This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

[参考译文] MSP430FR5994:实现两路ADC输入

Guru**** 657500 points
请注意,本文内容源自机器翻译,可能存在语法或其它翻译错误,仅供参考。如需获取准确内容,请参阅链接中的英语原文或自行翻译。

https://e2e.ti.com/support/microcontrollers/msp-low-power-microcontrollers-group/msp430/f/msp-low-power-microcontroller-forum/1090257/msp430fr5994-implementing-two-adc-inputs

部件号:MSP430FR5994

你(们)好 我正在尝试实现一个输入,其中我有两个来自两个不同电压源的ADC输入。 我开始使用 具有 一个输入的基本ADC代码,但我无法找到 允许 我执行双ADC输入的文档或示例代码。

#include <msp430.h>
#include <stdio.h>

int main(void)
{
    WDTCTL = WDTPW | WDTHOLD;               // Stop WDT

    // GPIO Setup
    P1OUT &= ~BIT0;                         // Clear LED to start
    P1DIR |= BIT0;                          // Set P1.0/LED to output
    P1SEL1 |= BIT2 | BIT3 ;                 // Configure P1.2 and P1.3 for ADC input (See p369, p88 of specific for pin config details.)
    P1SEL0 |= BIT2 | BIT3 ;                 // There are two Pin Select bits (p88_s)

    // Disable the GPIO power-on default high-impedance mode to activate
    // previously configured port settings (p92)
    PM5CTL0 &= ~LOCKLPM5;

    // Configure ADC12
    ADC12CTL0 = ADC12SHT0_2 | ADC12ON;      // Sampling time, S&H=16, ADC12 on [p893, CTL0 = control 0, SHT0_2 = sample & hold time, knowledge of register value from p88_s]
    ADC12CTL1 = ADC12SHP;                   // Use sampling timer [p895, Sampler uses sampling timer (not sure what that is yet)]
    ADC12CTL2 |= ADC12RES_2;                // 12-bit conversion results [p897, RES means resolution, _2 means 12 bits]
    ADC12CTL3 |= ADC12CSTARTADD_2;          // Use MEM2/MCTL2
    ADC12MCTL2 |= ADC12INCH_2;              // A2 ADC input select; Vref=AVCC [MCTL2 = Memory Control 2 (p900), INCH = input channel, 2 means channel A2]
    ADC12MCTL3 |= ADC12INCH_3;
    ADC12IER0 |= ADC12IE2 | ADC12IE3;                  // Enable ADC conv complete interrupt [p903, means "interrupt enable register 0". Enables or disables the interrupt request for ADC12IFG2 bit]
    printf("Got here.\n");

    while (1)
    {
        printf("Got there.\n");
        __delay_cycles(5000);
        ADC12CTL0 |= ADC12ENC | ADC12SC;    // Start sampling/conversion [p893, ENC = enable conversion, SC = start conversion. difference between the two = idfk, but remember to have both set]

        __bis_SR_register(LPM0_bits | GIE); // LPM0, ADC12_ISR will force exit

       // printf("Got nowhere.\n");
        __no_operation();                   // For debugger
    }
}

#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = ADC12_B_VECTOR
__interrupt void ADC12_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(ADC12_B_VECTOR))) ADC12_ISR (void)
#else
#error Compiler not supported!
#endif
{
    switch(__even_in_range(ADC12IV, ADC12IV__ADC12RDYIFG))
    {
        case ADC12IV__NONE:        break;   // Vector  0:  No interrupt
        case ADC12IV__ADC12OVIFG:  break;   // Vector  2:  ADC12MEMx Overflow
        case ADC12IV__ADC12TOVIFG: break;   // Vector  4:  Conversion time overflow
        case ADC12IV__ADC12HIIFG:  break;   // Vector  6:  ADC12BHI
        case ADC12IV__ADC12LOIFG:  break;   // Vector  8:  ADC12BLO
        case ADC12IV__ADC12INIFG:  break;   // Vector 10:  ADC12BIN
        case ADC12IV__ADC12IFG0:            // Vector 12:  ADC12MEM0 Interrupt
            break;
        case ADC12IV__ADC12IFG1:   break;   // Vector 14:  ADC12MEM1
        case ADC12IV__ADC12IFG2:            // Vector 16:  ADC12MEM2
            if (ADC12MEM2 >= 0x7ff) {        // ADC12MEM2 = A1 > 0.5AVcc?
                P1OUT |= BIT0;  }            // P1.0 = 1
            else{
                P1OUT &= ~BIT0;  }           // P1.0 = 0
            printf("In MEM2.");
            int memval = ADC12MEM2;             // Memory stored in MEM2
            printf("%d\n", memval);
                // Exit from LPM0 and continue executing main
                __bic_SR_register_on_exit(LPM0_bits);
                break;
        case ADC12IV__ADC12IFG3:   break;   // Vector 18:  ADC12MEM3
        if (ADC12MEM3 >= 0x7ff) {
            P1OUT |= BIT0;  }
        else{
            P1OUT &= ~BIT0;  }
        printf("In MEM3.");
        int memval = ADC12MEM3;             // Memory stored in MEM3
        printf("%d\n", memval);
            // Exit from LPM0 and continue executing main
            __bic_SR_register_on_exit(LPM0_bits);
            break;
        case ADC12IV__ADC12IFG4:   break;   // Vector 20:  ADC12MEM4
        case ADC12IV__ADC12IFG5:   break;   // Vector 22:  ADC12MEM5
        case ADC12IV__ADC12IFG6:   break;   // Vector 24:  ADC12MEM6
        case ADC12IV__ADC12IFG7:   break;   // Vector 26:  ADC12MEM7
        case ADC12IV__ADC12IFG8:   break;   // Vector 28:  ADC12MEM8
        case ADC12IV__ADC12IFG9:   break;   // Vector 30:  ADC12MEM9
        case ADC12IV__ADC12IFG10:  break;   // Vector 32:  ADC12MEM10
        case ADC12IV__ADC12IFG11:  break;   // Vector 34:  ADC12MEM11
        case ADC12IV__ADC12IFG12:  break;   // Vector 36:  ADC12MEM12
        case ADC12IV__ADC12IFG13:  break;   // Vector 38:  ADC12MEM13
        case ADC12IV__ADC12IFG14:  break;   // Vector 40:  ADC12MEM14
        case ADC12IV__ADC12IFG15:  break;   // Vector 42:  ADC12MEM15
        case ADC12IV__ADC12IFG16:  break;   // Vector 44:  ADC12MEM16
        case ADC12IV__ADC12IFG17:  break;   // Vector 46:  ADC12MEM17
        case ADC12IV__ADC12IFG18:  break;   // Vector 48:  ADC12MEM18
        case ADC12IV__ADC12IFG19:  break;   // Vector 50:  ADC12MEM19
        case ADC12IV__ADC12IFG20:  break;   // Vector 52:  ADC12MEM20
        case ADC12IV__ADC12IFG21:  break;   // Vector 54:  ADC12MEM21
        case ADC12IV__ADC12IFG22:  break;   // Vector 56:  ADC12MEM22
        case ADC12IV__ADC12IFG23:  break;   // Vector 58:  ADC12MEM23
        case ADC12IV__ADC12IFG24:  break;   // Vector 60:  ADC12MEM24
        case ADC12IV__ADC12IFG25:  break;   // Vector 62:  ADC12MEM25
        case ADC12IV__ADC12IFG26:  break;   // Vector 64:  ADC12MEM26
        case ADC12IV__ADC12IFG27:  break;   // Vector 66:  ADC12MEM27
        case ADC12IV__ADC12IFG28:  break;   // Vector 68:  ADC12MEM28
        case ADC12IV__ADC12IFG29:  break;   // Vector 70:  ADC12MEM29
        case ADC12IV__ADC12IFG30:  break;   // Vector 72:  ADC12MEM30
        case ADC12IV__ADC12IFG31:  break;   // Vector 74:  ADC12MEM31
        case ADC12IV__ADC12RDYIFG: break;   // Vector 76:  ADC12RDY
        default: break;
    }
}

到目前为止我的代码。 我的最终目标是从这两个电压源中收集ADC信息,减去它们,然后从下一个采样时间(我计划的采样时间为32Hz)中收集ADC信息,再减去它们两个,然后比较这两个ADC信息。 我这样做是为了比较两个解调FM信号(如果这有帮助)。 如果需要更多信息,请告诉我。

  • 请注意,本文内容源自机器翻译,可能存在语法或其它翻译错误,仅供参考。如需获取准确内容,请参阅链接中的英语原文或自行翻译。

    我找到了解决方案:

    #include <msp430.h>
    #include <stdio.h>
    
    int main(void)
    {
        WDTCTL = WDTPW | WDTHOLD;               // Stop WDT
    
        // GPIO Setup
        P1OUT &= ~BIT0;                         // Clear LED to start
        P1DIR |= BIT0;                          // Set P1.0/LED to output
        P1SEL1 |= BIT2 | BIT3 ;                 // Configure P1.2 and P1.3 for ADC input (See p369, p88 of specific for pin config details.)
        P1SEL0 |= BIT2 | BIT3 ;                 // There are two Pin Select bits (p88_s)
    
        // Disable the GPIO power-on default high-impedance mode to activate
        // previously configured port settings (p92)
        PM5CTL0 &= ~LOCKLPM5;
        printf("17\n");
        // Configure ADC12
        ADC12CTL0 = ADC12SHT0_2 | ADC12ON;      // Sampling time, S&H=16, ADC12 on [p893, CTL0 = control 0, SHT0_2 = sample & hold time, knowledge of register value from p88_s]
        ADC12CTL1 = ADC12SHP | ADC12CONSEQ_1;   // Use sampling timer [p895, Sampler uses sampling timer (not sure what that is yet)]
        ADC12CTL2 |= ADC12RES_2;                // 12-bit conversion results [p897, RES means resolution, _2 means 12 bits]
        ADC12CTL3 |= ADC12CSTARTADD_2;          // Use MEM2/MCTL2
        ADC12MCTL2 |= ADC12INCH_2;              // A2 ADC input select; Vref=AVCC [MCTL2 = Memory Control 2 (p900), INCH = input channel, 2 means channel A2]
        ADC12MCTL3 |= ADC12INCH_3;
        ADC12IER0 |= ADC12IE2 | ADC12IE3;       // Enable ADC conv complete interrupt [p903, means "interrupt enable register 0". Enables or disables the interrupt request for ADC12IFG2 bit]
        printf("Got here.\n");
    
        while (1)
        {
            printf("Got there.\n");
            __delay_cycles(5000);
            ADC12MCTL3 ^= ADC12EOS;
            ADC12CTL0 |= ADC12ENC | ADC12SC;    // Start sampling/conversion [p893, ENC = enable conversion, SC = start conversion. difference between the two = idfk, but remember to have both set]
    
            __bis_SR_register(LPM0_bits | GIE); // LPM0, ADC12_ISR will force exit
    
           // printf("Got nowhere.\n");
            __no_operation();                   // For debugger
        }
    }
    
    #if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
    #pragma vector = ADC12_B_VECTOR
    __interrupt void ADC12_ISR(void)
    #elif defined(__GNUC__)
    void __attribute__ ((interrupt(ADC12_B_VECTOR))) ADC12_ISR (void)
    #else
    #error Compiler not supported!
    #endif
    {
        switch(__even_in_range(ADC12IV, ADC12IV__ADC12RDYIFG))
        {
            case ADC12IV__NONE:        break;   // Vector  0:  No interrupt
            case ADC12IV__ADC12OVIFG:  break;   // Vector  2:  ADC12MEMx Overflow
            case ADC12IV__ADC12TOVIFG: break;   // Vector  4:  Conversion time overflow
            case ADC12IV__ADC12HIIFG:  break;   // Vector  6:  ADC12BHI
            case ADC12IV__ADC12LOIFG:  break;   // Vector  8:  ADC12BLO
            case ADC12IV__ADC12INIFG:  break;   // Vector 10:  ADC12BIN
            case ADC12IV__ADC12IFG0:            // Vector 12:  ADC12MEM0 Interrupt
                break;
            case ADC12IV__ADC12IFG1:   break;   // Vector 14:  ADC12MEM1
            case ADC12IV__ADC12IFG2:            // Vector 16:  ADC12MEM2
                if (ADC12MEM2 >= 0x7ff) {       // ADC12MEM2 = A1 > 0.5AVcc?
                    P1OUT |= BIT0;  }           // P1.0 = 1
                else{
                    P1OUT &= ~BIT0;  }          // P1.0 = 0
                printf("In MEM2.\n");
                int memval2 = ADC12MEM2;         // Memory stored in MEM2
                printf("%d\n", memval2);
                    // Exit from LPM0 and continue executing main
                    __bic_SR_register_on_exit(LPM0_bits);
                    break;
            case ADC12IV__ADC12IFG3:            // Vector 18:  ADC12MEM3
                if (ADC12MEM3 >= 0x7ff) {
                    P1OUT |= BIT0;  }
                else{
                    P1OUT &= ~BIT0;  }
                printf("In MEM3.\n");
                int memval3 = ADC12MEM3;             // Memory stored in MEM3
                ADC12MCTL3 |= ADC12EOS;         // Needed to signal an end of sequence.
                printf("%d\n", memval3);
                    // Exit from LPM0 and continue executing main
                    __bic_SR_register_on_exit(LPM0_bits);
                    break;
            case ADC12IV__ADC12IFG4:   break;   // Vector 20:  ADC12MEM4
            case ADC12IV__ADC12IFG5:   break;   // Vector 22:  ADC12MEM5
            case ADC12IV__ADC12IFG6:   break;   // Vector 24:  ADC12MEM6
            case ADC12IV__ADC12IFG7:   break;   // Vector 26:  ADC12MEM7
            case ADC12IV__ADC12IFG8:   break;   // Vector 28:  ADC12MEM8
            case ADC12IV__ADC12IFG9:   break;   // Vector 30:  ADC12MEM9
            case ADC12IV__ADC12IFG10:  break;   // Vector 32:  ADC12MEM10
            case ADC12IV__ADC12IFG11:  break;   // Vector 34:  ADC12MEM11
            case ADC12IV__ADC12IFG12:  break;   // Vector 36:  ADC12MEM12
            case ADC12IV__ADC12IFG13:  break;   // Vector 38:  ADC12MEM13
            case ADC12IV__ADC12IFG14:  break;   // Vector 40:  ADC12MEM14
            case ADC12IV__ADC12IFG15:  break;   // Vector 42:  ADC12MEM15
            case ADC12IV__ADC12IFG16:  break;   // Vector 44:  ADC12MEM16
            case ADC12IV__ADC12IFG17:  break;   // Vector 46:  ADC12MEM17
            case ADC12IV__ADC12IFG18:  break;   // Vector 48:  ADC12MEM18
            case ADC12IV__ADC12IFG19:  break;   // Vector 50:  ADC12MEM19
            case ADC12IV__ADC12IFG20:  break;   // Vector 52:  ADC12MEM20
            case ADC12IV__ADC12IFG21:  break;   // Vector 54:  ADC12MEM21
            case ADC12IV__ADC12IFG22:  break;   // Vector 56:  ADC12MEM22
            case ADC12IV__ADC12IFG23:  break;   // Vector 58:  ADC12MEM23
            case ADC12IV__ADC12IFG24:  break;   // Vector 60:  ADC12MEM24
            case ADC12IV__ADC12IFG25:  break;   // Vector 62:  ADC12MEM25
            case ADC12IV__ADC12IFG26:  break;   // Vector 64:  ADC12MEM26
            case ADC12IV__ADC12IFG27:  break;   // Vector 66:  ADC12MEM27
            case ADC12IV__ADC12IFG28:  break;   // Vector 68:  ADC12MEM28
            case ADC12IV__ADC12IFG29:  break;   // Vector 70:  ADC12MEM29
            case ADC12IV__ADC12IFG30:  break;   // Vector 72:  ADC12MEM30
            case ADC12IV__ADC12IFG31:  break;   // Vector 74:  ADC12MEM31
            case ADC12IV__ADC12RDYIFG: break;   // Vector 76:  ADC12RDY
            default: break;
        }
    }
    

    我需要将CONSEQ位设置为01,这会将操作模式更改为通道模式序列( 在p879中解释),并在MEM3中断时将ADC12EOS位设置为1 (第79行,在 P900中解释)。 每次重新激活代码或序列停止时,都需要关闭此位。