大家好!我用的28335epwm同步,epwm2,epwm3,epwm4同步epwm1,均设置为增计数模式。但是发现一件奇怪的事,我测波形输出看到epwm1设置的增计数但是实际上是减计数模式,而epwm2,epwm3,epwm4同步中断了并且是曾计数模式与设置一样。
求解??
谢谢!!!
This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
大家好!我用的28335epwm同步,epwm2,epwm3,epwm4同步epwm1,均设置为增计数模式。但是发现一件奇怪的事,我测波形输出看到epwm1设置的增计数但是实际上是减计数模式,而epwm2,epwm3,epwm4同步中断了并且是曾计数模式与设置一样。
求解??
谢谢!!!
10#你好!!!
我的代码设置如下,麻烦看下!!
另外就是epwm2和epwm3正常增计数工作了,同步中断了也应该。但是看下面的设置epwm1和epwm3的波形是不是应该是一样的,设置增计数,那么一个pwm周期内高电平时时间从最大达越来越小直至为0(pwm周期为1874),现在我用示波器看epwm1a的输出和epwm3a的波形,epwma正常是高电平时间越来越短,但是epwm1a的波形变化正好跟它相反,高电平从0开始增加到1874,?
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3
// These functions are in the DSP2833x_EPwm.c file
/// InitEPwm1Gpio();
//InitEPwm2Gpio();
//InitEPwm3Gpio();
InitEPwmGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.EPWM1_INT = &Main_isr;
//PieVectTable.EPWM2_INT = &epwm2_isr;
// PieVectTable.EPWM3_INT = &epwm3_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// For this example, only initialize the ePWM
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
EDIS;
InitEPwm1Example();
InitEPwm2Example();
InitEPwm3Example();
EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Enable INT on Zero event
EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable INT
EPwm1Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 1st event
EPwm1Regs.ETCLR.bit.INT = 1;
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
EDIS;
// Step 5. User specific code, enable interrupts:
// Enable CPU INT3 which is connected to EPWM1-3 INT:
IER |= M_INT3;
// Enable EPWM INTn in the PIE: Group 3 interrupt 1-3
PieCtrlRegs.PIEIER3.bit.INTx1 = 1;
//PieCtrlRegs.PIEIER3.bit.INTx2 = 1;
//PieCtrlRegs.PIEIER3.bit.INTx3 = 1;
// Enable global Interrupts and higher priority real-time debug events:
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
d1=0;
d2=0;
// Step 6. IDLE loop. Just sit and loop forever (optional):
for(;;)
{
}
interrupt void Main_isr(void )
{
// Update the CMPA and CMPB values
//update_compare(&epwm1_info);
d1++;
// d2++;
if(d1==1874)
{
d1=0;
}
// if(d2==800)
// {
// d2=0;
// }
EPwm1Regs.CMPA.half.CMPA = d1;
EPwm1Regs.CMPB = 150;
EPwm2Regs.CMPA.half.CMPA = 80;
EPwm2Regs.CMPB = 160;
EPwm3Regs.CMPA.half.CMPA = d1;
EPwm3Regs.CMPB = d1;
// Clear INT flag for this timer
EPwm1Regs.ETCLR.bit.INT = 1;
// Acknowledge this interrupt to receive more interrupts from group 3
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
void InitEPwm1Example()
{
// Setup TBCLK
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
EPwm1Regs.TBPRD = EPWM1_TIMER_TBPRD; // Set timer period
EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
EPwm1Regs.TBCTR = 0x0000; // Clear counter
// EPwm1Regs.TBCTL.bit.PHSDIR = 0; //此位在递增或递减模式下忽略
EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW;
EPwm1Regs.TBCTL.bit.SYNCOSEL =TB_CTR_ZERO; //主模块不需要同步信号
EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT
EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV4;
// Setup shadow register load on ZERO
EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
// Set Compare values
EPwm1Regs.CMPA.half.CMPA = 100; // Set compare A value
EPwm1Regs.CMPB = 100; // Set Compare B value
// Set actions
EPwm1Regs.AQCTLA.bit.ZRO = AQ_SET; // Set PWM1A on Zero
EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Clear PWM1A on event A, up count
EPwm1Regs.AQCTLB.bit.ZRO = AQ_SET; // Set PWM1B on Zero
EPwm1Regs.AQCTLB.bit.CBU = AQ_CLEAR; // Clear PWM1B on event B, up count
}
void InitEPwm2Example()
{
// Setup TBCLK
EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
EPwm2Regs.TBPRD = EPWM2_TIMER_TBPRD; // Set timer period
EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Disable phase loading
EPwm2Regs.TBPHS.half.TBPHS = 0x0; // Phase is 0
EPwm2Regs.TBCTR = 0x0000; // Clear counter
EPwm2Regs.TBCTL.bit.PRDLD = TB_SHADOW;
//EPwm2Regs.TBCTL.bit.PHSDIR = 1; //此位在递增或递减模式下忽略
EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; //从模块需要同步信号
EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT
EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV4;
// Setup shadow register load on ZERO
EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
// Set Compare values
EPwm2Regs.CMPA.half.CMPA = 100; // Set compare A value
EPwm2Regs.CMPB =100; // Set Compare B value
// Set actions
EPwm2Regs.AQCTLA.bit.PRD = AQ_CLEAR; // Clear PWM2A on Period
EPwm2Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM2A on event A, up count
EPwm2Regs.AQCTLB.bit.PRD = AQ_CLEAR; // Clear PWM2B on Period
EPwm2Regs.AQCTLB.bit.CBU = AQ_SET; // Set PWM2B on event B, up count
}
void InitEPwm3Example(void)
{
// Setup TBCLK
EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
EPwm3Regs.TBPRD = EPWM3_TIMER_TBPRD; // Set timer period
EPwm3Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Disable phase loading
EPwm3Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
EPwm3Regs.TBCTR = 0x0000; // Clear counter
EPwm3Regs.TBCTL.bit.PRDLD = TB_SHADOW;
//EPwm2Regs.TBCTL.bit.PHSDIR = 1; //此位在递增或递减模式下忽略
EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; //从模块需要同步信号
EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT
EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV4;
// Setup shadow register load on ZERO
EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
// Set Compare values
EPwm3Regs.CMPA.half.CMPA = 100; // Set compare A value
EPwm3Regs.CMPB = 100; // Set Compare B value
// Set Actions
EPwm3Regs.AQCTLA.bit.PRD = AQ_CLEAR; // Clear PWM2A on Period
EPwm3Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM2A on event A, up count
EPwm3Regs.AQCTLB.bit.PRD = AQ_CLEAR; // Clear PWM2B on Period
EPwm3Regs.AQCTLB.bit.CBU = AQ_SET;
再次感谢10#先生!!!3q!!!
首先,根据epwm1a的输出和epwm3a的波形来判断计数方向的方法是不正确的,因为你的PWM输出方式除了跟计数方向有关,同时还跟动作模式(AQ)相关;
其次,如果需要判断,则可以直接查看计数值CNT,比如在CCS窗口中运行前,读取各自的CNT,然后运行一会暂停再读取,如此反复,则同是增计数时,应该任意时刻读出的值都是比前一时刻大的,除非在过周期后;另一方面,由于你的PWM设置成所有周期都相同且进行了同步,则读出的值应该都是相同的,或者相差一两个计数;如果不能在CCS环境下读取,你可以增加代码来读取,通过打印的方式看看是不是这个结论;
最后,你的问题,就在于PWM1/3的AQ设置是不同的,PWM1A是在计数过零时置高,增计数到CMPA时置低,而PWM3A则相反,是在计数为周期时(也就相当于在过零,其实是下一个clock)置低,增计数到CMPA时置高,所以你看到的波形必然是PWM1A和PWM3A刚好相反。
结论:1. 如果你把对应的AQ设置改成一样,你看到的波形变化应该是相同的,但这跟计数方向没有关系;
2. 你现在的计数方式本身就是三个都是增计数(只由CTRMODE 决定,你的程序都设置为TB_COUNT_UP)。