您好!
我想在 TM4C123gxl 评估板上测试一个添加了 DFU 的 CDC 类器件。 我根据提供的示例代码准备了以下代码。 我遇到的第一个问题是 Putty 终端无法连接到与设备关联的虚拟 COM 端口。 设备管理器显示有 COM 端口。 请告诉我我在这里发生了什么错误吗?
注:
我删除了与 CDC 配置相关的对 UART 的99%引用。 我以这种方式修改了 USB_DEV_serial 示例、它工作正常。
谢谢、
Dhammika
//*****************************************************************************
//
// usb_dev_serial.c - Main routines for the USB CDC serial example.
//
// Copyright (c) 2012-2020 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 2.2.0.295 of the EK-TM4C123GXL Firmware Package.
//
//*****************************************************************************
#include <stdbool.h>
#include <stdint.h>
#include "inc/hw_ints.h"
#include "inc/hw_nvic.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "inc/hw_gpio.h"
#include "inc/hw_uart.h"
#include "inc/hw_sysctl.h"
#include "driverlib/debug.h"
#include "driverlib/fpu.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/rom.h"
#include "driverlib/rom_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/systick.h"
#include "driverlib/timer.h"
#include "driverlib/uart.h"
#include "driverlib/usb.h"
#include "usblib/usblib.h"
#include "usblib/usbcdc.h"
#include "usblib/usb-ids.h"
#include "usblib/device/usbdevice.h"
#include "usblib/device/usbdcdc.h"
#include "usblib/device/usbdcomp.h"
#include "usblib/device/usbddfu-rt.h"
#include "utils/ustdlib.h"
#include "usb_serial_structs.h"
#include "utils/uartstdio.h"
//*****************************************************************************
//
//! \addtogroup example_list
//! <h1>USB Serial Device (usb_dev_serial)</h1>
//!
//! This example application turns the evaluation kit into a virtual serial
//! port when connected to the USB host system. The application supports the
//! USB Communication Device Class, Abstract Control Model to redirect UART0
//! traffic to and from the USB host system.
//!
//! Assuming you installed TivaWare in the default directory, a driver
//! information (INF) file for use with Windows XP, Windows Vista, Windows 7,
//! and Windows 10 can be found in C:/TivaWare_C_Series-x.x/windows_drivers.
//! For Windows 2000, the required INF file is in
//! C:/TivaWare_C_Series-x.x/windows_drivers/win2K.
//
//*****************************************************************************
//*****************************************************************************
//
// Note:
//
// This example is intended to run on Tiva C Series evaluation kit hardware
// where the UARTs are wired solely for TX and RX, and do not have GPIOs
// connected to act as handshake signals. As a result, this example mimics
// the case where communication is always possible. It reports DSR, DCD
// and CTS as high to ensure that the USB host recognizes that data can be
// sent and merely ignores the host's requested DTR and RTS states. "TODO"
// comments in the code indicate where code would be required to add support
// for real handshakes.
//
//*****************************************************************************
//*****************************************************************************
//
// Configuration and tuning parameters.
//
//*****************************************************************************
//*****************************************************************************
//
// The system tick rate expressed both as ticks per second and a millisecond
// period.
//
//*****************************************************************************
#define SYSTICKS_PER_SECOND 100
#define SYSTICK_PERIOD_MS (1000 / SYSTICKS_PER_SECOND)
//*****************************************************************************
//
// Variables tracking transmit and receive counts.
//
//*****************************************************************************
volatile uint32_t g_ui32UARTTxCount = 0;
volatile uint32_t g_ui32UARTRxCount = 0;
#ifdef DEBUG
uint32_t g_ui32UARTRxErrors = 0;
#endif
//*****************************************************************************
//
// The base address, peripheral ID and interrupt ID of the UART that is to
// be redirected.
//
//*****************************************************************************
//*****************************************************************************
//
// Flag indicating whether or not we are currently sending a Break condition.
//
//*****************************************************************************
static bool g_bSendingBreak = false;
//*****************************************************************************
//
// Global system tick counter
//
//*****************************************************************************
volatile uint32_t g_ui32SysTickCount = 0;
//*****************************************************************************
//
// Flags used to pass commands from interrupt context to the main loop.
//
//*****************************************************************************
#define COMMAND_PACKET_RECEIVED 0x00000001
#define COMMAND_STATUS_UPDATE 0x00000002
volatile uint32_t g_ui32Flags = 0;
char *g_pcStatus;
//*****************************************************************************
//
// Global flag indicating that a USB configuration has been set.
//
//*****************************************************************************
static volatile bool g_bUSBConfigured = false;
//*****************************************************************************
//
// Flag used to tell the main loop that it's time to pass control back to the
// boot loader for an update.
//
//*****************************************************************************
volatile bool g_bUpdateSignalled;
//*****************************************************************************
//
// A flag used to indicate whether or not we are currently connected to the USB
// host.
//
//*****************************************************************************
volatile bool g_bConnected;
//*****************************************************************************
//
// Internal function prototypes.
//
//*****************************************************************************
static void USBUARTPrimeTransmit(uint32_t ui32Base);
static void CheckForSerialStateChange(const tUSBDCDCDevice *psDevice,
int32_t i32Errors);
static void SetControlLineState(uint16_t ui16State);
//*****************************************************************************
//
// The error routine that is called if the driver library encounters an error.
//
//*****************************************************************************
#ifdef DEBUG
void
__error__(char *pcFilename, uint32_t ui32Line)
{
while(1)
{
}
}
#endif
//*****************************************************************************
//
// Interrupt handler for the system tick counter.
//
//*****************************************************************************
void
SysTickIntHandler(void)
{
//
// Update our system time.
//
g_ui32SysTickCount++;
}
//*****************************************************************************
//
// Set the state of the RS232 RTS and DTR signals.
//
//*****************************************************************************
static void
SetControlLineState(uint16_t ui16State)
{
//
// TODO: If configured with GPIOs controlling the handshake lines,
// set them appropriately depending upon the flags passed in the wValue
// field of the request structure passed.
//
}
#if 1
//*****************************************************************************
//
// Set the communication parameters to use on the UART.
//
//*****************************************************************************
static bool
SetLineCoding(tLineCoding *psLineCoding)
{
uint32_t ui32Config;
bool bRetcode;
//
// Assume everything is OK until we detect any problem.
//
bRetcode = true;
//
// Word length. For invalid values, the default is to set 8 bits per
// character and return an error.
//
switch(psLineCoding->ui8Databits)
{
case 5:
{
ui32Config = UART_CONFIG_WLEN_5;
break;
}
case 6:
{
ui32Config = UART_CONFIG_WLEN_6;
break;
}
case 7:
{
ui32Config = UART_CONFIG_WLEN_7;
break;
}
case 8:
{
ui32Config = UART_CONFIG_WLEN_8;
break;
}
default:
{
ui32Config = UART_CONFIG_WLEN_8;
bRetcode = false;
break;
}
}
//
// Parity. For any invalid values, we set no parity and return an error.
//
switch(psLineCoding->ui8Parity)
{
case USB_CDC_PARITY_NONE:
{
ui32Config |= UART_CONFIG_PAR_NONE;
break;
}
case USB_CDC_PARITY_ODD:
{
ui32Config |= UART_CONFIG_PAR_ODD;
break;
}
case USB_CDC_PARITY_EVEN:
{
ui32Config |= UART_CONFIG_PAR_EVEN;
break;
}
case USB_CDC_PARITY_MARK:
{
ui32Config |= UART_CONFIG_PAR_ONE;
break;
}
case USB_CDC_PARITY_SPACE:
{
ui32Config |= UART_CONFIG_PAR_ZERO;
break;
}
default:
{
ui32Config |= UART_CONFIG_PAR_NONE;
bRetcode = false;
break;
}
}
//
// Stop bits. Our hardware only supports 1 or 2 stop bits whereas CDC
// allows the host to select 1.5 stop bits. If passed 1.5 (or any other
// invalid or unsupported value of ui8Stop, we set up for 1 stop bit but
// return an error in case the caller needs to Stall or otherwise report
// this back to the host.
//
switch(psLineCoding->ui8Stop)
{
//
// One stop bit requested.
//
case USB_CDC_STOP_BITS_1:
{
ui32Config |= UART_CONFIG_STOP_ONE;
break;
}
//
// Two stop bits requested.
//
case USB_CDC_STOP_BITS_2:
{
ui32Config |= UART_CONFIG_STOP_TWO;
break;
}
//
// Other cases are either invalid values of ui8Stop or values that we
// cannot support so set 1 stop bit but return an error.
//
default:
{
ui32Config |= UART_CONFIG_STOP_ONE;
bRetcode = false;
break;
}
}
#if 0
//
// Set the UART mode appropriately.
//
MAP_UARTConfigSetExpClk(USB_UART_BASE, MAP_SysCtlClockGet(),
psLineCoding->ui32Rate, ui32Config);
#endif
//
// Let the caller know if we had a problem or not.
//
return(bRetcode);
}
//*****************************************************************************
//
// Get the communication parameters in use on the UART.
//
//*****************************************************************************
static void
GetLineCoding(tLineCoding *psLineCoding)
{
uint32_t ui32Config;
uint32_t ui32Rate;
#if 0
//
// Get the current line coding set in the UART.
//
MAP_UARTConfigGetExpClk(USB_UART_BASE, MAP_SysCtlClockGet(), &ui32Rate,
&ui32Config);
psLineCoding->ui32Rate = ui32Rate;
#endif
//
// Translate the configuration word length field into the format expected
// by the host.
//
switch(ui32Config & UART_CONFIG_WLEN_MASK)
{
case UART_CONFIG_WLEN_8:
{
psLineCoding->ui8Databits = 8;
break;
}
case UART_CONFIG_WLEN_7:
{
psLineCoding->ui8Databits = 7;
break;
}
case UART_CONFIG_WLEN_6:
{
psLineCoding->ui8Databits = 6;
break;
}
case UART_CONFIG_WLEN_5:
{
psLineCoding->ui8Databits = 5;
break;
}
}
//
// Translate the configuration parity field into the format expected
// by the host.
//
switch(ui32Config & UART_CONFIG_PAR_MASK)
{
case UART_CONFIG_PAR_NONE:
{
psLineCoding->ui8Parity = USB_CDC_PARITY_NONE;
break;
}
case UART_CONFIG_PAR_ODD:
{
psLineCoding->ui8Parity = USB_CDC_PARITY_ODD;
break;
}
case UART_CONFIG_PAR_EVEN:
{
psLineCoding->ui8Parity = USB_CDC_PARITY_EVEN;
break;
}
case UART_CONFIG_PAR_ONE:
{
psLineCoding->ui8Parity = USB_CDC_PARITY_MARK;
break;
}
case UART_CONFIG_PAR_ZERO:
{
psLineCoding->ui8Parity = USB_CDC_PARITY_SPACE;
break;
}
}
//
// Translate the configuration stop bits field into the format expected
// by the host.
//
switch(ui32Config & UART_CONFIG_STOP_MASK)
{
case UART_CONFIG_STOP_ONE:
{
psLineCoding->ui8Stop = USB_CDC_STOP_BITS_1;
break;
}
case UART_CONFIG_STOP_TWO:
{
psLineCoding->ui8Stop = USB_CDC_STOP_BITS_2;
break;
}
}
}
#endif
//*****************************************************************************
//
// This is the callback from the USB DFU runtime interface driver.
//
// \param pvCBData is ignored by this function.
// \param ui32Event is one of the valid events for a DFU device.
// \param ui32MsgParam is defined by the event that occurs.
// \param pvMsgData is a pointer to data that is defined by the event that
// occurs.
//
// This function will be called to inform the application when a change occurs
// during operation as a DFU device. Currently, the only event passed to this
// callback is USBD_DFU_EVENT_DETACH which tells the recipient that they should
// pass control to the boot loader at the earliest, non-interrupt context
// point.
//
// \return This function will return 0.
//
//*****************************************************************************
uint32_t
DFUDetachCallback(void *pvCBData, uint32_t ui32Event, uint32_t ui32MsgData,
void *pvMsgData)
{
if(ui32Event == USBD_DFU_EVENT_DETACH)
{
//
// Set the flag that the main loop uses to determine when it is time
// to transfer control back to the boot loader. Note that we
// absolutely DO NOT call USBDDFUUpdateBegin() here since we are
// currently in interrupt context and this would cause bad things to
// happen (and the boot loader to not work).
//
g_bUpdateSignalled = true;
}
return(0);
}
//*****************************************************************************
//
// Handles CDC driver notifications related to control and setup of the device.
//
// \param pvCBData is the client-supplied callback pointer for this channel.
// \param ui32Event identifies the event we are being notified about.
// \param ui32MsgValue is an event-specific value.
// \param pvMsgData is an event-specific pointer.
//
// This function is called by the CDC driver to perform control-related
// operations on behalf of the USB host. These functions include setting
// and querying the serial communication parameters, setting handshake line
// states and sending break conditions.
//
// \return The return value is event-specific.
//
//*****************************************************************************
uint32_t
ControlHandler(void *pvCBData, uint32_t ui32Event,
uint32_t ui32MsgValue, void *pvMsgData)
{
uint32_t ui32IntsOff;
tUSBDCDCDevice * pCDCDevice;
pCDCDevice = (tUSBDCDCDevice *)pvCBData;
// Which event are we being asked to process?
switch(ui32Event)
{
// We are connected to a host and communication is now possible.
case USB_EVENT_CONNECTED:
g_bUSBConfigured = true;
g_bConnected = true;
// Flush our buffers.
USBBufferFlush(&g_sTxBuffer);
USBBufferFlush(&g_sRxBuffer);
// Tell the main loop to update the display.
ui32IntsOff = MAP_IntMasterDisable();
g_pcStatus = "Connected";
g_ui32Flags |= COMMAND_STATUS_UPDATE;
if(!ui32IntsOff)
{
MAP_IntMasterEnable();
}
break;
// The host has disconnected.
case USB_EVENT_DISCONNECTED:
g_bUSBConfigured = false;
g_bConnected = false;
ui32IntsOff = MAP_IntMasterDisable();
g_pcStatus = "Disconnected";
g_ui32Flags |= COMMAND_STATUS_UPDATE;
if(!ui32IntsOff)
{
MAP_IntMasterEnable();
}
break;
#if 1
// Return the current serial communication parameters.
// We do not need this since there is no UART - Dhammika
case USBD_CDC_EVENT_GET_LINE_CODING:
GetLineCoding(pvMsgData);
break;
// Set the current serial communication parameters.
// We do not need this since there is no UART - Dhammika
case USBD_CDC_EVENT_SET_LINE_CODING:
SetLineCoding(pvMsgData);
break;
// Set the current serial communication parameters.
case USBD_CDC_EVENT_SET_CONTROL_LINE_STATE:
SetControlLineState((uint16_t)ui32MsgValue);
break;
#endif
// Ignore SUSPEND and RESUME for now.
case USB_EVENT_SUSPEND:
case USB_EVENT_RESUME:
break;
// We don't expect to receive any other events. Ignore any that show
// up in a release build or hang in a debug build.
default:
#ifdef DEBUG
while(1);
#else
break;
#endif
}
return(0);
}
//*****************************************************************************
//
// Handles CDC driver notifications related to the transmit channel (data to
// the USB host).
//
// \param ui32CBData is the client-supplied callback pointer for this channel.
// \param ui32Event identifies the event we are being notified about.
// \param ui32MsgValue is an event-specific value.
// \param pvMsgData is an event-specific pointer.
//
// This function is called by the CDC driver to notify us of any events
// related to operation of the transmit data channel (the IN channel carrying
// data to the USB host).
//
// \return The return value is event-specific.
//
//*****************************************************************************
uint32_t
TxHandler(void *pvCBData, uint32_t ui32Event, uint32_t ui32MsgValue,
void *pvMsgData)
{
// Which event have we been sent?
switch(ui32Event)
{
case USB_EVENT_TX_COMPLETE:
// Since we are using the USBBuffer, we don't need to do anything
// here.
break;
// We don't expect to receive any other events. Ignore any that show
// up in a release build or hang in a debug build.
default:
#ifdef DEBUG
while(1);
#else
break;
#endif
}
return(0);
}
//*****************************************************************************
//
// Handles CDC driver notifications related to the receive channel (data from
// the USB host).
//
// \param ui32CBData is the client-supplied callback data value for this channel.
// \param ui32Event identifies the event we are being notified about.
// \param ui32MsgValue is an event-specific value.
// \param pvMsgData is an event-specific pointer.
//
// This function is called by the CDC driver to notify us of any events
// related to operation of the receive data channel (the OUT channel carrying
// data from the USB host).
//
// \return The return value is event-specific.
//
//*****************************************************************************
uint32_t
RxHandler(void *pvCBData, uint32_t ui32Event, uint32_t ui32MsgValue,
void *pvMsgData)
{
uint32_t ui32Count;
uint32_t ui32Read, ui32Space;
uint8_t ui8Char;
// Which event are we being sent?
switch(ui32Event)
{
// A new packet has been received.
case USB_EVENT_RX_AVAILABLE:
{
// How much space do we have in the buffer?
ui32Space = USBBufferSpaceAvailable((tUSBBuffer *)&g_sTxBuffer);
// Read data from the USB until there is none left or we run
// out of space in our Tx buffer.
while(ui32Space)
{
// Read the USB buffer
if(USBBufferRead((tUSBBuffer *)&g_sRxBuffer, &ui8Char, 1))
{
// Write the rceived character back into Tx buffer
USBBufferWrite((tUSBBuffer *)&g_sTxBuffer, (uint8_t *)&ui8Char, 1);
// Decrement the number of bytes we know the buffer can accept.
ui32Space--;
// Update our count of bytes received via the USB.
g_ui32UARTRxCount++;
}
else break;
}
break;
}
// We are being asked how much unprocessed data we have still to
// process. We send 0 if USB Tx buffer can take data
case USB_EVENT_DATA_REMAINING:
{
USBBufferFlush((tUSBBuffer *)&g_sTxBuffer);
return(0);
}
// We are being asked to provide a buffer into which the next packet
// can be read. We do not support this mode of receiving data so let
// the driver know by returning 0. The CDC driver should not be sending
// this message but this is included just for illustration and
// completeness.
case USB_EVENT_REQUEST_BUFFER:
{
return(0);
}
// We don't expect to receive any other events. Ignore any that show
// up in a release build or hang in a debug build.
default:
#ifdef DEBUG
while(1);
#else
break;
#endif
}
return(0);
}
//*****************************************************************************
//
// This is the main application entry function.
//
//*****************************************************************************
int
main(void)
{
uint32_t ui32TxCount;
uint32_t ui32RxCount;
uint32_t ui32SysClock;
// Enable lazy stacking for interrupt handlers. This allows floating-point
// instructions to be used within interrupt handlers, but at the expense of
// extra stack usage.
MAP_FPULazyStackingEnable();
// Set the clocking to run from the PLL at 50MHz
MAP_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
SYSCTL_XTAL_16MHZ);
ui32SysClock = MAP_SysCtlClockGet();
// Configure the required pins for USB operation.
MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
MAP_GPIOPinTypeUSBAnalog(GPIO_PORTD_BASE, GPIO_PIN_5 | GPIO_PIN_4);
// Enable the GPIO port that is used for the on-board LED.
MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
// Enable the GPIO pins for the LED (PF2 & PF3).
MAP_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_3|GPIO_PIN_2);
// Not configured initially.
g_bUSBConfigured = false;
// TODO: Add code to configure handshake GPIOs if required.
// Enable the system tick.
MAP_SysTickPeriodSet(ui32SysClock / SYSTICKS_PER_SECOND);
MAP_SysTickIntEnable();
MAP_SysTickEnable();
// Initialize the transmit and receive buffers.
USBBufferInit(&g_sTxBuffer);
USBBufferInit(&g_sRxBuffer);
// Set the USB stack mode to Device mode with VBUS monitoring.
USBStackModeSet(0, eUSBModeForceDevice, 0);
//----------------------------------------------------------
// Initialize each of the device instances that will form our composite
// USB device.
USBDCDCCompositeInit(0, &g_sCDCDevice, &(g_sCompDevice.psDevices[0]));
USBDDFUCompositeInit(0, &g_sDFUDevice, &(g_sCompDevice.psDevices[1]));
// Pass the USB library our device information, initialize the USB
// controller and connect the device to the bus.
void *pvCompositeInstance = USBDCompositeInit(0, &g_sCompDevice, DESCRIPTOR_BUFFER_SIZE, g_pui8DescriptorBuffer);
//-----------------------------------------------------------
// Clear our local byte counters.
ui32RxCount = 0;
ui32TxCount = 0;
// Main application loop.
while(!g_bUpdateSignalled)
{
// Wait for USB configuration to complete.
while(!g_bConnected)
{
}
// Now keep processing the mouse as long as the host is connected and
// we've not been told to prepare for a firmware upgrade.
while(g_bConnected && !g_bUpdateSignalled)
{
// Have we been asked to update the status display?
if(g_ui32Flags & COMMAND_STATUS_UPDATE)
{
//
// Clear the command flag
//
MAP_IntMasterDisable();
g_ui32Flags &= ~COMMAND_STATUS_UPDATE;
MAP_IntMasterEnable();
}
//
// Has there been any transmit traffic since we last checked?
//
if(ui32TxCount != g_ui32UARTTxCount)
{
//
// Turn on the Green LED.
//
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, GPIO_PIN_3);
//
// Delay for a bit.
//
SysCtlDelay(MAP_SysCtlClockGet() / 3 / 20);
//
// Turn off the Green LED.
//
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, 0);
//
// Take a snapshot of the latest transmit count.
//
ui32TxCount = g_ui32UARTTxCount;
}
//
// Has there been any receive traffic since we last checked?
//
if(ui32RxCount != g_ui32UARTRxCount)
{
//
// Turn on the Blue LED.
//
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);
//
// Delay for a bit.
//
SysCtlDelay(MAP_SysCtlClockGet() / 3 / 20);
//
// Turn off the Blue LED.
//
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);
//
// Take a snapshot of the latest receive count.
//
ui32RxCount = g_ui32UARTRxCount;
}
}
}
// Terminate the USB device and detach from the bus.
// USBDCompositeTerm(pvCompositeInstance);
USBDCDTerm(0);
// Disable all interrupts.
MAP_IntMasterDisable();
// Disable SysTick and its interrupt.
MAP_SysTickIntDisable();
MAP_SysTickDisable();
// Disable all processor interrupts. Instead of disabling them one at a
// time, a direct write to NVIC is done to disable all peripheral
// interrupts.
HWREG(NVIC_DIS0) = 0xffffffff;
HWREG(NVIC_DIS1) = 0xffffffff;
HWREG(NVIC_DIS2) = 0xffffffff;
HWREG(NVIC_DIS3) = 0xffffffff;
HWREG(NVIC_DIS4) = 0xffffffff;
//
// Enable and reset the USB peripheral.
//
MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_USB0);
MAP_SysCtlPeripheralReset(SYSCTL_PERIPH_USB0);
MAP_USBClockEnable(USB0_BASE, 4, USB_CLOCK_INTERNAL);
//
// Wait for about a second.
//
MAP_SysCtlDelay(ui32SysClock / 3);
//
// Re-enable interrupts at the NVIC level.
//
MAP_IntMasterEnable();
//
// Call the USB boot loader.
//
ROM_UpdateUSB(0);
//
// Should never get here, but just in case.
//
while(1)
{
}
}
//*****************************************************************************
//
// usb_serial_structs.c - Data structures defining this CDC USB device.
//
// Copyright (c) 2012-2020 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 2.2.0.295 of the EK-TM4C123GXL Firmware Package.
//
//*****************************************************************************
#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_types.h"
#include "driverlib/usb.h"
#include "usblib/usblib.h"
#include "usblib/usbcdc.h"
#include "usblib/usb-ids.h"
#include "usblib/device/usbdevice.h"
#include "usblib/device/usbdcdc.h"
#include "usb_serial_structs.h"
//*****************************************************************************
//
// The languages supported by this device.
//
//*****************************************************************************
const uint8_t g_pui8LangDescriptor[] =
{
4,
USB_DTYPE_STRING,
USBShort(USB_LANG_EN_US)
};
//*****************************************************************************
//
// The manufacturer string.
//
//*****************************************************************************
const uint8_t g_pui8ManufacturerString[] =
{
(17 + 1) * 2,
USB_DTYPE_STRING,
'T', 0, 'e', 0, 'x', 0, 'a', 0, 's', 0, ' ', 0, 'I', 0, 'n', 0, 's', 0,
't', 0, 'r', 0, 'u', 0, 'm', 0, 'e', 0, 'n', 0, 't', 0, 's', 0,
};
//*****************************************************************************
//
// The product string.
//
//*****************************************************************************
const uint8_t g_pui8ProductString[] =
{
2 + (16 * 2),
USB_DTYPE_STRING,
'V', 0, 'i', 0, 'r', 0, 't', 0, 'u', 0, 'a', 0, 'l', 0, ' ', 0,
'C', 0, 'O', 0, 'M', 0, ' ', 0, 'P', 0, 'o', 0, 'r', 0, 't', 0
};
//*****************************************************************************
//
// The serial number string.
//
//*****************************************************************************
const uint8_t g_pui8SerialNumberString[] =
{
2 + (8 * 2),
USB_DTYPE_STRING,
'1', 0, '2', 0, '3', 0, '4', 0, '5', 0, '6', 0, '7', 0, '8', 0
};
//*****************************************************************************
//
// The control interface description string.
//
//*****************************************************************************
const uint8_t g_pui8ControlInterfaceString[] =
{
2 + (21 * 2),
USB_DTYPE_STRING,
'A', 0, 'C', 0, 'M', 0, ' ', 0, 'C', 0, 'o', 0, 'n', 0, 't', 0,
'r', 0, 'o', 0, 'l', 0, ' ', 0, 'I', 0, 'n', 0, 't', 0, 'e', 0,
'r', 0, 'f', 0, 'a', 0, 'c', 0, 'e', 0
};
//*****************************************************************************
//
// The configuration description string.
//
//*****************************************************************************
const uint8_t g_pui8ConfigString[] =
{
2 + (26 * 2),
USB_DTYPE_STRING,
'S', 0, 'e', 0, 'l', 0, 'f', 0, ' ', 0, 'P', 0, 'o', 0, 'w', 0,
'e', 0, 'r', 0, 'e', 0, 'd', 0, ' ', 0, 'C', 0, 'o', 0, 'n', 0,
'f', 0, 'i', 0, 'g', 0, 'u', 0, 'r', 0, 'a', 0, 't', 0, 'i', 0,
'o', 0, 'n', 0
};
//*****************************************************************************
//
// The descriptor string table.
//
//*****************************************************************************
const uint8_t * const g_ppui8StringDescriptors[] =
{
g_pui8LangDescriptor,
g_pui8ManufacturerString,
g_pui8ProductString,
g_pui8SerialNumberString,
g_pui8ControlInterfaceString,
g_pui8ConfigString
};
#define NUM_STRING_DESCRIPTORS (sizeof(g_ppui8StringDescriptors) / \
sizeof(uint8_t *))
//*****************************************************************************
//
// CDC device callback function prototypes.
//
//*****************************************************************************
uint32_t RxHandler(void *pvCBData, uint32_t ui32Event,
uint32_t ui32MsgValue, void *pvMsgData);
uint32_t TxHandler(void *pvCBData, uint32_t ui32Event,
uint32_t ui32MsgValue, void *pvMsgData);
uint32_t ControlHandler(void *pvCBData, uint32_t ui32Event,
uint32_t ui32MsgValue, void *pvMsgData);
//*****************************************************************************
//
// The CDC device initialization and customization structures. In this case,
// we are using USBBuffers between the CDC device class driver and the
// application code. The function pointers and callback data values are set
// to insert a buffer in each of the data channels, transmit and receive.
//
// With the buffer in place, the CDC channel callback is set to the relevant
// channel function and the callback data is set to point to the channel
// instance data. The buffer, in turn, has its callback set to the application
// function and the callback data set to our CDC instance structure.
//
//*****************************************************************************
tUSBDCDCDevice g_sCDCDevice =
{
USB_VID_TI_1CBE,
USB_PID_SERIAL,
500,
USB_CONF_ATTR_SELF_PWR,
ControlHandler,
(void *)&g_sCDCDevice,
USBBufferEventCallback,
(void *)&g_sRxBuffer,
USBBufferEventCallback,
(void *)&g_sTxBuffer,
g_ppui8StringDescriptors,
NUM_STRING_DESCRIPTORS
};
//*****************************************************************************
//
// Receive buffer (from the USB perspective).
//
//*****************************************************************************
uint8_t g_pui8USBRxBuffer[UART_BUFFER_SIZE];
tUSBBuffer g_sRxBuffer =
{
false, // This is a receive buffer.
RxHandler, // pfnCallback
(void *)&g_sCDCDevice, // Callback data is our device pointer.
USBDCDCPacketRead, // pfnTransfer
USBDCDCRxPacketAvailable, // pfnAvailable
(void *)&g_sCDCDevice, // pvHandle
g_pui8USBRxBuffer, // pui8Buffer
UART_BUFFER_SIZE, // ui32BufferSize
};
//*****************************************************************************
//
// Transmit buffer (from the USB perspective).
//
//*****************************************************************************
uint8_t g_pui8USBTxBuffer[UART_BUFFER_SIZE];
tUSBBuffer g_sTxBuffer =
{
true, // This is a transmit buffer.
TxHandler, // pfnCallback
(void *)&g_sCDCDevice, // Callback data is our device pointer.
USBDCDCPacketWrite, // pfnTransfer
USBDCDCTxPacketAvailable, // pfnAvailable
(void *)&g_sCDCDevice, // pvHandle
g_pui8USBTxBuffer, // pui8Buffer
UART_BUFFER_SIZE, // ui32BufferSize
};
//*****************************************************************************
//
// The DFU runtime interface initialization and customization structures
//
//*****************************************************************************
tUSBDDFUDevice g_sDFUDevice =
{
DFUDetachCallback,
(void *)&g_sDFUDevice
};
//****************************************************************************
//
// The number of device class instances that this composite device will
// use.
//
//****************************************************************************
#define NUM_DEVICES 2
//****************************************************************************
//
// The array of devices supported by this composite device.
//
//****************************************************************************
tCompositeEntry g_psCompDevices[NUM_DEVICES];
//****************************************************************************
//
// Additional workspace required by the composite driver to hold a lookup
// table allowing mapping of composite interface and endpoint numbers to
// individual device class instances.
//
//****************************************************************************
uint32_t g_pui32CompWorkspace[NUM_DEVICES];
//****************************************************************************
//
// The instance data for this composite device.
//
//****************************************************************************
tCompositeInstance g_sCompInstance;
//****************************************************************************
//
// Allocate the Device Data for the top level composite device class.
//
//****************************************************************************
tUSBDCompositeDevice g_sCompDevice =
{
// Stellaris VID.
USB_VID_TI_1CBE,
// PID.
USB_PID_SERIAL,
// This is in milliamps.
500,
// Bus powered device.
USB_CONF_ATTR_SELF_PWR,
// Device event handler function pointer (receives connect, disconnect
// and other device-level notifications).
ControlHandler,
// The string table.
g_ppui8StringDescriptors,
NUM_STRING_DESCRIPTORS,
// The Composite device array.
NUM_DEVICES,
g_psCompDevices,
};
//****************************************************************************
//
// A buffer into which the composite device can write the combined config
// descriptor.
//
//****************************************************************************
uint8_t g_pui8DescriptorBuffer[DESCRIPTOR_BUFFER_SIZE];
