请注意,本文内容源自机器翻译,可能存在语法或其它翻译错误,仅供参考。如需获取准确内容,请参阅链接中的英语原文或自行翻译。
部件号:MSP430FR5994 你(们)好 我正在尝试实现一个输入,其中我有两个来自两个不同电压源的ADC输入。 我开始使用 具有 一个输入的基本ADC代码,但我无法找到 允许 我执行双ADC输入的文档或示例代码。
#include <msp430.h>
#include <stdio.h>
int main(void)
{
WDTCTL = WDTPW | WDTHOLD; // Stop WDT
// GPIO Setup
P1OUT &= ~BIT0; // Clear LED to start
P1DIR |= BIT0; // Set P1.0/LED to output
P1SEL1 |= BIT2 | BIT3 ; // Configure P1.2 and P1.3 for ADC input (See p369, p88 of specific for pin config details.)
P1SEL0 |= BIT2 | BIT3 ; // There are two Pin Select bits (p88_s)
// Disable the GPIO power-on default high-impedance mode to activate
// previously configured port settings (p92)
PM5CTL0 &= ~LOCKLPM5;
// Configure ADC12
ADC12CTL0 = ADC12SHT0_2 | ADC12ON; // Sampling time, S&H=16, ADC12 on [p893, CTL0 = control 0, SHT0_2 = sample & hold time, knowledge of register value from p88_s]
ADC12CTL1 = ADC12SHP; // Use sampling timer [p895, Sampler uses sampling timer (not sure what that is yet)]
ADC12CTL2 |= ADC12RES_2; // 12-bit conversion results [p897, RES means resolution, _2 means 12 bits]
ADC12CTL3 |= ADC12CSTARTADD_2; // Use MEM2/MCTL2
ADC12MCTL2 |= ADC12INCH_2; // A2 ADC input select; Vref=AVCC [MCTL2 = Memory Control 2 (p900), INCH = input channel, 2 means channel A2]
ADC12MCTL3 |= ADC12INCH_3;
ADC12IER0 |= ADC12IE2 | ADC12IE3; // Enable ADC conv complete interrupt [p903, means "interrupt enable register 0". Enables or disables the interrupt request for ADC12IFG2 bit]
printf("Got here.\n");
while (1)
{
printf("Got there.\n");
__delay_cycles(5000);
ADC12CTL0 |= ADC12ENC | ADC12SC; // Start sampling/conversion [p893, ENC = enable conversion, SC = start conversion. difference between the two = idfk, but remember to have both set]
__bis_SR_register(LPM0_bits | GIE); // LPM0, ADC12_ISR will force exit
// printf("Got nowhere.\n");
__no_operation(); // For debugger
}
}
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = ADC12_B_VECTOR
__interrupt void ADC12_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(ADC12_B_VECTOR))) ADC12_ISR (void)
#else
#error Compiler not supported!
#endif
{
switch(__even_in_range(ADC12IV, ADC12IV__ADC12RDYIFG))
{
case ADC12IV__NONE: break; // Vector 0: No interrupt
case ADC12IV__ADC12OVIFG: break; // Vector 2: ADC12MEMx Overflow
case ADC12IV__ADC12TOVIFG: break; // Vector 4: Conversion time overflow
case ADC12IV__ADC12HIIFG: break; // Vector 6: ADC12BHI
case ADC12IV__ADC12LOIFG: break; // Vector 8: ADC12BLO
case ADC12IV__ADC12INIFG: break; // Vector 10: ADC12BIN
case ADC12IV__ADC12IFG0: // Vector 12: ADC12MEM0 Interrupt
break;
case ADC12IV__ADC12IFG1: break; // Vector 14: ADC12MEM1
case ADC12IV__ADC12IFG2: // Vector 16: ADC12MEM2
if (ADC12MEM2 >= 0x7ff) { // ADC12MEM2 = A1 > 0.5AVcc?
P1OUT |= BIT0; } // P1.0 = 1
else{
P1OUT &= ~BIT0; } // P1.0 = 0
printf("In MEM2.");
int memval = ADC12MEM2; // Memory stored in MEM2
printf("%d\n", memval);
// Exit from LPM0 and continue executing main
__bic_SR_register_on_exit(LPM0_bits);
break;
case ADC12IV__ADC12IFG3: break; // Vector 18: ADC12MEM3
if (ADC12MEM3 >= 0x7ff) {
P1OUT |= BIT0; }
else{
P1OUT &= ~BIT0; }
printf("In MEM3.");
int memval = ADC12MEM3; // Memory stored in MEM3
printf("%d\n", memval);
// Exit from LPM0 and continue executing main
__bic_SR_register_on_exit(LPM0_bits);
break;
case ADC12IV__ADC12IFG4: break; // Vector 20: ADC12MEM4
case ADC12IV__ADC12IFG5: break; // Vector 22: ADC12MEM5
case ADC12IV__ADC12IFG6: break; // Vector 24: ADC12MEM6
case ADC12IV__ADC12IFG7: break; // Vector 26: ADC12MEM7
case ADC12IV__ADC12IFG8: break; // Vector 28: ADC12MEM8
case ADC12IV__ADC12IFG9: break; // Vector 30: ADC12MEM9
case ADC12IV__ADC12IFG10: break; // Vector 32: ADC12MEM10
case ADC12IV__ADC12IFG11: break; // Vector 34: ADC12MEM11
case ADC12IV__ADC12IFG12: break; // Vector 36: ADC12MEM12
case ADC12IV__ADC12IFG13: break; // Vector 38: ADC12MEM13
case ADC12IV__ADC12IFG14: break; // Vector 40: ADC12MEM14
case ADC12IV__ADC12IFG15: break; // Vector 42: ADC12MEM15
case ADC12IV__ADC12IFG16: break; // Vector 44: ADC12MEM16
case ADC12IV__ADC12IFG17: break; // Vector 46: ADC12MEM17
case ADC12IV__ADC12IFG18: break; // Vector 48: ADC12MEM18
case ADC12IV__ADC12IFG19: break; // Vector 50: ADC12MEM19
case ADC12IV__ADC12IFG20: break; // Vector 52: ADC12MEM20
case ADC12IV__ADC12IFG21: break; // Vector 54: ADC12MEM21
case ADC12IV__ADC12IFG22: break; // Vector 56: ADC12MEM22
case ADC12IV__ADC12IFG23: break; // Vector 58: ADC12MEM23
case ADC12IV__ADC12IFG24: break; // Vector 60: ADC12MEM24
case ADC12IV__ADC12IFG25: break; // Vector 62: ADC12MEM25
case ADC12IV__ADC12IFG26: break; // Vector 64: ADC12MEM26
case ADC12IV__ADC12IFG27: break; // Vector 66: ADC12MEM27
case ADC12IV__ADC12IFG28: break; // Vector 68: ADC12MEM28
case ADC12IV__ADC12IFG29: break; // Vector 70: ADC12MEM29
case ADC12IV__ADC12IFG30: break; // Vector 72: ADC12MEM30
case ADC12IV__ADC12IFG31: break; // Vector 74: ADC12MEM31
case ADC12IV__ADC12RDYIFG: break; // Vector 76: ADC12RDY
default: break;
}
}
到目前为止我的代码。 我的最终目标是从这两个电压源中收集ADC信息,减去它们,然后从下一个采样时间(我计划的采样时间为32Hz)中收集ADC信息,再减去它们两个,然后比较这两个ADC信息。 我这样做是为了比较两个解调FM信号(如果这有帮助)。 如果需要更多信息,请告诉我。