This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

tms320f280049 烧录程序运行问题

Other Parts Discussed in Thread: UNIFLASH

你好:

   我使用官网例程flashapi_ex1_program_autoecc,在CCS中debug程序到launchxl f280049c demo板中,程序可以运行并调试,并已确定程序烧录到flash中。当我把demo板断电重新开启时,程序无法运行

  • 你好,这本来就是个操作flash的例程,你是怎么判断程序没有运行的呢?
  • 我在程序中加入LED5灯亮的代码,在第一次debug时,灯是亮的,当我重启demo板时灯没有亮。我用uniflash查看flash memory,看到代码已烧录到flash中
  • 您是不是将LED的代码写在了 Example_CallFlashAPI();之后?

    测试代码如下,可以断电重新上电后闪烁

    //#############################################################################
    //
    // FILE:   flashapi_ex1_program_autoecc.c
    //
    // TITLE:  Flash programming example for AutoEcc option
    //
    //! \addtogroup driver_example_list
    //! <h1> Flash Programming for AutoECC </h1>
    //!
    //! This example demonstrates how to program Flash using API's AutoEcc 
    //! generation option.
    //!
    //! \b External \b Connections \n
    //!  - None.
    //!
    //! \b Watch \b Variables \n
    //!  - None.
    //!
    //
    //#############################################################################
    // $TI Release: F28004x Support Library v1.09.00.00 $
    // $Release Date: Thu Mar 19 07:26:52 IST 2020 $
    // $Copyright:
    // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com/
    //
    // Redistribution and use in source and binary forms, with or without 
    // modification, are permitted provided that the following conditions 
    // are met:
    // 
    //   Redistributions of source code must retain the above copyright 
    //   notice, this list of conditions and the following disclaimer.
    // 
    //   Redistributions in binary form must reproduce the above copyright
    //   notice, this list of conditions and the following disclaimer in the 
    //   documentation and/or other materials provided with the   
    //   distribution.
    // 
    //   Neither the name of Texas Instruments Incorporated nor the names of
    //   its contributors may be used to endorse or promote products derived
    //   from this software without specific prior written permission.
    // 
    // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
    // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
    // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
    // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
    // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
    // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
    // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
    // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    // $
    //#############################################################################
    
    //
    // Included Files
    //
    #include "driverlib.h"
    #include "device.h"
    
    //
    // Include Flash API include file
    //
    #include "F021_F28004x_C28x.h"
    
    //
    // Include Flash API example header file
    //
    #include "flash_programming_f28004x.h"
    
    
    //
    // Defines
    //
    
    // Length (in 16-bit words) of data buffer used for program
    #define  WORDS_IN_FLASH_BUFFER    0xFF
    
    //
    // Globals
    //
    
    //Data Buffers used for program operation using the flash API program function
    #pragma  DATA_SECTION(Buffer,"DataBufferSection");
    uint16   Buffer[WORDS_IN_FLASH_BUFFER + 1];
    uint32   *Buffer32 = (uint32 *)Buffer;
    
    
    //
    // Prototype of the functions used in this example
    //
    void Example_Error(Fapi_StatusType status);
    void Example_Done(void);
    void Example_CallFlashAPI(void);
    void FMSTAT_Fail(void);
    
    //
    // Main
    //
    void main(void)
    {
    int i=1;
    	//
        // Initialize device clock and peripherals
    	// Copy the Flash initialization code from Flash to RAM
        // Copy the Flash API from Flash to RAM
        // Configure Flash wait-states, fall back power mode, performance features and ECC
        //
        Device_init();
    
        //
        // Initialize GPIO
        //
        Device_initGPIO();
    
        GPIO_setPadConfig(DEVICE_GPIO_PIN_LED2, GPIO_PIN_TYPE_STD);
        GPIO_setDirectionMode(DEVICE_GPIO_PIN_LED2, GPIO_DIR_MODE_OUT);
    
        //
        // Initialize PIE and clear PIE registers. Disables CPU interrupts.
        //
        Interrupt_initModule();
    
        //
        // Initialize the PIE vector table with pointers to the shell Interrupt
        // Service Routines (ISR).
        //
        Interrupt_initVectorTable();
    
        //
        // Enable Global Interrupt (INTM) and realtime interrupt (DBGM)
        //
        EINT;
        ERTM;
    
    
        for(i=1;i<100;i++)
        {
            //
            // Turn on LED
            //
            GPIO_writePin(DEVICE_GPIO_PIN_LED2, 0);
    
            //
            // Delay for a bit.
            //
            DEVICE_DELAY_US(500000);
    
            //
            // Turn off LED
            //
            GPIO_writePin(DEVICE_GPIO_PIN_LED2, 1);
    
            //
            // Delay for a bit.
            //
            DEVICE_DELAY_US(500000);
        }
    
        //
        //  Notice that Flash API functions are mapped to RAM for execution in this example.
        //  In F28004x devices that have two banks, Flash API functions may be executed from
        //  one bank to perform Flash erase and program operations on the other bank.
        //  Flash API functions should not be executed from the same bank on which erase/
        //  program operations are in progress.
        //  Also, note that there should not be any access to the Flash bank on which erase/
        //  program operations are in progress.  Hence below function is mapped to RAM for
        //  execution.
        //
        Example_CallFlashAPI();
    
    
    
    
    }
    
    
    //*****************************************************************************
    //  Example_CallFlashAPI
    //
    //  This function will interface to the flash API.
    //  Flash API functions used in this function are executed from RAM in this
    //  example.
    //*****************************************************************************
    #ifdef __cplusplus
    #pragma CODE_SECTION(".TI.ramfunc");
    #else
    #pragma CODE_SECTION(Example_CallFlashAPI, ".TI.ramfunc");
    #endif
    void Example_CallFlashAPI(void)
    {
        uint32 u32Index = 0;
        uint16 i = 0;
        Fapi_StatusType  oReturnCheck;
        Fapi_FlashStatusType  oFlashStatus;
        Fapi_FlashStatusWordType  oFlashStatusWord;
    
        //
        // Note that wait-states are already configured in the Device_init().
        // However, if INTOSC is used as the clock source and
        // if the CPUCLK falls in the range (97,100] (check other ranges given in DS),
        // then an extra wait state is needed for FSM operations (erase/program).
        // Hence, below function call should be uncommented in case INTOSC is used.
        // At 100MHz, execution wait-states for external oscillator is 4 and hence
        // in this example, a wait-state of 5 is used below.
        // This example is using external oscillator as the clock source and hence
        // below is commented.
        //
        // This wait-state setting impacts both Flash banks. Applications which
        // perform simultaneous READ/FETCH of one bank and PROGRAM or ERASE of the other
        // bank must use the higher RWAIT setting during the PROGRAM or ERASE operation. OR
        // use a clock source or frequency with a common wait state setting
        // Example: Use 97MHz instead of 100MHz if it is acceptable for the application.
        //
        // In case, if user application increments wait-state before using API,
        // then remember to revert back to the original wait-state after the API usage
        // to avoid extra wait-state during application execution from Flash.
        //
        //
        // Flash_setWaitstates(FLASH0CTRL_BASE, 5);
    
        // Initialize the Flash API by providing the Flash register base address
        // and operating frequency.
        // This function is required to initialize the Flash API based on System frequency
        // before any other Flash API operation can be performed.
        // This function must also be called whenever System frequency or RWAIT is changed.
        oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS, 100);
    
        if(oReturnCheck != Fapi_Status_Success)
        {
            // Check Flash API documentation for possible errors
            Example_Error(oReturnCheck);
        }
    
        // Initialize the Flash banks and FMC for erase and program operations.
        // Fapi_setActiveFlashBank() function sets the Flash banks and FMC for further
        // Flash operations to be performed on the banks.
        // Note: It does not matter which bank is passed as the parameter to initialize.
        //       Both Banks and FMC get initialized with one function call unlike F2837xS.
        //       Hence there is no need to execute Fapi_setActiveFlashBank() for each bank.
        //       Executing for one bank is enough.
        oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
    
        if(oReturnCheck != Fapi_Status_Success)
        {
            // Check Flash API documentation for possible errors
            Example_Error(oReturnCheck);
        }
    
    
        // Erase Flash Bank0 sector6
        oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,
                                            (uint32 *)Bzero_Sector6_start);
    
        // Wait until FSM is done with erase sector operation
        while (Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}
    
    	if(oReturnCheck != Fapi_Status_Success)
    	{
    		// Check Flash API documentation for possible errors
    		Example_Error(oReturnCheck);
    	}
    
        // Read FMSTAT register contents to know the status of FSM after
        // erase command to see if there are any erase operation related errors
        oFlashStatus = Fapi_getFsmStatus();
        if(oFlashStatus != 0)
        {
            // Check Flash API documentation for FMSTAT and debug accordingly
            // Fapi_getFsmStatus() function gives the FMSTAT register contents.
        	// Check to see if any of the EV bit, ESUSP bit, CSTAT bit or
        	// VOLTSTAT bit is set (Refer to API documentation for more details).
        	FMSTAT_Fail();
        }
    
        // Do blank check
        // Verify that Bank0 sector6 is erased.  The Erase command itself does a verify as
        // it goes.  Hence erase verify by CPU reads (Fapi_doBlankCheck()) is optional.
        oReturnCheck = Fapi_doBlankCheck((uint32 *)Bzero_Sector6_start,
        		       Sector8KB_u32length,
                       &oFlashStatusWord);
    
        if(oReturnCheck != Fapi_Status_Success)
        {
            // Check Flash API documentation for error info
            Example_Error(oReturnCheck);
        }
    
    
        // A data buffer of max 8 16-bit words can be supplied to the program function.
        // Each word is programmed until the whole buffer is programmed or a
        // problem is found. However to program a buffer that has more than 8
        // words, program function can be called in a loop to program 8 words for
        // each loop iteration until the whole buffer is programmed.
        //
        // Remember that the main array flash programming must be aligned to
        // 64-bit address boundaries and each 64 bit word may only be programmed
        // once per write/erase cycle.  Meaning the length of the data buffer
        // (3rd parameter for Fapi_issueProgrammingCommand() function) passed
        // to the program function can only be either 4 or 8.
        //
        // Program data in Flash using "AutoEccGeneration" option.
        // When AutoEccGeneration opton is used, Flash API calculates ECC for the given
        // 64-bit data and programs it along with the 64-bit main array data.
        // Note that any unprovided data with in a 64-bit data slice
        // will be assumed as 1s for calculating ECC and will be programmed.
        //
        // Note that data buffer (Buffer) is aligned on 64-bit boundary for verify reasons.
        //
        // Monitor ECC address for Bank0 Sector6 while programming with AutoEcc mode.
        //
        // In this example, 0xFF+1 bytes are programmed in Flash Bank0 Sector6
        // along with auto-generated ECC.
    
        //
        // Fill a buffer with data to program into the flash.
        //
        for(i=0; i <= WORDS_IN_FLASH_BUFFER; i++)
        {
            Buffer[i] = i;
        }
    
        for(i=0, u32Index = Bzero_Sector6_start;
           (u32Index < (Bzero_Sector6_start + WORDS_IN_FLASH_BUFFER)) &&
           (oReturnCheck == Fapi_Status_Success); i+= 8, u32Index+= 8)
        {
    		oReturnCheck = Fapi_issueProgrammingCommand((uint32 *)u32Index, Buffer+i, 8,
    																				 0, 0, Fapi_AutoEccGeneration);
    
    		// Wait until the Flash program operation is over
    		while(Fapi_checkFsmForReady() == Fapi_Status_FsmBusy);
    
    		if(oReturnCheck != Fapi_Status_Success)
    		{
    			// Check Flash API documentation for possible errors
    			Example_Error(oReturnCheck);
    		}
    
    		// Read FMSTAT register contents to know the status of FSM after
    		// program command to see if there are any program operation related errors
    		oFlashStatus = Fapi_getFsmStatus();
    		if(oFlashStatus != 0)
    		{
    			//Check FMSTAT and debug accordingly
    			FMSTAT_Fail();
    		}
    
    		// Verify the programmed values.  Check for any ECC errors.
    		// The program command itself does a verify as it goes.
    		// Hence program verify by CPU reads (Fapi_doVerify()) is optional.
            oReturnCheck = Fapi_doVerify((uint32 *)u32Index,
                                         4, Buffer32+(i/2),
                                         &oFlashStatusWord);
    
    		if(oReturnCheck != Fapi_Status_Success)
    		{
    			// Check Flash API documentation for possible errors
    			Example_Error(oReturnCheck);
    		}
        }
    
    
    	// Erase the sector that is programmed above
        // Erase Bank0 Sector6
        oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,
                       (uint32 *)Bzero_Sector6_start);
    
        // Wait until FSM is done with erase sector operation
        while (Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}
    
    	if(oReturnCheck != Fapi_Status_Success)
    	{
    		// Check Flash API documentation for possible errors
    		Example_Error(oReturnCheck);
    	}
    
        // Read FMSTAT register contents to know the status of FSM after
        // erase command to see if there are any erase operation related errors
        oFlashStatus = Fapi_getFsmStatus();
        if(oFlashStatus != 0)
        {
            // Check Flash API documentation for FMSTAT and debug accordingly
            // Fapi_getFsmStatus() function gives the FMSTAT register contents.
        	// Check to see if any of the EV bit, ESUSP bit, CSTAT bit or
        	// VOLTSTAT bit is set (Refer to API documentation for more details).
        	FMSTAT_Fail();
        }
    
        // Do blank check
        // Verify that Bank0 sector6 is erased.  The Erase command itself does a verify as
        // it goes.  Hence erase verify by CPU reads (Fapi_doBlankCheck()) is optional.
        oReturnCheck = Fapi_doBlankCheck((uint32 *)Bzero_Sector6_start,
        		       Sector8KB_u32length,
                       &oFlashStatusWord);
    
        if(oReturnCheck != Fapi_Status_Success)
        {
            // Check Flash API documentation for error info
            Example_Error(oReturnCheck);
        }
    
        // In case, if user application increments wait-state before using API
        // for INTOSC reason, then remember to revert back (uncomment below funcion call)
        // to the original wait-state after the API usage to avoid extra wait-state
        // during application execution from Flash.
        // At 100MHz, execution wait-states is 4 and hence in this example,
        // a wait-state of 4 is used below.
        //
        // Flash_setWaitstates(FLASH0CTRL_BASE, 4);
    
        // Example is done here
        Example_Done();
    }
    
    //******************************************************************************
    // For this example, just stop here if an API error is found
    //******************************************************************************
    void Example_Error(Fapi_StatusType status)
    {
        //  Error code will be in the status parameter
            __asm("    ESTOP0");
    }
    
    //******************************************************************************
    //  For this example, once we are done just stop here
    //******************************************************************************
    void Example_Done(void)
    {
        __asm("    ESTOP0");
    }
    
    //******************************************************************************
    // For this example, just stop here if FMSTAT fail occurs
    //******************************************************************************
    void FMSTAT_Fail(void)
    {
        //  Error code will be in the status parameter
            __asm("    ESTOP0");
    }
    
    
    //
    // End of File
    //
    

    TI 诚邀您参加全新设计的产品页面测试,参加测试即可享有 TI 购物 9 折优惠码,点击加入 EP产品页面测试报名,名额有限。感谢您的参与!

  • 你好:
    你给的例程我试了,是可以的。但是我现在想把我的代码放在bank1中运行,修改了cmd文件就把入口地址从0x080000修改为0x090000,测试结果没有闪烁。不知道是不是我配置有问题,还是入口地址不能修改?
    谢谢!
  • 请附上您的cmd文件,我来测试一下
  • 你好,这是我修改的cmd文件
    MEMORY
    {
    PAGE 0 :
       /* BEGIN is used for the "boot to Flash" bootloader mode   */
       BEGIN            : origin = 0x090000, length = 0x000002
       RAMM0            : origin = 0x0000F5, length = 0x00030B
       RAMLS03        : origin = 0x008000, length = 0x002000
       RAMLS4      : origin = 0x00A000, length = 0x000800
       RESET            : origin = 0x3FFFC0, length = 0x000002
       /* Flash sectors */
       /* BANK 0 */
       FLASH_BANK0_SEC0  : origin = 0x080002, length = 0x000FFE /* on-chip Flash */
       FLASH_BANK0_SEC1  : origin = 0x081000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC2  : origin = 0x082000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC3  : origin = 0x083000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC4  : origin = 0x084000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC5  : origin = 0x085000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC6  : origin = 0x086000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC7  : origin = 0x087000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC8  : origin = 0x088000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC9  : origin = 0x089000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC10 : origin = 0x08A000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC11 : origin = 0x08B000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC12 : origin = 0x08C000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC13 : origin = 0x08D000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC14 : origin = 0x08E000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK0_SEC15 : origin = 0x08F000, length = 0x001000 /* on-chip Flash */
       /* BANK 1 */
       FLASH_BANK1_SEC0  : origin = 0x090002, length = 0x000FFE /* on-chip Flash */
       FLASH_BANK1_SEC1  : origin = 0x091000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC2  : origin = 0x092000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC3  : origin = 0x093000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC4  : origin = 0x094000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC5  : origin = 0x095000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC6  : origin = 0x096000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC7  : origin = 0x097000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC8  : origin = 0x098000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC9  : origin = 0x099000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC10 : origin = 0x09A000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC11 : origin = 0x09B000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC12 : origin = 0x09C000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC13 : origin = 0x09D000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC14 : origin = 0x09E000, length = 0x001000 /* on-chip Flash */
       FLASH_BANK1_SEC15 : origin = 0x09F000, length = 0x001000 /* on-chip Flash */
    PAGE 1 :
       BOOT_RSVD       : origin = 0x000002, length = 0x0000F3     /* Part of M0, BOOT rom will use this for stack */
       RAMM1           : origin = 0x000400, length = 0x000400     /* on-chip RAM block M1 */
       RAMLS5      : origin = 0x00A800, length = 0x000800
       RAMLS6      : origin = 0x00B000, length = 0x000800
       RAMLS7      : origin = 0x00B800, length = 0x000800
       RAMGS0      : origin = 0x00C000, length = 0x002000
       RAMGS1      : origin = 0x00E000, length = 0x002000
       RAMGS2      : origin = 0x010000, length = 0x002000
       RAMGS3      : origin = 0x012000, length = 0x002000
    }
    SECTIONS
    {
       codestart        : > BEGIN,     PAGE = 0, ALIGN(4)
       .text            : >>FLASH_BANK1_SEC1 | FLASH_BANK1_SEC2 | FLASH_BANK1_SEC3,   PAGE = 0, ALIGN(4)
       .cinit           : > FLASH_BANK1_SEC1,     PAGE = 0, ALIGN(4)
       .pinit           : > FLASH_BANK1_SEC1,     PAGE = 0, ALIGN(4)
       .switch          : > FLASH_BANK1_SEC1,     PAGE = 0, ALIGN(4)
       .reset           : > RESET,     PAGE = 0, TYPE = DSECT /* not used, */
       .cio             : > RAMLS03,    PAGE = 0
       .stack           : > RAMM1,     PAGE = 1
       .ebss            : > RAMLS5,    PAGE = 1
       .esysmem         : > RAMLS5,    PAGE = 1   
       .econst          : > FLASH_BANK1_SEC4,    PAGE = 0, ALIGN(4)
       ramgs0           : > RAMGS0,    PAGE = 1
       ramgs1           : > RAMGS1,    PAGE = 1
       GROUP
       {
           .TI.ramfunc
           { -l F021_API_F28004x_FPU32.lib}
       } LOAD = FLASH_BANK1_SEC1,
         RUN = RAMLS03,
         LOAD_START(_RamfuncsLoadStart),
         LOAD_SIZE(_RamfuncsLoadSize),
         LOAD_END(_RamfuncsLoadEnd),
         RUN_START(_RamfuncsRunStart),
         RUN_SIZE(_RamfuncsRunSize),
         RUN_END(_RamfuncsRunEnd),
         PAGE = 0, ALIGN(4)
       DataBufferSection : > RAMM1, PAGE = 1, ALIGN(4)
    }
    /*
    //===========================================================================
    // End of file.
    //===========================================================================
    */
  •    /* BEGIN is used for the "boot to Flash" bootloader mode   */
    Table 4-30. Flash Boot Options