CANFD_BRS 0x2 #define CCCR_TXP BIT(14) #define CCCR_TEST BIT(7) #define CCCR_DAR BIT(6) #define CCCR_MON BIT(5) #define CCCR_CSR BIT(4) #define CCCR_CSA BIT(3) #define CCCR_ASM BIT(2) #define CCCR_CCE BIT(1) #define CCCR_INIT BIT(0) #define CCCR_CANFD 0x10 /* for version >=3.1.x */ #define CCCR_EFBI BIT(13) #define CCCR_PXHD BIT(12) #define CCCR_BRSE BIT(9) #define CCCR_FDOE BIT(8) /* only for version >=3.2.x */ #define CCCR_NISO BIT(15) /* Nominal Bit Timing & Prescaler Register (NBTP) */ #define NBTP_NSJW_SHIFT 25 #define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT) #define NBTP_NBRP_SHIFT 16 #define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT) #define NBTP_NTSEG1_SHIFT 8 #define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT) #define NBTP_NTSEG2_SHIFT 0 #define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT) /* Error Counter Register(ECR) */ #define ECR_RP BIT(15) #define ECR_REC_SHIFT 8 #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT) #define ECR_TEC_SHIFT 0 #define ECR_TEC_MASK 0xff /* Protocol Status Register(PSR) */ #define PSR_BO BIT(7) #define PSR_EW BIT(6) #define PSR_EP BIT(5) #define PSR_LEC_MASK 0x7 /* Interrupt Register(IR) */ #define IR_ALL_INT 0xffffffff /* Renamed bits for versions > 3.1.x */ #define IR_ARA BIT(29) #define IR_PED BIT(28) #define IR_PEA BIT(27) /* Bits for version 3.0.x */ #define IR_STE BIT(31) #define IR_FOE BIT(30) #define IR_ACKE BIT(29) #define IR_BE BIT(28) #define IR_CRCE BIT(27) #define IR_WDI BIT(26) #define IR_BO BIT(25) #define IR_EW BIT(24) #define IR_EP BIT(23) #define IR_ELO BIT(22) #define IR_BEU BIT(21) #define IR_BEC BIT(20) #define IR_DRX BIT(19) #define IR_TOO BIT(18) #define IR_MRAF BIT(17) #define IR_TSW BIT(16) #define IR_TEFL BIT(15) #define IR_TEFF BIT(14) #define IR_TEFW BIT(13) #define IR_TEFN BIT(12) #define IR_TFE BIT(11) #define IR_TCF BIT(10) #define IR_TC BIT(9) #define IR_HPM BIT(8) #define IR_RF1L BIT(7) #define IR_RF1F BIT(6) #define IR_RF1W BIT(5) #define IR_RF1N BIT(4) #define IR_RF0L BIT(3) #define IR_RF0F BIT(2) #define IR_RF0W BIT(1) #define IR_RF0N BIT(0) #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) /* Interrupts for version 3.0.x */ #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \ IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ IR_RF1L | IR_RF0L) #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) /* Interrupts for version >= 3.1.x */ #define IR_ERR_LEC_31X (IR_PED | IR_PEA) #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \ IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ IR_RF1L | IR_RF0L) #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) /* Interrupt Line Select (ILS) */ #define ILS_ALL_INT0 0x0 #define ILS_ALL_INT1 0xFFFFFFFF /* Interrupt Line Enable (ILE) */ #define ILE_EINT1 BIT(1) #define ILE_EINT0 BIT(0) /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ #define RXFC_FWM_SHIFT 24 #define RXFC_FWM_MASK (0x7f << RXFC_FWM_SHIFT) #define RXFC_FS_SHIFT 16 #define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT) /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ #define RXFS_RFL BIT(25) #define RXFS_FF BIT(24) #define RXFS_FPI_SHIFT 16 #define RXFS_FPI_MASK 0x3f0000 #define RXFS_FGI_SHIFT 8 #define RXFS_FGI_MASK 0x3f00 #define RXFS_FFL_MASK 0x7f /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ #define M_CAN_RXESC_8BYTES 0x0 #define M_CAN_RXESC_64BYTES 0x777 /* Tx Buffer Configuration(TXBC) */ #define TXBC_NDTB_SHIFT 16 #define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT) #define TXBC_TFQS_SHIFT 24 #define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT) /* Tx FIFO/Queue Status (TXFQS) */ #define TXFQS_TFQF BIT(21) #define TXFQS_TFQPI_SHIFT 16 #define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT) #define TXFQS_TFGI_SHIFT 8 #define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT) #define TXFQS_TFFL_SHIFT 0 #define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT) /* Tx Buffer Element Size Configuration(TXESC) */ #define TXESC_TBDS_8BYTES 0x0 #define TXESC_TBDS_64BYTES 0x7 /* Tx Event FIFO Configuration (TXEFC) */ #define TXEFC_EFS_SHIFT 16 #define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT) /* Tx Event FIFO Status (TXEFS) */ #define TXEFS_TEFL BIT(25) #define TXEFS_EFF BIT(24) #define TXEFS_EFGI_SHIFT 8 #define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT) #define TXEFS_EFFL_SHIFT 0 #define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT) /* Tx Event FIFO Acknowledge (TXEFA) */ #define TXEFA_EFAI_SHIFT 0 #define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT) /* Message RAM Configuration (in bytes) */ #define SIDF_ELEMENT_SIZE 4 #define XIDF_ELEMENT_SIZE 8 #define RXF0_ELEMENT_SIZE 72 #define RXF1_ELEMENT_SIZE 72 #define RXB_ELEMENT_SIZE 72 #define TXE_ELEMENT_SIZE 8 #define TXB_ELEMENT_SIZE 72 /* Message RAM Elements */ #define M_CAN_FIFO_ID 0x0 #define M_CAN_FIFO_DLC 0x4 #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2)) /* Rx Buffer Element */ /* R0 */ #define RX_BUF_ESI BIT(31) #define RX_BUF_XTD BIT(30) #define RX_BUF_RTR BIT(29) /* R1 */ #define RX_BUF_ANMF BIT(31) #define RX_BUF_FDF BIT(21) #define RX_BUF_BRS BIT(20) /* Tx Buffer Element */ /* T0 */ #define TX_BUF_ESI BIT(31) #define TX_BUF_XTD BIT(30) #define TX_BUF_RTR BIT(29) /* T1 */ #define TX_BUF_EFC BIT(23) #define TX_BUF_FDF BIT(21) #define TX_BUF_BRS BIT(20) #define TX_BUF_MM_SHIFT 24 #define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT) /* Tx event FIFO Element */ /* E1 */ #define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT #define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT) static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) { return cdev->ops->read_reg(cdev, reg); } static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, u32 val) { cdev->ops->write_reg(cdev, reg, val); } static u32 m_can_fifo_read(struct m_can_classdev *cdev, u32 fgi, unsigned int offset) { u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + offset; return cdev->ops->read_fifo(cdev, addr_offset); } static void m_can_fifo_write(struct m_can_classdev *cdev, u32 fpi, unsigned int offset, u32 val) { u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + offset; cdev->ops->write_fifo(cdev, addr_offset, val); } static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev, u32 fpi, u32 val) { cdev->ops->write_fifo(cdev, fpi, val); } static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset) { u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + offset; return cdev->ops->read_fifo(cdev, addr_offset); } static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev) { return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF); } void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) { u32 cccr = m_can_read(cdev, M_CAN_CCCR); u32 timeout = 10; u32 val = 0; /* Clear the Clock stop request if it was set */ if (cccr & CCCR_CSR) cccr &= ~CCCR_CSR; if (enable) { /* Clear the Clock stop request if it was set */ if (cccr & CCCR_CSR) cccr &= ~CCCR_CSR; /* enable m_can configuration */ m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); udelay(5); /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); } else { m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); } /* there's a delay for module initialization */ if (enable) val = CCCR_INIT | CCCR_CCE; while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { if (timeout == 0) { netdev_warn(cdev->net, "Failed to init module\n"); return; } timeout--; udelay(1); } } static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) { /* Only interrupt line 0 is used in this driver */ m_can_write(cdev, M_CAN_ILE, ILE_EINT0); } static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) { m_can_write(cdev, M_CAN_ILE, 0x0); } static void m_can_clean(struct net_device *net) { struct m_can_classdev *cdev = netdev_priv(net); if (cdev->tx_skb) { int putidx = 0; net->stats.tx_errors++; if (cdev->version > 30) putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT); can_free_echo_skb(cdev->net, putidx); cdev->tx_skb = NULL; } } static void m_can_read_fifo(struct net_device *dev, u32 rxfs) { struct net_device_stats *stats = &dev->stats; struct m_can_classdev *cdev = netdev_priv(dev); struct canfd_frame *cf; struct sk_buff *skb; u32 id, fgi, dlc; int i; /* calculate the fifo get index for where to read data */ fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT; dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC); if (dlc & RX_BUF_FDF) skb = alloc_canfd_skb(dev, &cf); else skb = alloc_can_skb(dev, (struct can_frame **)&cf); if (!skb) { stats->rx_dropped++; return; } if (dlc & RX_BUF_FDF) cf->len = can_dlc2len((dlc >> 16) & 0x0F); else cf->len = get_can_dlc((dlc >> 16) & 0x0F); id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID); if (id & RX_BUF_XTD) cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; else cf->can_id = (id >> 18) & CAN_SFF_MASK; if (id & RX_BUF_ESI) { cf->flags |= CANFD_ESI; netdev_dbg(dev, "ESI Error\n"); } if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) { cf->can_id |= CAN_RTR_FLAG; } else { if (dlc & RX_BUF_BRS) cf->flags |= CANFD_BRS; for (i = 0; i < cf->len; i += 4) *(u32 *)(cf->data + i) = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA(i / 4)); } /* acknowledge rx fifo 0 */ m_can_write(cdev, M_CAN_RXF0A, fgi); stats->rx_packets++; stats->rx_bytes += cf->len; netif_receive_skb(skb); } static int m_can_do_rx_poll(struct net_device *dev, int quota) { struct m_can_classdev *cdev = netdev_priv(dev); u32 pkts = 0; u32 rxfs; rxfs = m_can_read(cdev, M_CAN_RXF0S); if (!(rxfs & RXFS_FFL_MASK)) { netdev_dbg(dev, "no messages in fifo0\n"); return 0; } while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) { if (rxfs & RXFS_RFL) netdev_warn(dev, "Rx FIFO 0 Message Lost\n"); m_can_read_fifo(dev, rxfs); quota--; pkts++; rxfs = m_can_read(cdev, M_CAN_RXF0S); } if (pkts) can_led_event(dev, CAN_LED_EVENT_RX); return pkts; } static int m_can_handle_lost_msg(struct net_device *dev) { struct net_device_stats *stats = &dev->stats; struct sk_buff *skb; struct can_frame *frame; netdev_err(dev, "msg lost in rxf0\n"); stats->rx_errors++; stats->rx_over_errors++; skb = alloc_can_err_skb(dev, &frame); if (unlikely(!skb)) return 0; frame->can_id |= CAN_ERR_CRTL; frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; netif_receive_skb(skb); return 1; } static int m_can_handle_lec_err(struct net_device *dev, enum m_can_lec_type lec_type) { struct m_can_classdev *cdev = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; struct can_frame *cf; struct sk_buff *skb; cdev->can.can_stats.bus_error++; stats->rx_errors++; /* propagate the error condition to the CAN stack */ skb = alloc_can_err_skb(dev, &cf); if (unlikely(!skb)) return 0; /* check for 'last error code' which tells us the * type of the last error to occur on the CAN bus */ cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; switch (lec_type) { case LEC_STUFF_ERROR: netdev_dbg(dev, "stuff error\n"); cf->data[2] |= CAN_ERR_PROT_STUFF; break; case LEC_FORM_ERROR: netdev_dbg(dev, "form error\n"); cf->data[2] |= CAN_ERR_PROT_FORM; break; case LEC_ACK_ERROR: netdev_dbg(dev, "ack error\n"); cf->data[3] = CAN_ERR_PROT_LOC_ACK; break; case LEC_BIT1_ERROR: netdev_dbg(dev, "bit1 error\n"); cf->data[2] |= CAN_ERR_PROT_BIT1; break; case LEC_BIT0_ERROR: netdev_dbg(dev, "bit0 error\n"); cf->data[2] |= CAN_ERR_PROT_BIT0; break; case LEC_CRC_ERROR: netdev_dbg(dev, "CRC error\n"); cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; break; default: break; } stats->rx_packets++; stats->rx_bytes += cf->can_dlc; netif_receive_skb(skb); return 1; } static int __m_can_get_berr_counter(const struct net_device *dev, struct can_berr_counter *bec) { struct m_can_classdev *cdev = netdev_priv(dev); unsigned int ecr; ecr = m_can_read(cdev, M_CAN_ECR); bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT; bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT; return 0; } static int m_can_clk_start(struct m_can_classdev *cdev) { int err; if (cdev->pm_clock_support == 0) return 0; err = pm_runtime_get_sync(cdev->dev); if (err < 0) { pm_runtime_put_noidle(cdev->dev); return err; } return 0; } static void m_can_clk_stop(struct m_can_classdev *cdev) { if (cdev->pm_clock_support) pm_runtime_put_sync(cdev->dev); } static int m_can_get_berr_counter(const struct net_device *dev, struct can_berr_counter *bec) { struct m_can_classdev *cdev = netdev_priv(dev); int err; err = m_can_clk_start(cdev); if (err) return err; __m_can_get_berr_counter(dev, bec); m_can_clk_stop(cdev); return 0; } static int m_can_handle_state_change(struct net_device *dev, enum can_state new_state) { struct m_can_classdev *cdev = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; struct can_frame *cf; struct sk_buff *skb; struct can_berr_counter bec; unsigned int ecr; switch (new_state) { case CAN_STATE_ERROR_ACTIVE: /* error warning state */ cdev->can.can_stats.error_warning++; cdev->can.state = CAN_STATE_ERROR_WARNING; break; case CAN_STATE_ERROR_PASSIVE: /* error passive state */ cdev->can.can_stats.error_passive++; cdev->can.state = CAN_STATE_ERROR_PASSIVE; break; case CAN_STATE_BUS_OFF: /* bus-off state */ cdev->can.state = CAN_STATE_BUS_OFF; m_can_disable_all_interrupts(cdev); cdev->can.can_stats.bus_off++; can_bus_off(dev); break; default: break; } /* propagate the error condition to the CAN stack */ skb = alloc_can_err_skb(dev, &cf); if (unlikely(!skb)) return 0; __m_can_get_berr_counter(dev, &bec); switch (new_state) { case CAN_STATE_ERROR_ACTIVE: /* error warning state */ cf->can_id |= CAN_ERR_CRTL; cf->data[1] = (bec.txerr > bec.rxerr) ? CAN_ERR_CRTL_TX_WARNING : CAN_ERR_CRTL_RX_WARNING; cf->data[6] = bec.txerr; cf->data[7] = bec.rxerr; break; case CAN_STATE_ERROR_PASSIVE: /* error passive state */ cf->can_id |= CAN_ERR_CRTL; ecr = m_can_read(cdev, M_CAN_ECR); if (ecr & ECR_RP) cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; if (bec.txerr > 127) cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; cf->data[6] = bec.txerr; cf->data[7] = bec.rxerr; break; case CAN_STATE_BUS_OFF: /* bus-off state */ cf->can_id |= CAN_ERR_BUSOFF; break; default: break; } stats->rx_packets++; stats->rx_bytes += cf->can_dlc; netif_receive_skb(skb); return 1; } static int m_can_handle_state_errors(struct net_device *dev, u32 psr) { struct m_can_classdev *cdev = netdev_priv(dev); int work_done = 0; if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { netdev_dbg(dev, "entered error warning state\n"); work_done += m_can_handle_state_change(dev, CAN_STATE_ERROR_WARNING); } if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { netdev_dbg(dev, "entered error passive state\n"); work_done += m_can_handle_state_change(dev, CAN_STATE_ERROR_PASSIVE); } if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { netdev_dbg(dev, "entered error bus off state\n"); work_done += m_can_handle_state_change(dev, CAN_STATE_BUS_OFF); } return work_done; } static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) { if (irqstatus & IR_WDI) netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); if (irqstatus & IR_ELO) netdev_err(dev, "Error Logging Overflow\n"); if (irqstatus & IR_BEU) netdev_err(dev, "Bit Error Uncorrected\n"); if (irqstatus & IR_BEC) netdev_err(dev, "Bit Error Corrected\n"); if (irqstatus & IR_TOO) netdev_err(dev, "Timeout reached\n"); if (irqstatus & IR_MRAF) netdev_err(dev, "Message RAM access failure occurred\n"); } static inline bool is_lec_err(u32 psr) { psr &= LEC_UNUSED; return psr && (psr != LEC_UNUSED); } static inline bool m_can_is_protocol_err(u32 irqstatus) { return irqstatus & IR_ERR_LEC_31X; } static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) { struct net_device_stats *stats = &dev->stats; struct m_can_classdev *cdev = netdev_priv(dev); struct can_frame *cf; struct sk_buff *skb; /* propagate the error condition to the CAN stack */ skb = alloc_can_err_skb(dev, &cf); /* update tx error stats since there is protocol error */ stats->tx_errors++; /* update arbitration lost status */ if (cdev->version >= 31 && (irqstatus & IR_PEA)) { netdev_dbg(dev, "Protocol error in Arbitration fail\n"); cdev->can.can_stats.arbitration_lost++; if (skb) { cf->can_id |= CAN_ERR_LOSTARB; cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; } } if (unlikely(!skb)) { netdev_dbg(dev, "allocation of skb failed\n"); return 0; } netif_receive_skb(skb); return 1; } static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, u32 psr) { struct m_can_classdev *cdev = netdev_priv(dev); int work_done = 0; if (irqstatus & IR_RF0L) work_done += m_can_handle_lost_msg(dev); /* handle lec errors on the bus */ if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && is_lec_err(psr)) work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED); /* handle protocol errors in arbitration phase */ if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && m_can_is_protocol_err(irqstatus)) work_done += m_can_handle_protocol_error(dev, irqstatus); /* other unproccessed error interrupts */ m_can_handle_other_err(dev, irqstatus); return work_done; } static int m_can_rx_handler(struct net_device *dev, int quota) { struct m_can_classdev *cdev = netdev_priv(dev); int work_done = 0; u32 irqstatus, psr; irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); if (!irqstatus) goto end; /* Errata workaround for issue "Needless activation of MRAF irq" * During frame reception while the MCAN is in Error Passive state * and the Receive Error Counter has the value MCAN_ECR.REC = 127, * it may happen that MCAN_IR.MRAF is set although there was no * Message RAM access failure. * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated * The Message RAM Access Failure interrupt routine needs to check * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. * In this case, reset MCAN_IR.MRAF. No further action is required. */ if (cdev->version <= 31 && irqstatus & IR_MRAF && m_can_read(cdev, M_CAN_ECR) & ECR_RP) { struct can_berr_counter bec; __m_can_get_berr_counter(dev, &bec); if (bec.rxerr == 127) { m_can_write(cdev, M_CAN_IR, IR_MRAF); irqstatus &= ~IR_MRAF; } } psr = m_can_read(cdev, M_CAN_PSR); if (irqstatus & IR_ERR_STATE) work_done += m_can_handle_state_errors(dev, psr); if (irqstatus & IR_ERR_BUS_30X) work_done += m_can_handle_bus_errors(dev, irqstatus, psr); if (irqstatus & IR_RF0N) work_done += m_can_do_rx_poll(dev, (quota - work_done)); end: return work_done; } static int m_can_rx_peripheral(struct net_device *dev) { struct m_can_classdev *cdev = netdev_priv(dev); m_can_rx_handler(dev, 1); m_can_enable_all_interrupts(cdev); return 0; } static int m_can_poll(struct napi_struct *napi, int quota) { struct net_device *dev = napi->dev; struct m_can_classdev *cdev = netdev_priv(dev); int work_done; work_done = m_can_rx_handler(dev, quota); if (work_done < quota) { napi_complete_done(napi, work_done); m_can_enable_all_interrupts(cdev); } return work_done; } static void m_can_echo_tx_event(struct net_device *dev) { u32 txe_count = 0; u32 m_can_txefs; u32 fgi = 0; int i = 0; unsigned int msg_mark; struct m_can_classdev *cdev = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; /* read tx event fifo status */ m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); /* Get Tx Event fifo element count */ txe_count = (m_can_txefs & TXEFS_EFFL_MASK) >> TXEFS_EFFL_SHIFT; /* Get and process all sent elements */ for (i = 0; i < txe_count; i++) { /* retrieve get index */ fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK) >> TXEFS_EFGI_SHIFT; /* get message marker */ msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) & TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT; /* ack txe element */ m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK & (fgi << TXEFA_EFAI_SHIFT))); /* update stats */ stats->tx_bytes += can_get_echo_skb(dev, msg_mark); stats->tx_packets++; } } static irqreturn_t m_can_isr(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct m_can_classdev *cdev = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; u32 ir; ir = m_can_read(cdev, M_CAN_IR); if (!ir) return IRQ_NONE; /* ACK all irqs */ if (ir & IR_ALL_INT) m_can_write(cdev, M_CAN_IR, ir); if (cdev->ops->clear_interrupts) cdev->ops->clear_interrupts(cdev); /* schedule NAPI in case of * - rx IRQ * - state change IRQ * - bus error IRQ and bus error reporting */ if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) { cdev->irqstatus = ir; m_can_disable_all_interrupts(cdev); if (!cdev->is_peripheral) napi_schedule(&cdev->napi); else m_can_rx_peripheral(dev); } if (cdev->version == 30) { if (ir & IR_TC) { /* Transmission Complete Interrupt*/ stats->tx_bytes += can_get_echo_skb(dev, 0); stats->tx_packets++; can_led_event(dev, CAN_LED_EVENT_TX); netif_wake_queue(dev); } } else { if (ir & IR_TEFN) { /* New TX FIFO Element arrived */ m_can_echo_tx_event(dev); can_led_event(dev, CAN_LED_EVENT_TX); if (netif_queue_stopped(dev) && !m_can_tx_fifo_full(cdev)) netif_wake_queue(dev); } } return IRQ_HANDLED; } static const struct can_bittiming_const m_can_bittiming_const_30X = { .name = KBUILD_MODNAME, .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ .tseg1_max = 64, .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ .tseg2_max = 16, .sjw_max = 16, .brp_min = 1, .brp_max = 1024, .brp_inc = 1, }; static const struct can_bittiming_const m_can_data_bittiming_const_30X = { .name = KBUILD_MODNAME, .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ .tseg1_max = 16, .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 32, .brp_inc = 1, }; static const struct can_bittiming_const m_can_bittiming_const_31X = { .name = KBUILD_MODNAME, .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ .tseg1_max = 256, .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ .tseg2_max = 128, .sjw_max = 128, .brp_min = 1, .brp_max = 512, .brp_inc = 1, }; static const struct can_bittiming_const m_can_data_bittiming_const_31X = { .name = KBUILD_MODNAME, .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ .tseg1_max = 32, .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ .tseg2_max = 16, .sjw_max = 16, .brp_min = 1, .brp_max = 32, .brp_inc = 1, }; static int m_can_set_bittiming(struct net_device *dev) { struct m_can_classdev *cdev = netdev_priv(dev); const struct can_bittiming *bt = &cdev->can.bittiming; const struct can_bittiming *dbt = &cdev->can.data_bittiming; u16 brp, sjw, tseg1, tseg2; u32 reg_btp; brp = bt->brp - 1; sjw = bt->sjw - 1; tseg1 = bt->prop_seg + bt->phase_seg1 - 1; tseg2 = bt->phase_seg2 - 1; reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) | (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT); m_can_write(cdev, M_CAN_NBTP, reg_btp); if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { reg_btp = 0; brp = dbt->brp - 1; sjw = dbt->sjw - 1; tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; tseg2 = dbt->phase_seg2 - 1; /* TDC is only needed for bitrates beyond 2.5 MBit/s. * This is mentioned in the "Bit Time Requirements for CAN FD" * paper presented at the International CAN Conference 2013 */ if (dbt->bitrate > 2500000) { u32 tdco, ssp; /* Use the same value of secondary sampling point * as the data sampling point */ ssp = dbt->sample_point; /* Equation based on Bosch's M_CAN User Manual's * Transmitter Delay Compensation Section */ tdco = (cdev->can.clock.freq / 1000) * ssp / dbt->bitrate; /* Max valid TDCO value is 127 */ if (tdco > 127) { netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", tdco); tdco = 127; } reg_btp |= DBTP_TDC; m_can_write(cdev, M_CAN_TDCR, tdco << TDCR_TDCO_SHIFT); } reg_btp |= (brp << DBTP_DBRP_SHIFT) | (sjw << DBTP_DSJW_SHIFT) | (tseg1 << DBTP_DTSEG1_SHIFT) | (tseg2 << DBTP_DTSEG2_SHIFT); m_can_write(cdev, M_CAN_DBTP, reg_btp); } return 0; } /* Configure M_CAN chip: * - set rx buffer/fifo element size * - configure rx fifo * - accept non-matching frame into fifo 0 * - configure tx buffer * - >= v3.1.x: TX FIFO is used * - configure mode * - setup bittiming */ static void m_can_chip_config(struct net_device *dev) { struct m_can_classdev *cdev = netdev_priv(dev); u32 cccr, test; m_can_config_endisable(cdev, true); /* RX Buffer/FIFO Element Size 64 bytes data field */ m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES); /* Accept Non-matching Frames Into FIFO 0 */ m_can_write(cdev, M_CAN_GFC, 0x0); if (cdev->version == 30) { /* only support one Tx Buffer currently */ m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) | cdev->mcfg[MRAM_TXB].off); } else { /* TX FIFO is used for newer IP Core versions */ m_can_write(cdev, M_CAN_TXBC, (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) | (cdev->mcfg[MRAM_TXB].off)); } /* support 64 bytes payload */ m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES); /* TX Event FIFO */ if (cdev->version == 30) { m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) | cdev->mcfg[MRAM_TXE].off); } else { /* Full TX Event FIFO is used */ m_can_write(cdev, M_CAN_TXEFC, ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT) & TXEFC_EFS_MASK) | cdev->mcfg[MRAM_TXE].off); } /* rx fifo configuration, blocking mode, fifo size 1 */ m_can_write(cdev, M_CAN_RXF0C, (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) | cdev->mcfg[MRAM_RXF0].off); m_can_write(cdev, M_CAN_RXF1C, (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) | cdev->mcfg[MRAM_RXF1].off); cccr = m_can_read(cdev, M_CAN_CCCR); test = m_can_read(cdev, M_CAN_TEST); test &= ~TEST_LBCK; if (cdev->version == 30) { /* Version 3.0.x */ cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | (CCCR_CMR_MASK << CCCR_CMR_SHIFT) | (CCCR_CME_MASK << CCCR_CME_SHIFT)); if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT; } else { /* Version 3.1.x or 3.2.x */ cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | CCCR_NISO | CCCR_DAR); /* Only 3.2.x has NISO Bit implemented */ if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) cccr |= CCCR_NISO; if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) cccr |= (CCCR_BRSE | CCCR_FDOE); } /* Loopback Mode */ if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { cccr |= CCCR_TEST | CCCR_MON; test |= TEST_LBCK; } /* Enable Monitoring (all versions) */ if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) cccr |= CCCR_MON; /* Disable Auto Retransmission (all versions) */ if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) cccr |= CCCR_DAR; /* Write config */ m_can_write(cdev, M_CAN_CCCR, cccr); m_can_write(cdev, M_CAN_TEST, test); /* Enable interrupts */ m_can_write(cdev, M_CAN_IR, IR_ALL_INT); if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) if (cdev->version == 30) m_can_write(cdev, M_CAN_IE, IR_ALL_INT & ~(IR_ERR_LEC_30X)); else m_can_write(cdev, M_CAN_IE, IR_ALL_INT & ~(IR_ERR_LEC_31X)); else m_can_write(cdev, M_CAN_IE, IR_ALL_INT); /* route all interrupts to INT0 */ m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); /* set bittiming params */ m_can_set_bittiming(dev); m_can_config_endisable(cdev, false); if (cdev->ops->init) cdev->ops->init(cdev); } static void m_can_start(struct net_device *dev) { struct m_can_classdev *cdev = netdev_priv(dev); /* basic m_can configuration */ m_can_chip_config(dev); cdev->can.state = CAN_STATE_ERROR_ACTIVE; m_can_enable_all_interrupts(cdev); } static int m_can_set_mode(struct net_device *dev, enum can_mode mode) { switch (mode) { case CAN_MODE_START: m_can_clean(dev); m_can_start(dev); netif_wake_queue(dev); break; default: return -EOPNOTSUPP; } return 0; } /* Checks core release number of M_CAN * returns 0 if an unsupported device is detected * else it returns the release and step coded as: * return value = 10 * <release> + 1 * <step> */ static int m_can_check_core_release(struct m_can_classdev *cdev) { u32 crel_reg; u8 rel; u8 step; int res; /* Read Core Release Version and split into version number * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; */ crel_reg = m_can_read(cdev, M_CAN_CREL); rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT); step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT); if (rel == 3) { /* M_CAN v3.x.y: create return value */ res = 30 + step; } else { /* Unsupported M_CAN version */ res = 0; } return res; } /* Selectable Non ISO support only in version 3.2.x * This function checks if the bit is writable. */ static bool m_can_niso_supported(struct m_can_classdev *cdev) { u32 cccr_reg, cccr_poll = 0; int niso_timeout = -ETIMEDOUT; int i; m_can_config_endisable(cdev, true); cccr_reg = m_can_read(cdev, M_CAN_CCCR); cccr_reg |= CCCR_NISO; m_can_write(cdev, M_CAN_CCCR, cccr_reg); for (i = 0; i <= 10; i++) { cccr_poll = m_can_read(cdev, M_CAN_CCCR); if (cccr_poll == cccr_reg) { niso_timeout = 0; break; } usleep_range(1, 5); } /* Clear NISO */ cccr_reg &= ~(CCCR_NISO); m_can_write(cdev, M_CAN_CCCR, cccr_reg); m_can_config_endisable(cdev, false); /* return false if time out (-ETIMEDOUT), else return true */ return !niso_timeout; } static int m_can_dev_setup(struct m_can_classdev *m_can_dev) { struct net_device *dev = m_can_dev->net; int m_can_version; m_can_version = m_can_check_core_release(m_can_dev); /* return if unsupported version */ if (!m_can_version) { dev_err(m_can_dev->dev, "Unsupported version number: %2d", m_can_version); return -EINVAL; } if (!m_can_dev->is_peripheral) netif_napi_add(dev, &m_can_dev->napi, m_can_poll, M_CAN_NAPI_WEIGHT); /* Shared properties of all M_CAN versions */ m_can_dev->version = m_can_version; m_can_dev->can.do_set_mode = m_can_set_mode; m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter; /* Set M_CAN supported operations */ m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_BERR_REPORTING | CAN_CTRLMODE_FD | CAN_CTRLMODE_ONE_SHOT; /* Set properties depending on M_CAN version */ switch (m_can_dev->version) { case 30: /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? m_can_dev->bit_timing : &m_can_bittiming_const_30X; m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? m_can_dev->data_timing : &m_can_data_bittiming_const_30X; break; case 31: /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? m_can_dev->bit_timing : &m_can_bittiming_const_31X; m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? m_can_dev->data_timing : &m_can_data_bittiming_const_31X; break; case 32: m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? m_can_dev->bit_timing : &m_can_bittiming_const_31X; m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? m_can_dev->data_timing : &m_can_data_bittiming_const_31X; m_can_dev->can.ctrlmode_supported |= (m_can_niso_supported(m_can_dev) ? CAN_CTRLMODE_FD_NON_ISO : 0); break; default: dev_err(m_can_dev->dev, "Unsupported version number: %2d", m_can_dev->version); return -EINVAL; } if (m_can_dev->ops->init) m_can_dev->ops->init(m_can_dev); return 0; } static void m_can_stop(struct net_device *dev) { struct m_can_classdev *cdev = netdev_priv(dev); /* disable all interrupts */ m_can_disable_all_interrupts(cdev); /* set the state as STOPPED */ cdev->can.state = CAN_STATE_STOPPED; } static int m_can_close(struct net_device *dev) { struct m_can_classdev *cdev = netdev_priv(dev); netif_stop_queue(dev); if (!cdev->is_peripheral) napi_disable(&cdev->napi); m_can_stop(dev); m_can_clk_stop(cdev); free_irq(dev->irq, dev); if (cdev->is_peripheral) { cdev->tx_skb = NULL; destroy_workqueue(cdev->tx_wq); cdev->tx_wq = NULL; } close_candev(dev); can_led_event(dev, CAN_LED_EVENT_STOP); return 0; } static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx) { struct m_can_classdev *cdev = netdev_priv(dev); /*get wrap around for loopback skb index */ unsigned int wrap = cdev->can.echo_skb_max; int next_idx; /* calculate next index */ next_idx = (++putidx >= wrap ? 0 : putidx); /* check if occupied */ return !!cdev->can.echo_skb[next_idx]; } static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev) { struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data; struct net_device *dev = cdev->net; struct sk_buff *skb = cdev->tx_skb; u32 id, cccr, fdflags; int i; int putidx; /* Generate ID field for TX buffer Element */ /* Common to all supported M_CAN versions */ if (cf->can_id & CAN_EFF_FLAG) { id = cf->can_id & CAN_EFF_MASK; id |= TX_BUF_XTD; } else { id = ((cf->can_id & CAN_SFF_MASK) << 18); } if (cf->can_id & CAN_RTR_FLAG) id |= TX_BUF_RTR; if (cdev->version == 30) { netif_stop_queue(dev); /* message ram configuration */ m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id); m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC, can_len2dlc(cf->len) << 16); for (i = 0; i < cf->len; i += 4) m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA(i / 4), *(u32 *)(cf->data + i)); can_put_echo_skb(skb, dev, 0); if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { cccr = m_can_read(cdev, M_CAN_CCCR); cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT); if (can_is_canfd_skb(skb)) { if (cf->flags & CANFD_BRS) cccr |= CCCR_CMR_CANFD_BRS << CCCR_CMR_SHIFT; else cccr |= CCCR_CMR_CANFD << CCCR_CMR_SHIFT; } else { cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT; } m_can_write(cdev, M_CAN_CCCR, cccr); } m_can_write(cdev, M_CAN_TXBTIE, 0x1); m_can_write(cdev, M_CAN_TXBAR, 0x1); /* End of xmit function for version 3.0.x */ } else { /* Transmit routine for version >= v3.1.x */ /* Check if FIFO full */ if (m_can_tx_fifo_full(cdev)) { /* This shouldn't happen */ netif_stop_queue(dev); netdev_warn(dev, "TX queue active although FIFO is full."); if (cdev->is_peripheral) { kfree_skb(skb); dev->stats.tx_dropped++; return NETDEV_TX_OK; } else { return NETDEV_TX_BUSY; } } /* get put index for frame */ putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT); /* Write ID Field to FIFO Element */ m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id); /* get CAN FD configuration of frame */ fdflags = 0; if (can_is_canfd_skb(skb)) { fdflags |= TX_BUF_FDF; if (cf->flags & CANFD_BRS) fdflags |= TX_BUF_BRS; } /* Construct DLC Field. Also contains CAN-FD configuration * use put index of fifo as message marker * it is used in TX interrupt for * sending the correct echo frame */ m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC, ((putidx << TX_BUF_MM_SHIFT) & TX_BUF_MM_MASK) | (can_len2dlc(cf->len) << 16) | fdflags | TX_BUF_EFC); for (i = 0; i < cf->len; i += 4) m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4), *(u32 *)(cf->data + i)); /* Push loopback echo. * Will be looped back on TX interrupt based on message marker */ can_put_echo_skb(skb, dev, putidx); /* Enable TX FIFO element to start transfer */ m_can_write(cdev, M_CAN_TXBAR, (1 << putidx)); /* stop network queue if fifo full */ if (m_can_tx_fifo_full(cdev) || m_can_next_echo_skb_occupied(dev, putidx)) netif_stop_queue(dev); } return NETDEV_TX_OK; } static void m_can_tx_work_queue(struct work_struct *ws) { struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev, tx_work); m_can_tx_handler(cdev); cdev->tx_skb = NULL; } static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct m_can_classdev *cdev = netdev_priv(dev); if (can_dropped_invalid_skb(dev, skb)) return NETDEV_TX_OK; if (cdev->is_peripheral) { if (cdev->tx_skb) { netdev_err(dev, "hard_xmit called while tx busy\n"); return NETDEV_TX_BUSY; } if (cdev->can.state == CAN_STATE_BUS_OFF) { m_can_clean(dev); } else { /* Need to stop the queue to avoid numerous requests * from being sent. Suggested improvement is to create * a queueing mechanism that will queue the skbs and * process them in order. */ cdev->tx_skb = skb; netif_stop_queue(cdev->net); queue_work(cdev->tx_wq, &cdev->tx_work); } } else { cdev->tx_skb = skb; return m_can_tx_handler(cdev); } return NETDEV_TX_OK; } static int m_can_open(struct net_device *dev) { struct m_can_classdev *cdev = netdev_priv(dev); int err; err = m_can_clk_start(cdev); if (err) return err; /* open the can device */ err = open_candev(dev); if (err) { netdev_err(dev, "failed to open can device\n"); goto exit_disable_clks; } /* register interrupt handler */ if (cdev->is_peripheral) { cdev->tx_skb = NULL; cdev->tx_wq = alloc_workqueue("mcan_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM, 0); if (!cdev->tx_wq) { err = -ENOMEM; goto out_wq_fail; } INIT_WORK(&cdev->tx_work, m_can_tx_work_queue); err = request_threaded_irq(dev->irq, NULL, m_can_isr, IRQF_ONESHOT | IRQF_TRIGGER_FALLING, dev->name, dev); } else { err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, dev); } if (err < 0) { netdev_err(dev, "failed to request interrupt\n"); goto exit_irq_fail; } /* start the m_can controller */ m_can_start(dev); can_led_event(dev, CAN_LED_EVENT_OPEN); if (!cdev->is_peripheral) napi_enable(&cdev->napi); netif_start_queue(dev); return 0; exit_irq_fail: if (cdev->is_peripheral) destroy_workqueue(cdev->tx_wq); out_wq_fail: close_candev(dev); exit_disable_clks: m_can_clk_stop(cdev); return err; } static const struct net_device_ops m_can_netdev_ops = { .ndo_open = m_can_open, .ndo_stop = m_can_close, .ndo_start_xmit = m_can_start_xmit, .ndo_change_mtu = can_change_mtu, }; static int register_m_can_dev(struct net_device *dev) { dev->flags |= IFF_ECHO; /* we support local echo */ dev->netdev_ops = &m_can_netdev_ops; return register_candev(dev); } static void m_can_of_parse_mram(struct m_can_classdev *cdev, const u32 *mram_config_vals) { cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & (RXFC_FS_MASK >> RXFC_FS_SHIFT); cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & (RXFC_FS_MASK >> RXFC_FS_SHIFT); cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT); dev_dbg(cdev->dev, "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); } void m_can_init_ram(struct m_can_classdev *cdev) { int end, i, start; /* initialize the entire Message RAM in use to avoid possible * ECC/parity checksum errors when reading an uninitialized buffer */ start = cdev->mcfg[MRAM_SIDF].off; end = cdev->mcfg[MRAM_TXB].off + cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; for (i = start; i < end; i += 4) m_can_fifo_write_no_off(cdev, i, 0x0); } EXPORT_SYMBOL_GPL(m_can_init_ram); int m_can_class_get_clocks(struct m_can_classdev *m_can_dev) { int ret = 0; m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk"); m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk"); if (IS_ERR(m_can_dev->cclk)) { dev_err(m_can_dev->dev, "no clock found\n"); ret = -ENODEV; } return ret; } EXPORT_SYMBOL_GPL(m_can_class_get_clocks); struct m_can_classdev *m_can_class_allocate_dev(struct device *dev) { struct m_can_classdev *class_dev = NULL; u32 mram_config_vals[MRAM_CFG_LEN]; struct net_device *net_dev; u32 tx_fifo_size; int ret; ret = fwnode_property_read_u32_array(dev_fwnode(dev), "bosch,mram-cfg", mram_config_vals, sizeof(mram_config_vals) / 4); if (ret) { dev_err(dev, "Could not get Message RAM configuration."); goto out; } /* Get TX FIFO size * Defines the total amount of echo buffers for loopback */ tx_fifo_size = mram_config_vals[7]; /* allocate the m_can device */ net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size); if (!net_dev) { dev_err(dev, "Failed to allocate CAN device"); goto out; } class_dev = netdev_priv(net_dev); if (!class_dev) { dev_err(dev, "Failed to init netdev cdevate"); goto out; } class_dev->net = net_dev; class_dev->dev = dev; SET_NETDEV_DEV(net_dev, dev); m_can_of_parse_mram(class_dev, mram_config_vals); out: return class_dev; } EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); int m_can_class_register(struct m_can_classdev *m_can_dev) { int ret; if (m_can_dev->pm_clock_support) { pm_runtime_enable(m_can_dev->dev); ret = m_can_clk_start(m_can_dev); if (ret) goto pm_runtime_fail; } ret = m_can_dev_setup(m_can_dev); if (ret) goto clk_disable; ret = register_m_can_dev(m_can_dev->net); if (ret) { dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n", m_can_dev->net->name, ret); goto clk_disable; } devm_can_led_init(m_can_dev->net); of_can_transceiver(m_can_dev->net); dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n", KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version); /* Probe finished * Stop clocks. They will be reactivated once the M_CAN device is opened */ clk_disable: m_can_clk_stop(m_can_dev); pm_runtime_fail: if (ret) { if (m_can_dev->pm_clock_support) pm_runtime_disable(m_can_dev->dev); free_candev(m_can_dev->net); } return ret; } EXPORT_SYMBOL_GPL(m_can_class_register); int m_can_class_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct m_can_classdev *cdev = netdev_priv(ndev); if (netif_running(ndev)) { netif_stop_queue(ndev); netif_device_detach(ndev); m_can_stop(ndev); m_can_clk_stop(cdev); } pinctrl_pm_select_sleep_state(dev); cdev->can.state = CAN_STATE_SLEEPING; return 0; } EXPORT_SYMBOL_GPL(m_can_class_suspend); int m_can_class_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct m_can_classdev *cdev = netdev_priv(ndev); pinctrl_pm_select_default_state(dev); cdev->can.state = CAN_STATE_ERROR_ACTIVE; if (netif_running(ndev)) { int ret; ret = m_can_clk_start(cdev); if (ret) return ret; m_can_init_ram(cdev); m_can_start(ndev); netif_device_attach(ndev); netif_start_queue(ndev); } return 0; } EXPORT_SYMBOL_GPL(m_can_class_resume); void m_can_class_unregister(struct m_can_classdev *m_can_dev) { unregister_candev(m_can_dev->net); m_can_clk_stop(m_can_dev); free_candev(m_can_dev->net); } EXPORT_SYMBOL_GPL(m_can_class_unregister); MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
由于问题比较复杂,已将您的问题上传给产品工程师,你可以点击下帖查看进展:
https://e2e.ti.com/support/interface/f/138/t/907268
一旦收到回复,我也会给您更新。
请问您是否尝试过:sudo ifconfig can0 txqueuelen 1000
另外,请确保至少有两个节点连接到总线。 这是正确操作所必需的,因为每个TX帧都将期待来自接收节点的ACK。
当然,这些我都试过,现在问题有进展了,发送数据已经正常,接收数据还在修改中。
基本问题如下:
1、与e2e.ti.com/.../3171152下参考配置的
bosch,mram-cfg会使驱动配置的MRAM远大于实际MRAM的2k,造成配置的TX缓冲buf为非法地址;
2、m_can_open()中有部分初始化有问题,根据手册修改后正常;
现有的接收数据异常导致rx fifo满的问题我相信应该也是配置问题,通过修改寄存器配置应该可以搞定。
处理这些问题相对有些难度,更具体的信息可以帮助我们找到问题所在。请您提供
以便我们检查它们的错误吗?
当然,之前提的问题我基本都解决了,主要还是MRAM配置与驱动中有些寄存器配置的问题,接收数据时quota变量被固定赋值为1被我修改了,根据一次接受的数据数量来赋值或者读取0x1050来决定,现在解决后数据收发都正常了,奉上修改后的代码与配置,感谢。3757.m_can.c
// SPDX-License-Identifier: GPL-2.0 // SPI to CAN driver for the Texas Instruments TCAN4x5x // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ #include <linux/regmap.h> #include <linux/spi/spi.h> #include <linux/regulator/consumer.h> #include <linux/gpio/consumer.h> #include <linux/gpio.h> #include <linux/byteorder/little_endian.h> //#include <linux/byteorder/big_endian.h> #include "m_can.h" //2020.5.6 add by Mark #define DEFINE_BASE (0x14c) #define RESET_GPIO_M (165 + DEFINE_BASE) #define EINT_GPIO_M (71 + DEFINE_BASE) #define NPW_GPIO_M (163 + DEFINE_BASE) #define STATUS_GPIO_M (166 + DEFINE_BASE) #define EXCHANGE_EN_M (10 + DEFINE_BASE) #define DEVICE_NAME "tcan4x5x" //#define TCAN4X5X_EXT_CLK_DEF 40000000 #define TCAN4X5X_EXT_CLK_DEF 8000000 #define TCAN4X5X_DEV_ID0 0x00 #define TCAN4X5X_DEV_ID1 0x04 #define TCAN4X5X_REV 0x08 #define TCAN4X5X_STATUS 0x0C #define TCAN4X5X_ERROR_STATUS 0x10 #define TCAN4X5X_CONTROL 0x14 #define TCAN4X5X_CONFIG 0x800 #define TCAN4X5X_TS_PRESCALE 0x804 #define TCAN4X5X_TEST_REG 0x808 #define TCAN4X5X_INT_FLAGS 0x820 #define TCAN4X5X_MCAN_INT_REG 0x824 #define TCAN4X5X_INT_EN 0x830 /* Interrupt bits */ #define TCAN4X5X_CANBUSTERMOPEN_INT_EN BIT(30) #define TCAN4X5X_CANHCANL_INT_EN BIT(29) #define TCAN4X5X_CANHBAT_INT_EN BIT(28) #define TCAN4X5X_CANLGND_INT_EN BIT(27) #define TCAN4X5X_CANBUSOPEN_INT_EN BIT(26) #define TCAN4X5X_CANBUSGND_INT_EN BIT(25) #define TCAN4X5X_CANBUSBAT_INT_EN BIT(24) #define TCAN4X5X_UVSUP_INT_EN BIT(22) #define TCAN4X5X_UVIO_INT_EN BIT(21) #define TCAN4X5X_TSD_INT_EN BIT(19) #define TCAN4X5X_ECCERR_INT_EN BIT(16) #define TCAN4X5X_CANINT_INT_EN BIT(15) #define TCAN4X5X_LWU_INT_EN BIT(14) #define TCAN4X5X_CANSLNT_INT_EN BIT(10) #define TCAN4X5X_CANDOM_INT_EN BIT(8) #define TCAN4X5X_CANBUS_ERR_INT_EN BIT(5) #define TCAN4X5X_BUS_FAULT BIT(4) #define TCAN4X5X_MCAN_INT BIT(1) #define TCAN4X5X_ENABLE_TCAN_INT \ (TCAN4X5X_MCAN_INT | TCAN4X5X_BUS_FAULT | \ TCAN4X5X_CANBUS_ERR_INT_EN | TCAN4X5X_CANINT_INT_EN) /* MCAN Interrupt bits */ #define TCAN4X5X_MCAN_IR_ARA BIT(29) #define TCAN4X5X_MCAN_IR_PED BIT(28) #define TCAN4X5X_MCAN_IR_PEA BIT(27) #define TCAN4X5X_MCAN_IR_WD BIT(26) #define TCAN4X5X_MCAN_IR_BO BIT(25) #define TCAN4X5X_MCAN_IR_EW BIT(24) #define TCAN4X5X_MCAN_IR_EP BIT(23) #define TCAN4X5X_MCAN_IR_ELO BIT(22) #define TCAN4X5X_MCAN_IR_BEU BIT(21) #define TCAN4X5X_MCAN_IR_BEC BIT(20) #define TCAN4X5X_MCAN_IR_DRX BIT(19) #define TCAN4X5X_MCAN_IR_TOO BIT(18) #define TCAN4X5X_MCAN_IR_MRAF BIT(17) #define TCAN4X5X_MCAN_IR_TSW BIT(16) #define TCAN4X5X_MCAN_IR_TEFL BIT(15) #define TCAN4X5X_MCAN_IR_TEFF BIT(14) #define TCAN4X5X_MCAN_IR_TEFW BIT(13) #define TCAN4X5X_MCAN_IR_TEFN BIT(12) #define TCAN4X5X_MCAN_IR_TFE BIT(11) #define TCAN4X5X_MCAN_IR_TCF BIT(10) #define TCAN4X5X_MCAN_IR_TC BIT(9) #define TCAN4X5X_MCAN_IR_HPM BIT(8) #define TCAN4X5X_MCAN_IR_RF1L BIT(7) #define TCAN4X5X_MCAN_IR_RF1F BIT(6) #define TCAN4X5X_MCAN_IR_RF1W BIT(5) #define TCAN4X5X_MCAN_IR_RF1N BIT(4) #define TCAN4X5X_MCAN_IR_RF0L BIT(3) #define TCAN4X5X_MCAN_IR_RF0F BIT(2) #define TCAN4X5X_MCAN_IR_RF0W BIT(1) #define TCAN4X5X_MCAN_IR_RF0N BIT(0) #define TCAN4X5X_ENABLE_MCAN_INT \ (TCAN4X5X_MCAN_IR_TC | TCAN4X5X_MCAN_IR_RF0N | \ TCAN4X5X_MCAN_IR_RF1N | TCAN4X5X_MCAN_IR_RF0F | \ TCAN4X5X_MCAN_IR_RF1F) #define TCAN4X5X_MRAM_START 0x8000 #define TCAN4X5X_MCAN_OFFSET 0x1000 #define TCAN4X5X_MAX_REGISTER 0x8fff #define TCAN4X5X_CLEAR_ALL_INT 0xffffffff #define TCAN4X5X_SET_ALL_INT 0xffffffff #define TCAN4X5X_WRITE_CMD (0x61 << 24) #define TCAN4X5X_READ_CMD (0x41 << 24) #define TCAN4X5X_MODE_SEL_MASK (BIT(7) | BIT(6)) #define TCAN4X5X_MODE_SLEEP 0x00 #define TCAN4X5X_MODE_STANDBY BIT(6) #define TCAN4X5X_MODE_NORMAL BIT(7) #define TCAN4X5X_DISABLE_WAKE_MSK (BIT(31) | BIT(30)) #define TCAN4X5X_DISABLE_INH_MSK BIT(9) #define TCAN4X5X_SW_RESET BIT(2) #define TCAN4X5X_MCAN_CONFIGURED BIT(5) #define TCAN4X5X_WATCHDOG_EN BIT(3) #define TCAN4X5X_WD_60_MS_TIMER 0 #define TCAN4X5X_WD_600_MS_TIMER BIT(28) #define TCAN4X5X_WD_3_S_TIMER BIT(29) #define TCAN4X5X_WD_6_S_TIMER (BIT(28) | BIT(29)) struct tcan4x5x_priv { struct regmap *regmap; struct spi_device *spi; struct m_can_classdev *mcan_dev; struct gpio_desc *reset_gpio; struct gpio_desc *device_wake_gpio; struct gpio_desc *device_state_gpio; #ifdef REGULATOR_TCAN4X5X struct regulator *power; #endif /* Register based ip */ int mram_start; int reg_offset; }; static struct can_bittiming_const tcan4x5x_bittiming_const = { .name = DEVICE_NAME, .tseg1_min = 2, .tseg1_max = 31, .tseg2_min = 2, .tseg2_max = 16, .sjw_max = 16, .brp_min = 1, .brp_max = 32, .brp_inc = 1, }; static struct can_bittiming_const tcan4x5x_data_bittiming_const = { .name = DEVICE_NAME, .tseg1_min = 1, .tseg1_max = 32, .tseg2_min = 1, .tseg2_max = 16, .sjw_max = 16, .brp_min = 1, .brp_max = 32, .brp_inc = 1, }; static void tcan4x5x_check_wake(struct tcan4x5x_priv *priv) { int wake_state = 0; if (priv->device_state_gpio) wake_state = gpiod_get_value(priv->device_state_gpio); if (priv->device_wake_gpio && wake_state) { gpiod_set_value(priv->device_wake_gpio, 0); usleep_range(5, 50); gpiod_set_value(priv->device_wake_gpio, 1); } } static int tcan4x5x_reset(struct tcan4x5x_priv *priv) { int ret = 0; if (priv->reset_gpio) { TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); gpio_direction_output(RESET_GPIO_M, 0); pr_info("### Reset pin pull down~\n"); usleep_range(30, 1000); gpio_direction_output(RESET_GPIO_M, 1); pr_info("### Reset pin pull up~\n"); /* tpulse_width minimum 30us */ usleep_range(30, 1000); gpio_direction_output(RESET_GPIO_M, 0); pr_info("### Reset pin pull down~\n"); } else { TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); ret = regmap_write(priv->regmap, TCAN4X5X_CONFIG, TCAN4X5X_SW_RESET); if (ret){ TCAN4550_DBG("%s(%d) regmap_write error!\n", __func__, __LINE__); return ret; } } TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); usleep_range(900, 1000); return ret; } static u32 big_2_little_endian(u32 src) { u32 tmp = 0; tmp |= ((src & 0xff000000) >> 24) & 0x000000ff; tmp |= ((src & 0x00ff0000) >> 8) & 0x0000ff00; tmp |= ((src & 0x0000ff00) << 8) & 0x00ff0000; tmp |= ((src & 0x000000ff) << 24) & 0xff000000; return tmp; } static int regmap_spi_gather_write(void *context, const void *reg, size_t reg_len, const void *val, size_t val_len) { //TCAN4550_DBG("1----!!!@@@###$$$%%%^^^&&&***\n"); struct device *dev = context; struct spi_device *spi = to_spi_device(dev); struct spi_message m; u32 addr, tmp = 0, tmp_val = 0, val_val = *((u32 *)val); //TCAN4550_DBG("2----!!!@@@###$$$%%%^^^&&&***\n"); *((u32 *)val) = big_2_little_endian(val_val); // = tmp_val; //TCAN4550_DBG("3----!!!@@@###$$$%%%^^^&&&***\n"); struct spi_transfer t[2] = { { .tx_buf = &addr, .len = reg_len, .cs_change = 0,}, { .tx_buf = val, .len = val_len, }, }; //TCAN4550_DBG("4----!!!@@@###$$$%%%^^^&&&***\n"); addr = TCAN4X5X_WRITE_CMD | (*((u16 *)reg) << 8) | val_len >> 2; //TCAN4550_DBG("5----!!!@@@###$$$%%%^^^&&&***\n"); addr = big_2_little_endian(addr); //TCAN4550_DBG("6----!!!@@@###$$$%%%^^^&&&***\n"); spi_message_init(&m); spi_message_add_tail(&t[0], &m); spi_message_add_tail(&t[1], &m); //TCAN4550_DBG("7----!!!@@@###$$$%%%^^^&&&***\n"); return spi_sync(spi, &m); } static int tcan4x5x_regmap_write(void *context, const void *data, size_t count) { u16 *reg = (u16 *)(data); const u32 *val = data + 4; return regmap_spi_gather_write(context, reg, 4, val, count - 4); } static int regmap_spi_async_write(void *context, const void *reg, size_t reg_len, const void *val, size_t val_len, struct regmap_async *a) { return -ENOTSUPP; } static struct regmap_async *regmap_spi_async_alloc(void) { return NULL; } static int tcan4x5x_regmap_read(void *context, const void *reg, size_t reg_size, void *val, size_t val_size) { struct device *dev = context; struct spi_device *spi = to_spi_device(dev); u32 tmp = 0; u32 addr = TCAN4X5X_READ_CMD | (*((u16 *)reg) << 8) | val_size >> 2; //addr = __le32_to_cpu(addr); addr = big_2_little_endian(addr); return spi_write_then_read(spi, &addr, reg_size, (u32 *)val, val_size); } static struct regmap_bus tcan4x5x_bus = { .write = tcan4x5x_regmap_write, .gather_write = regmap_spi_gather_write, .async_write = regmap_spi_async_write, .async_alloc = regmap_spi_async_alloc, .read = tcan4x5x_regmap_read, .read_flag_mask = 0x00, .reg_format_endian_default = REGMAP_ENDIAN_NATIVE, .val_format_endian_default = REGMAP_ENDIAN_NATIVE, }; static u32 tcan4x5x_read_reg(struct m_can_classdev *cdev, int reg) { struct tcan4x5x_priv *priv = cdev->device_data; u32 val, tmp = 0; regmap_read(priv->regmap, priv->reg_offset + reg, &val); val = big_2_little_endian(val); return val; } static u32 tcan4x5x_read_fifo(struct m_can_classdev *cdev, int addr_offset) { struct tcan4x5x_priv *priv = cdev->device_data; u32 val, tmp = 0; regmap_read(priv->regmap, priv->mram_start + addr_offset, &val); val = big_2_little_endian(val); return val; } static int tcan4x5x_write_reg(struct m_can_classdev *cdev, int reg, int val) { struct tcan4x5x_priv *priv = cdev->device_data; u32 ret = 0; return regmap_write(priv->regmap, priv->reg_offset + reg, val); } static int tcan4x5x_write_fifo(struct m_can_classdev *cdev, int addr_offset, int val) { u32 ret = 0; struct tcan4x5x_priv *priv = cdev->device_data; ret = regmap_write(priv->regmap, priv->mram_start + addr_offset, val); return ret; } #ifdef REGULATOR_TCAN4X5X static int tcan4x5x_power_enable(struct regulator *reg, int enable) { if (IS_ERR_OR_NULL(reg)) return 0; if (enable) return regulator_enable(reg); else return regulator_disable(reg); return 1; } #endif static int tcan4x5x_write_tcan_reg(struct m_can_classdev *cdev, int reg, int val) { struct tcan4x5x_priv *priv = cdev->device_data; //TCAN4550_DBG("!!!@@@###$$$%%%^^^&&& %s(%d) called.\n", __func__, __LINE__); return regmap_write(priv->regmap, reg, val); } static int tcan4x5x_clear_interrupts(struct m_can_classdev *cdev) { int ret; ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_STATUS, TCAN4X5X_CLEAR_ALL_INT); if (ret){ pr_info("%s(%d) tcan4x5x_write_tcan_reg TCAN4X5X_STATUS error!\n", __func__, __LINE__); return ret; } ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_MCAN_INT_REG, TCAN4X5X_ENABLE_MCAN_INT); if (ret){ pr_info("%s(%d) tcan4x5x_write_tcan_reg TCAN4X5X_MCAN_INT_REG error!\n", __func__, __LINE__); return ret; } ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_INT_FLAGS, TCAN4X5X_CLEAR_ALL_INT); if (ret){ pr_info("%s(%d) tcan4x5x_write_tcan_reg TCAN4X5X_INT_FLAGS error!\n", __func__, __LINE__); return ret; } ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_ERROR_STATUS, TCAN4X5X_CLEAR_ALL_INT); if (ret){ pr_info("%s(%d) tcan4x5x_write_tcan_reg TCAN4X5X_ERROR_STATUS error!\n", __func__, __LINE__); return ret; } return ret; } static int tcan4x5x_init(struct m_can_classdev *cdev) { struct tcan4x5x_priv *tcan4x5x = cdev->device_data; int ret; tcan4x5x_check_wake(tcan4x5x); ret = tcan4x5x_clear_interrupts(cdev); if (ret) return ret; ret = tcan4x5x_write_tcan_reg(cdev, TCAN4X5X_INT_EN, TCAN4X5X_ENABLE_TCAN_INT); if (ret) return ret; ret = regmap_update_bits(tcan4x5x->regmap, TCAN4X5X_CONFIG, TCAN4X5X_MODE_SEL_MASK, TCAN4X5X_MODE_NORMAL); if (ret) return ret; /* Zero out the MCAN buffers */ m_can_init_ram(cdev); return ret; } static int tcan4x5x_disable_wake(struct m_can_classdev *cdev) { struct tcan4x5x_priv *tcan4x5x = cdev->device_data; return regmap_update_bits(tcan4x5x->regmap, TCAN4X5X_CONFIG, TCAN4X5X_DISABLE_WAKE_MSK, 0x00); } static int tcan4x5x_disable_state(struct m_can_classdev *cdev) { struct tcan4x5x_priv *tcan4x5x = cdev->device_data; return regmap_update_bits(tcan4x5x->regmap, TCAN4X5X_CONFIG, TCAN4X5X_DISABLE_INH_MSK, 0x01); } static int tcan4x5x_parse_config(struct m_can_classdev *cdev) { struct tcan4x5x_priv *tcan4x5x = cdev->device_data; int ret; TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); #if 0 tcan4x5x->device_wake_gpio = devm_gpiod_get(cdev->dev, "device-wake", GPIOD_OUT_HIGH); /* tcan4x5x->device_wake_gpio = devm_gpiod_get_optional(cdev->dev, "device-wake", GPIOD_OUT_HIGH); */ if (IS_ERR(tcan4x5x->device_wake_gpio)) { pr_info("%s(%d) devm_gpiod_get_optional device-wake error!\n", __func__, __LINE__); if (PTR_ERR(tcan4x5x->device_wake_gpio) == -EPROBE_DEFER){ pr_err("%s(%d) devm_gpiod_get_optional device-wake error!\n", __func__, __LINE__); return -EPROBE_DEFER; } tcan4x5x_disable_wake(cdev); } //pr_info("tcan4x5x->device_wake_gpio : %d\n", tcan4x5x->device_wake_gpio->chip.ngpio); pr_info("%s(%d) called.\n", __func__, __LINE__); tcan4x5x->reset_gpio = devm_gpiod_get_optional(cdev->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(tcan4x5x->reset_gpio)){ pr_info("%s(%d) devm_gpiod_get_optional reset error!\n", __func__, __LINE__); tcan4x5x->reset_gpio = NULL; } //pr_info("tcan4x5x->reset_gpio : %d\n", tcan4x5x->reset_gpio->chip.ngpio); #endif tcan4x5x->reset_gpio = gpio_to_desc(165);//gpio_to_desc(RESET_GPIO_M); tcan4x5x->device_wake_gpio = gpio_to_desc(163);//gpio_to_desc(NPW_GPIO_M); // tcan4x5x->device_state_gpio = gpio_to_desc(STATUS_GPIO_M); TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); ret = tcan4x5x_reset(tcan4x5x); if (ret){ pr_info("%s(%d) tcan4x5x_reset error!\n", __func__, __LINE__); return ret; } TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); tcan4x5x->device_state_gpio = devm_gpiod_get_optional(cdev->dev, "device-state", GPIOD_IN); if (IS_ERR(tcan4x5x->device_state_gpio)) { pr_info("%s(%d) devm_gpiod_get_optional device-state error!\n", __func__, __LINE__); tcan4x5x->device_state_gpio = NULL; tcan4x5x_disable_state(cdev); } //pr_info("tcan4x5x->device_state_gpio : %d\n", tcan4x5x->device_state_gpio->chip.ngpio); TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); return 0; } static const struct regmap_config tcan4x5x_regmap = { .reg_bits = 32, .val_bits = 32, .cache_type = REGCACHE_NONE, .max_register = TCAN4X5X_MAX_REGISTER, }; static struct m_can_ops tcan4x5x_ops = { .init = tcan4x5x_init, .read_reg = tcan4x5x_read_reg, .write_reg = tcan4x5x_write_reg, .write_fifo = tcan4x5x_write_fifo, .read_fifo = tcan4x5x_read_fifo, .clear_interrupts = tcan4x5x_clear_interrupts, }; static int tcan4x5x_can_probe(struct spi_device *spi) { struct tcan4x5x_priv *priv; struct m_can_classdev *mcan_class; int freq, ret; TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); // pr_info("******** exit test **********\n"); // return 0; spi->master->bus_num = 2; spi->chip_select = 20; //2020.4.29 add by Mark spi->mode = SPI_MODE_0; ret = gpio_request(EXCHANGE_EN_M, "exchange_ic_enable"); if(ret){ pr_info("%s(%d) called. gpio_request error!\n", __func__, __LINE__); return ret; } gpio_direction_output(EXCHANGE_EN_M, 1); ret = gpio_request(RESET_GPIO_M, "tcan4x5x_reset"); if(ret){ pr_info("%s(%d) called. gpio_request error!\n", __func__, __LINE__); gpio_free(EXCHANGE_EN_M); return ret; } gpio_direction_output(RESET_GPIO_M, 0); usleep_range(20, 1000); TCAN4550_DBG("######### %s spi->bus_num = %d\n", __func__, spi->master->bus_num); TCAN4550_DBG("######### %s spi->chip_select = %d\n", __func__, spi->chip_select); //TCAN4550_DBG("######### %s spi->cs_gpios[%d] = %d\n", __func__, 0, spi->master->cs_gpios[0]); TCAN4550_DBG("######### %s spi->mode = %d\n", __func__, spi->mode); mcan_class = m_can_class_allocate_dev(&spi->dev); if (!mcan_class) return -ENOMEM; TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); priv = devm_kzalloc(&spi->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; #ifdef REGULATOR_TCAN4X5X priv->power = devm_regulator_get_optional(&spi->dev, "vsup"); if (PTR_ERR(priv->power) == -EPROBE_DEFER) return -EPROBE_DEFER; else priv->power = NULL; #endif mcan_class->device_data = priv; TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); m_can_class_get_clocks(mcan_class); if (IS_ERR(mcan_class->cclk)) { dev_err(&spi->dev, "no CAN clock source defined\n"); freq = TCAN4X5X_EXT_CLK_DEF; } else { freq = clk_get_rate(mcan_class->cclk); } TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); /* Sanity check */ //if (freq < 20000000 || freq > TCAN4X5X_EXT_CLK_DEF) if (freq < 900000 || freq > TCAN4X5X_EXT_CLK_DEF) return -ERANGE; TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); priv->reg_offset = TCAN4X5X_MCAN_OFFSET; priv->mram_start = TCAN4X5X_MRAM_START; priv->spi = spi; priv->mcan_dev = mcan_class; mcan_class->pm_clock_support = 0; mcan_class->can.clock.freq = freq; mcan_class->dev = &spi->dev; mcan_class->ops = &tcan4x5x_ops; mcan_class->is_peripheral = true; mcan_class->bit_timing = &tcan4x5x_bittiming_const; mcan_class->data_timing = &tcan4x5x_data_bittiming_const; TCAN4550_DBG("Used spi irq = %d*********\n", spi->irq); //spi->irq = 71 + 0x14c; //spi->irq = 54 + 0x14c; spi->irq = gpio_to_irq(7 + 0x14c); TCAN4550_DBG("Used spi irq = %d*********\n", spi->irq); mcan_class->net->irq = spi->irq; spi_set_drvdata(spi, priv); /* Configure the SPI bus */ spi->bits_per_word = 32; ret = spi_setup(spi); if (ret) goto out_clk; priv->regmap = devm_regmap_init(&spi->dev, &tcan4x5x_bus, &spi->dev, &tcan4x5x_regmap); /* priv->regmap = devm_regmap_init_spi(spi, &tcan4x5x_regmap); */ #ifdef REGULATOR_TCAN4X5X TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); ret = tcan4x5x_power_enable(priv->power, 1); if (ret) goto out_clk; #endif TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); ret = tcan4x5x_parse_config(mcan_class); if (ret){ pr_info("%s(%d) tcan4x5x_parse_config error!\n", __func__, __LINE__); goto out_power; } TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); ret = tcan4x5x_init(mcan_class); if (ret){ pr_info("%s(%d) tcan4x5x_init error!\n", __func__, __LINE__); goto out_power; } TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); ret = m_can_class_register(mcan_class); if (ret){ pr_info("%s(%d) m_can_class_register error!\n", __func__, __LINE__); goto out_power; } TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); netdev_info(mcan_class->net, "TCAN4X5X successfully initialized.\n"); /* pr_info("###@@@### Read 0x%04X : 0x%X\n", tmpp, tcan4x5x_read_reg(priv->mcan_dev, tmpp)); pr_info("###@@@### Write 0x%04X : %X | 0x0055 (%d)\n", tmpp, vall | 0x0055, tcan4x5x_write_reg(priv->mcan_dev, tmpp, vall | 0x0055)); udelay(20); pr_info("###@@@### Read 0x0808 : 0x%X\n", tcan4x5x_read_reg(priv->mcan_dev, tmpp)); */ return 0; out_power: #ifdef REGULATOR_TCAN4X5X TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); tcan4x5x_power_enable(priv->power, 0); #endif out_clk: if (!IS_ERR(mcan_class->cclk)) { clk_disable_unprepare(mcan_class->cclk); clk_disable_unprepare(mcan_class->hclk); } dev_err(&spi->dev, "Probe failed, err=%d\n", ret); return ret; } static int tcan4x5x_can_remove(struct spi_device *spi) { struct tcan4x5x_priv *priv = spi_get_drvdata(spi); //temp gpio_free(RESET_GPIO_M); gpio_free(EXCHANGE_EN_M); #ifdef REGULATOR_TCAN4X5X tcan4x5x_power_enable(priv->power, 0); #endif m_can_class_unregister(priv->mcan_dev); return 0; } static const struct of_device_id tcan4x5x_of_match[] = { { .compatible = "ti,tcan4x5x", }, { .compatible = "mediatek,tcan4x5x", } }; MODULE_DEVICE_TABLE(of, tcan4x5x_of_match); static const struct spi_device_id tcan4x5x_id_table = { "tcan4x5x", 0}; MODULE_DEVICE_TABLE(spi, tcan4x5x_id_table); static struct spi_driver tcan4x5x_can_driver = { .driver = { .owner = THIS_MODULE, .name = DEVICE_NAME, .of_match_table = tcan4x5x_of_match, //.bus = &spi_bus_type, .pm = NULL, }, .id_table = &tcan4x5x_id_table, .probe = tcan4x5x_can_probe, .remove = tcan4x5x_can_remove, }; //module_spi_driver(tcan4x5x_can_driver); static int __init tcan4x5x_can_init(void) { int status = -1; TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); status = spi_register_driver(&tcan4x5x_can_driver); TCAN4550_DBG("%s(%d) called.status = %d\n", __func__, __LINE__, status); if (status < 0) { pr_info("%s, Failed to register SPI driver.\n", __func__); return -EINVAL; } TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); return status; } static void __exit tcan4x5x_can_exit(void) { TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); spi_unregister_driver(&tcan4x5x_can_driver); TCAN4550_DBG("%s(%d) called.\n", __func__, __LINE__); } module_init(tcan4x5x_can_init); module_exit(tcan4x5x_can_exit); MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); MODULE_DESCRIPTION("Texas Instruments TCAN4x5x CAN driver"); MODULE_LICENSE("GPL v2");