This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

can通信一直不通



// TI File $Revision: /main/8 $
// Checkin $Date: August 10, 2007 09:04:22 $
//###########################################################################
// Filename: Example_28xEcan_A_to_B_Xmit.c
//
// Description: eCAN-A To eCAN-B TXLOOP - Transmit loop
//
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Both CAN ports of the 2833x DSP need to be connected
// to each other (via CAN transceivers)
//
// eCANA is on GPIO19(CANTXA) and
// GPIO18 (CANRXA)
//
// eCANB is on GPIO20 (CANTXB) and
// GPIO21 (CANRXB)
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This example TRANSMITS data to another CAN module using MAILBOX5
// This program could either loop forever or transmit "n" # of times,
// where "n" is the TXCOUNT value.
//
// This example can be used to check CAN-A and CAN-B. Since CAN-B is
// initialized in DSP2833x_ECan.c, it will acknowledge all frames
// transmitted by the node on which this code runs. Both CAN ports of
// the 2833x DSP need to be connected to each other (via CAN transceivers)
//
//###########################################################################
// Original Author: HJ
//
// $TI Release: DSP2833x Header Files V1.10 $
// $Release Date: February 15, 2008 $
//###########################################################################

#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File

#define TXCOUNT 100 // Transmission will take place (TXCOUNT) times..

// Globals for this example
long i,j;
long loopcount = 0;
volatile struct MBOX *Mailbox;
Uint32 ErrorCount;
Uint32 PassCount;
Uint32 MessageReceivedCount;

Uint32 TestMbox1 = 0;
Uint32 TestMbox2 = 0;
Uint32 TestMbox3 = 0;


void mailbox_check(int32 T1, int32 T2, int32 T3)
{
if((T1 !=0x55555555 ) || ( T2 != 0xAAAAAAAA)|| ( T3 != 0x95555555))
{
ErrorCount++;
}
else
{
PassCount++;
}
}


void main()
{

/* Create a shadow register structure for the CAN control registers. This is
needed, since, only 32-bit access is allowed to these registers. 16-bit access
to these registers could potentially corrupt the register contents. This is
especially true while writing to a bit (or group of bits) among bits 16 - 31 */

struct ECAN_REGS ECanaShadow;
struct ECAN_REGS ECanbShadow;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();

// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example

// Just initalize eCAN pins for this example
// This function is in DSP2833x_ECan.c
InitECanGpio();

// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;

// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();

// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.

// No interrupts used in this example.

// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example

// In this case just initalize eCAN-A and eCAN-B
// This function is in DSP2833x_ECan.c
InitECan();
ErrorCount = 0;
PassCount = 0;
// Step 5. User specific code:

/* Write to the MSGID field */

ECanaMboxes.MBOX25.MSGID.all = 0x95555555; // Extended Identifier

ECanbMboxes.MBOX25.MSGID.all = 0x95555555; // Extended Identifier
/* Configure Mailbox under test as a Transmit mailbox */

ECanaShadow.CANMD.all = ECanaRegs.CANMD.all;
ECanaShadow.CANMD.bit.MD25 = 0;
ECanaRegs.CANMD.all = ECanaShadow.CANMD.all;

ECanbShadow.CANMD.all = ECanbRegs.CANMD.all;
ECanbShadow.CANMD.bit.MD25 = 1;
ECanbRegs.CANMD.all = ECanbShadow.CANMD.all;

/* Enable Mailbox under test */

ECanaShadow.CANME.all = ECanaRegs.CANME.all;
ECanaShadow.CANME.bit.ME25 = 1;
ECanaRegs.CANME.all = ECanaShadow.CANME.all;

ECanbShadow.CANME.all = ECanbRegs.CANME.all;
ECanbShadow.CANME.bit.ME25 = 1;
ECanbRegs.CANME.all = ECanbShadow.CANME.all;

/* Write to DLC field in Master Control reg */

ECanaMboxes.MBOX25.MSGCTRL.bit.DLC = 8;

/* Write to the mailbox RAM field */

ECanaMboxes.MBOX25.MDL.all = 0x55555555;
ECanaMboxes.MBOX25.MDH.all = 0xAAAAAAAA;

/* Begin transmitting */


for(i=0; i < TXCOUNT; i++)
{
ECanaShadow.CANTRS.all = 0;
ECanaShadow.CANTRS.bit.TRS25 = 1; // Set TRS for mailbox under test
ECanaRegs.CANTRS.all = ECanaShadow.CANTRS.all;

do
{
ECanaShadow.CANTA.all = ECanaRegs.CANTA.all;
} while(ECanaShadow.CANTA.bit.TA25 == 0 ); // Wait for TA5 bit to be set..//如果线没有连接,如果线连接错误


ECanaShadow.CANTA.all = 0;
ECanaShadow.CANTA.bit.TA25 = 1; // Clear TA5
ECanaRegs.CANTA.all = ECanaShadow.CANTA.all;

Mailbox = &ECanbMboxes.MBOX0 + 25; //CANB读数据
TestMbox1 = Mailbox->MDL.all; // = 0x (n is the MBX number)
TestMbox2 = Mailbox->MDH.all; // = 0x (a constant)
TestMbox3 = Mailbox->MSGID.all;// = 0x (n is the MBX number)
mailbox_check(TestMbox1,TestMbox2,TestMbox3); // Checks the received data

loopcount ++;
}
if(ErrorCount == 0)
{
asm(" ESTOP0"); // OK,数据校验正确
}
else
{
asm(" ESTOP0"); // ERROR,
}


//asm(" ESTOP0"); // Stop here
}

  • 你回环测试可以吗?debug卡在哪里了?如果不通的话先看一下波特率。

    //###########################################################################
    //
    // FILE:   Example_2833xECanBack2Back.c
    //
    // TITLE:  eCAN back to back Example
    //
    //! \addtogroup f2833x_example_list
    //! <h1>eCAN back to back (ecan_back2back)</h1>
    //!
    //! This example tests eCAN by transmitting data back-to-back at high speed
    //! without stopping. The received data is verified. Any error is flagged.
    //! MBX0 transmits to MBX16, MBX1 transmits to MBX17 and so on.... \n
    //! This program illustrates the use of self-test mode
    //!
    //! This example uses the self-test mode of the CAN module. i.e. the
    //! transmission/reception happens within the module itself (even the required
    //! ACKnowldege is generated internally in the module). Therefore, there is no
    //! need for a CAN transceiver to run this particular test case and no activity
    //! will be seen in the CAN pins/bus. Because everything is internal, there is
    //! no need for a 120-ohm termination resistor. Note that a real-world CAN
    //! application needs a CAN transceiver and termination resistors on both ends
    //! of the bus.
    //!
    //! \b Watch \b Variables \n
    //! - PassCount
    //! - ErrorCount
    //! - MessageReceivedCount
    //
    //
    //###########################################################################
    // $TI Release: F2833x Support Library v2.00.00.00 $
    // $Release Date: Thu Dec  7 18:50:20 CST 2017 $
    // $Copyright:
    // Copyright (C) 2009-2017 Texas Instruments Incorporated - http://www.ti.com/
    //
    // Redistribution and use in source and binary forms, with or without 
    // modification, are permitted provided that the following conditions 
    // are met:
    // 
    //   Redistributions of source code must retain the above copyright 
    //   notice, this list of conditions and the following disclaimer.
    // 
    //   Redistributions in binary form must reproduce the above copyright
    //   notice, this list of conditions and the following disclaimer in the 
    //   documentation and/or other materials provided with the   
    //   distribution.
    // 
    //   Neither the name of Texas Instruments Incorporated nor the names of
    //   its contributors may be used to endorse or promote products derived
    //   from this software without specific prior written permission.
    // 
    // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
    // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
    // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
    // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
    // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
    // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
    // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
    // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    // $
    //###########################################################################
    
    //
    // Included Files
    //
    #include "DSP28x_Project.h"     // Device Headerfile and Examples Include File
    
    //
    // Function Prototypes
    //
    void mailbox_check(int32 T1, int32 T2, int32 T3);
    void mailbox_read(int16 i);
    
    //
    // Globals
    //
    Uint32  ErrorCount;
    Uint32  PassCount;
    Uint32  MessageReceivedCount;
    
    Uint32  TestMbox1 = 0;
    Uint32  TestMbox2 = 0;
    Uint32  TestMbox3 = 0;
    
    //
    // Main
    //
    void main(void)
    {
        Uint16  j;
    
        //
        // eCAN control registers require read/write access using 32-bits.  Thus we
        // will create a set of shadow registers for this example.  These shadow
        // registers will be used to make sure the access is 32-bits and not 16.
        //
        struct ECAN_REGS ECanaShadow;
    
        //
        // Step 1. Initialize System Control:
        // PLL, WatchDog, enable Peripheral Clocks
        // This example function is found in the DSP2833x_SysCtrl.c file.
        //
        InitSysCtrl();
    
        //
        // Step 2. Initialize GPIO:
        // This example function is found in the DSP2833x_Gpio.c file and
        // illustrates how to set the GPIO to it's default state.
        //
        // InitGpio();  // Skipped for this example
    
        //
        // For this example, configure CAN pins using GPIO regs here
        // This function is found in DSP2833x_ECan.c
        //
        InitECanGpio();
    
        //
        // Step 3. Clear all interrupts and initialize PIE vector table:
        // Disable CPU interrupts
        //
        DINT;
    
        //
        // Initialize PIE control registers to their default state.
        // The default state is all PIE interrupts disabled and flags
        // are cleared.
        // This function is found in the DSP2833x_PieCtrl.c file.
        //
        InitPieCtrl();
    
        //
        // Disable CPU interrupts and clear all CPU interrupt flags:
        //
        IER = 0x0000;
        IFR = 0x0000;
    
        //
        // Initialize the PIE vector table with pointers to the shell Interrupt
        // Service Routines (ISR).
        // This will populate the entire table, even if the interrupt
        // is not used in this example.  This is useful for debug purposes.
        // The shell ISR routines are found in DSP2833x_DefaultIsr.c.
        // This function is found in DSP2833x_PieVect.c.
        //
        InitPieVectTable();
    
        //
        // Step 4. Initialize all the Device Peripherals:
        // This function is found in DSP2833x_InitPeripherals.c
        //
        // InitPeripherals(); // Not required for this example
    
        //
        // Step 5. User specific code, enable interrupts:
        //
        MessageReceivedCount = 0;
        ErrorCount = 0;
        PassCount = 0;
    
        //
        // Initialize eCAN-A module
        //
        InitECana();
    
        //
        // Mailboxes can be written to 16-bits or 32-bits at a time
        // Write to the MSGID field of TRANSMIT mailboxes MBOX0 - 15
        //
        ECanaMboxes.MBOX0.MSGID.all = 0x9555AAA0;
        ECanaMboxes.MBOX1.MSGID.all = 0x9555AAA1;
        ECanaMboxes.MBOX2.MSGID.all = 0x9555AAA2;
        ECanaMboxes.MBOX3.MSGID.all = 0x9555AAA3;
        ECanaMboxes.MBOX4.MSGID.all = 0x9555AAA4;
        ECanaMboxes.MBOX5.MSGID.all = 0x9555AAA5;
        ECanaMboxes.MBOX6.MSGID.all = 0x9555AAA6;
        ECanaMboxes.MBOX7.MSGID.all = 0x9555AAA7;
        ECanaMboxes.MBOX8.MSGID.all = 0x9555AAA8;
        ECanaMboxes.MBOX9.MSGID.all = 0x9555AAA9;
        ECanaMboxes.MBOX10.MSGID.all = 0x9555AAAA;
        ECanaMboxes.MBOX11.MSGID.all = 0x9555AAAB;
        ECanaMboxes.MBOX12.MSGID.all = 0x9555AAAC;
        ECanaMboxes.MBOX13.MSGID.all = 0x9555AAAD;
        ECanaMboxes.MBOX14.MSGID.all = 0x9555AAAE;
        ECanaMboxes.MBOX15.MSGID.all = 0x9555AAAF;
    
        //
        // Write to the MSGID field of RECEIVE mailboxes MBOX16 - 31
        //
        ECanaMboxes.MBOX16.MSGID.all = 0x9555AAA0;
        ECanaMboxes.MBOX17.MSGID.all = 0x9555AAA1;
        ECanaMboxes.MBOX18.MSGID.all = 0x9555AAA2;
        ECanaMboxes.MBOX19.MSGID.all = 0x9555AAA3;
        ECanaMboxes.MBOX20.MSGID.all = 0x9555AAA4;
        ECanaMboxes.MBOX21.MSGID.all = 0x9555AAA5;
        ECanaMboxes.MBOX22.MSGID.all = 0x9555AAA6;
        ECanaMboxes.MBOX23.MSGID.all = 0x9555AAA7;
        ECanaMboxes.MBOX24.MSGID.all = 0x9555AAA8;
        ECanaMboxes.MBOX25.MSGID.all = 0x9555AAA9;
        ECanaMboxes.MBOX26.MSGID.all = 0x9555AAAA;
        ECanaMboxes.MBOX27.MSGID.all = 0x9555AAAB;
        ECanaMboxes.MBOX28.MSGID.all = 0x9555AAAC;
        ECanaMboxes.MBOX29.MSGID.all = 0x9555AAAD;
        ECanaMboxes.MBOX30.MSGID.all = 0x9555AAAE;
        ECanaMboxes.MBOX31.MSGID.all = 0x9555AAAF;
    
        //
        // Configure Mailboxes 0-15 as Tx, 16-31 as Rx
        // Since this write is to the entire register (instead of a bit field)
        // a shadow register is not required.
        //
        ECanaRegs.CANMD.all = 0xFFFF0000;
    
        //
        // Enable all Mailboxes
        // Since this write is to the entire register (instead of a bit field)
        // a shadow register is not required.
        //
        ECanaRegs.CANME.all = 0xFFFFFFFF;
    
        //
        // Specify that 8 bits will be sent/received
        //
        ECanaMboxes.MBOX0.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX1.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX2.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX3.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX4.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX5.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX6.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX7.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX8.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX9.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX10.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX11.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX12.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX13.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX14.MSGCTRL.bit.DLC = 8;
        ECanaMboxes.MBOX15.MSGCTRL.bit.DLC = 8;
    
        //
        // Write to the mailbox RAM field of MBOX0 - 15
        //
        ECanaMboxes.MBOX0.MDL.all = 0x9555AAA0;
        ECanaMboxes.MBOX0.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX1.MDL.all = 0x9555AAA1;
        ECanaMboxes.MBOX1.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX2.MDL.all = 0x9555AAA2;
        ECanaMboxes.MBOX2.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX3.MDL.all = 0x9555AAA3;
        ECanaMboxes.MBOX3.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX4.MDL.all = 0x9555AAA4;
        ECanaMboxes.MBOX4.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX5.MDL.all = 0x9555AAA5;
        ECanaMboxes.MBOX5.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX6.MDL.all = 0x9555AAA6;
        ECanaMboxes.MBOX6.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX7.MDL.all = 0x9555AAA7;
        ECanaMboxes.MBOX7.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX8.MDL.all = 0x9555AAA8;
        ECanaMboxes.MBOX8.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX9.MDL.all = 0x9555AAA9;
        ECanaMboxes.MBOX9.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX10.MDL.all = 0x9555AAAA;
        ECanaMboxes.MBOX10.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX11.MDL.all = 0x9555AAAB;
        ECanaMboxes.MBOX11.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX12.MDL.all = 0x9555AAAC;
        ECanaMboxes.MBOX12.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX13.MDL.all = 0x9555AAAD;
        ECanaMboxes.MBOX13.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX14.MDL.all = 0x9555AAAE;
        ECanaMboxes.MBOX14.MDH.all = 0x89ABCDEF;
    
        ECanaMboxes.MBOX15.MDL.all = 0x9555AAAF;
        ECanaMboxes.MBOX15.MDH.all = 0x89ABCDEF;
    
        //
        // Since this write is to the entire register (instead of a bit field)
        // a shadow register is not required.
        //
        EALLOW;
        ECanaRegs.CANMIM.all = 0xFFFFFFFF;
    
        //
        // Configure the eCAN for self test mode
        // Enable the enhanced features of the eCAN.
        //
        EALLOW;
        ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
        ECanaShadow.CANMC.bit.STM = 1;      // Configure CAN for self-test mode
        ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
        EDIS;
    
        //
        // Begin transmitting
        //
        for(;;)
        {
            ECanaRegs.CANTRS.all = 0x0000FFFF; //Set TRS for all transmit mailboxes
            while(ECanaRegs.CANTA.all != 0x0000FFFF ) 
            {
                
            }   // Wait for all TAn bits to be set
            
            ECanaRegs.CANTA.all = 0x0000FFFF;   // Clear all TAn
            MessageReceivedCount++;
        
            //
            // Read from Receive mailboxes and begin checking for data
            //
            for(j=16; j<32; j++) // Read & check 16 mailboxes
            {
                //
                // This func reads the indicated mailbox data
                //
                mailbox_read(j);
                
                //
                // Checks the received data
                //
                mailbox_check(TestMbox1,TestMbox2,TestMbox3);
            }
        }
    }
    
    //
    // mailbox_read - This function reads out the contents of the indicated
    // by the Mailbox number (MBXnbr).
    //
    void 
    mailbox_read(int16 MBXnbr)
    {
        volatile struct MBOX *Mailbox;
        Mailbox = &ECanaMboxes.MBOX0 + MBXnbr;
        TestMbox1 = Mailbox->MDL.all;       // = 0x9555AAAn (n is the MBX number)
        TestMbox2 = Mailbox->MDH.all;       // = 0x89ABCDEF (a constant)
        TestMbox3 = Mailbox->MSGID.all;     // = 0x9555AAAn (n is the MBX number)
    } // MSGID of a rcv MBX is transmitted as the MDL data.
    
    //
    // mailbox_check - 
    //
    void 
    mailbox_check(int32 T1, int32 T2, int32 T3)
    {
        if((T1 != T3) || ( T2 != 0x89ABCDEF))
        {
            ErrorCount++;
        }
        else
        {
            PassCount++;
        }
    }
    
    //
    // End of File
    //
    
    

  • 请您检查下gpio的配置是否正确。