This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
想同时利用DSP28335的CANA和CANB同时进行通信,在自响应测试(ACK)模式下,两路CAN均可以正常进行。但是,当设置为正常通讯模式时,CANB线路的信号总是会卡在ECanbRegs.CANTA.all != 0x0000FFFF的等待循环中,CAN总线上也监测不到任何响应。应该要如何修改呢?
CANB的配置完全是按照CANA的模式修改的,仅仅把ECana改成了ECanb,邮箱的地址进行了修改,保证没有冲突。是这里使用的不当吗?
具体代码如下:在ACK模式下,均可以正常运行,但是,在正常通讯模式下,ECANb会发送失败,在循环中卡住。
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File #include "DSP2833x_Examples.h" // DSP2833x Examples Include File // Global variable for this example Uint32 MessageReceivedCount; void main(void) { // eCAN control registers require read/write access using 32-bits. Thus we // will create a set of shadow registers for this example. These shadow // registers will be used to make sure the access is 32-bits and not 16. struct ECAN_REGS ECanaShadow; struct ECAN_REGS ECanbShadow; // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // For this example, configure CAN pins using GPIO regs here // This function is found in DSP2833x_ECan.c //InitECanGpio(); InitECanaGpio(); InitECanbGpio(); // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Step 4. Initialize all the Device Peripherals: // This function is found in DSP2833x_InitPeripherals.c // InitPeripherals(); // Not required for this example // Step 5. User specific code, enable interrupts: // eCAN control registers require 32-bit access. // If you want to write to a single bit, the compiler may break this // access into a 16-bit access. One solution, that is presented here, // is to use a shadow register to force the 32-bit access. // Read the entire register into a shadow register. This access // will be 32-bits. Change the desired bit and copy the value back // to the eCAN register with a 32-bit write. // Configure the eCAN RX and TX pins for eCAN transmissions EALLOW; //CAN A ECanaShadow.CANTIOC.all = ECanaRegs.CANTIOC.all; ECanaShadow.CANTIOC.bit.TXFUNC = 1; ECanaRegs.CANTIOC.all = ECanaShadow.CANTIOC.all; ECanaShadow.CANRIOC.all = ECanaRegs.CANRIOC.all; ECanaShadow.CANRIOC.bit.RXFUNC = 1; ECanaRegs.CANRIOC.all = ECanaShadow.CANRIOC.all; //CAN B ECanbShadow.CANTIOC.all = ECanbRegs.CANTIOC.all; ECanbShadow.CANTIOC.bit.TXFUNC = 1; ECanbRegs.CANTIOC.all = ECanbShadow.CANTIOC.all; ECanbShadow.CANRIOC.all = ECanbRegs.CANRIOC.all; ECanbShadow.CANRIOC.bit.RXFUNC = 1; ECanbRegs.CANRIOC.all = ECanbShadow.CANRIOC.all; EDIS; // Disable all Mailboxes // Since this write is to the entire register (instead of a bit // field) a shadow register is not required. ECanaRegs.CANME.all = 0; ECanbRegs.CANME.all = 0; // Mailboxs can be written to 16-bits or 32-bits at a time // Write to the MSGID field of TRANSMIT mailboxes MBOX0 - 15 //CAN A ECanaMboxes.MBOX0.MSGID.all = 0x95550093; ECanaMboxes.MBOX1.MSGID.all = 0x95550094; ECanaMboxes.MBOX2.MSGID.all = 0x95550122; ECanaMboxes.MBOX3.MSGID.all = 0x95550125; ECanaMboxes.MBOX4.MSGID.all = 0x955501A1; ECanaMboxes.MBOX5.MSGID.all = 0x955501A2; ECanaMboxes.MBOX6.MSGID.all = 0x95550132; ECanaMboxes.MBOX7.MSGID.all = 0x95550135; ECanaMboxes.MBOX8.MSGID.all = 0x955501B1; ECanaMboxes.MBOX9.MSGID.all = 0x955501B2; ECanaMboxes.MBOX10.MSGID.all = 0x9555AAAA; ECanaMboxes.MBOX11.MSGID.all = 0x9555AAAB; ECanaMboxes.MBOX12.MSGID.all = 0x9555AAAC; ECanaMboxes.MBOX13.MSGID.all = 0x9555AAAD; ECanaMboxes.MBOX14.MSGID.all = 0x9555AAAE; ECanaMboxes.MBOX15.MSGID.all = 0x9555AAAF; //CAN B ECanbMboxes.MBOX0.MSGID.all = 0x9555B051; ECanbMboxes.MBOX1.MSGID.all = 0x9555B052; ECanbMboxes.MBOX2.MSGID.all = 0x9555B053; ECanbMboxes.MBOX3.MSGID.all = 0x9555B054; ECanbMboxes.MBOX4.MSGID.all = 0x9555B055; ECanbMboxes.MBOX5.MSGID.all = 0x9555B056; ECanbMboxes.MBOX6.MSGID.all = 0x9555B057; ECanbMboxes.MBOX7.MSGID.all = 0x9555B058; ECanbMboxes.MBOX8.MSGID.all = 0x9555B059; ECanbMboxes.MBOX9.MSGID.all = 0x9555B060; ECanbMboxes.MBOX10.MSGID.all = 0x9555B061; ECanbMboxes.MBOX11.MSGID.all = 0x9555B062; ECanbMboxes.MBOX12.MSGID.all = 0x9555B063; ECanbMboxes.MBOX13.MSGID.all = 0x9555B064; ECanbMboxes.MBOX14.MSGID.all = 0x9555B065; ECanbMboxes.MBOX15.MSGID.all = 0x9555B066; // Write to the MSGID field of RECEIVE mailboxes MBOX16 - 31 //CAN A ECanaMboxes.MBOX16.MSGID.all = 0x95550093; ECanaMboxes.MBOX17.MSGID.all = 0x95550094; ECanaMboxes.MBOX18.MSGID.all = 0x95550122; ECanaMboxes.MBOX19.MSGID.all = 0x95550125; ECanaMboxes.MBOX20.MSGID.all = 0x955501A1; ECanaMboxes.MBOX21.MSGID.all = 0x955501A2; ECanaMboxes.MBOX22.MSGID.all = 0x95550132; ECanaMboxes.MBOX23.MSGID.all = 0x95550135; ECanaMboxes.MBOX24.MSGID.all = 0x955501B1; ECanaMboxes.MBOX25.MSGID.all = 0x955501B2; ECanaMboxes.MBOX26.MSGID.all = 0x95550093; ECanaMboxes.MBOX27.MSGID.all = 0x95550094; ECanaMboxes.MBOX28.MSGID.all = 0x9555AAAC; ECanaMboxes.MBOX29.MSGID.all = 0x9555AAAD; ECanaMboxes.MBOX30.MSGID.all = 0x9555AAAE; ECanaMboxes.MBOX31.MSGID.all = 0x9555AAAF; //CAN B ECanbMboxes.MBOX16.MSGID.all = 0x9555B051; ECanbMboxes.MBOX17.MSGID.all = 0x9555B052; ECanbMboxes.MBOX18.MSGID.all = 0x9555B053; ECanbMboxes.MBOX19.MSGID.all = 0x9555B054; ECanbMboxes.MBOX20.MSGID.all = 0x9555B055; ECanbMboxes.MBOX21.MSGID.all = 0x9555B056; ECanbMboxes.MBOX22.MSGID.all = 0x9555B057; ECanbMboxes.MBOX23.MSGID.all = 0x9555B058; ECanbMboxes.MBOX24.MSGID.all = 0x9555B059; ECanbMboxes.MBOX25.MSGID.all = 0x9555B060; ECanbMboxes.MBOX26.MSGID.all = 0x9555B061; ECanbMboxes.MBOX27.MSGID.all = 0x9555B062; ECanbMboxes.MBOX28.MSGID.all = 0x9555B063; ECanbMboxes.MBOX29.MSGID.all = 0x9555B064; ECanbMboxes.MBOX30.MSGID.all = 0x9555B065; ECanbMboxes.MBOX31.MSGID.all = 0x9555B066; // Configure Mailboxes 0-15 as Tx, 16-31 as Rx // Since this write is to the entire register (instead of a bit // field) a shadow register is not required. ECanaRegs.CANMD.all = 0xFFFF0000; ECanbRegs.CANMD.all = 0xFFFF0000; // Enable all Mailboxes */ // Since this write is to the entire register (instead of a bit // field) a shadow register is not required. ECanbRegs.CANME.all = 0xFFFFFFFF; ECanaRegs.CANME.all = 0xFFFFFFFF; // Specify that 8 bits will be sent/received //CAN A ECanaMboxes.MBOX0.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX1.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX2.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX3.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX4.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX5.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX6.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX7.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX8.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX9.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX10.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX11.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX12.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX13.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX14.MSGCTRL.bit.DLC = 8; ECanaMboxes.MBOX15.MSGCTRL.bit.DLC = 8; //CAN B ECanbMboxes.MBOX0.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX1.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX2.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX3.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX4.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX5.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX6.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX7.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX8.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX9.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX10.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX11.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX12.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX13.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX14.MSGCTRL.bit.DLC = 8; ECanbMboxes.MBOX15.MSGCTRL.bit.DLC = 8; // No remote frame is requested // Since RTR bit is undefined upon reset, // it must be initialized to the proper value //CAN A ECanaMboxes.MBOX0.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX1.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX2.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX3.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX4.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX5.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX6.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX7.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX8.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX9.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX10.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX11.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX12.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX13.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX14.MSGCTRL.bit.RTR = 0; ECanaMboxes.MBOX15.MSGCTRL.bit.RTR = 0; //CAN B ECanbMboxes.MBOX0.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX1.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX2.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX3.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX4.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX5.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX6.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX7.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX8.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX9.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX10.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX11.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX12.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX13.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX14.MSGCTRL.bit.RTR = 0; ECanbMboxes.MBOX15.MSGCTRL.bit.RTR = 0; // Write to the mailbox RAM field of MBOX0 - 15 //CAN A ECanaMboxes.MBOX0.MDL.all = 0xBF; ECanaMboxes.MBOX0.MDH.all = 0x00; ECanaMboxes.MBOX1.MDL.all = 0xB5; ECanaMboxes.MBOX1.MDH.all = 0x00; ECanaMboxes.MBOX2.MDL.all = 0xB4; ECanaMboxes.MBOX2.MDH.all = 0x00; ECanaMboxes.MBOX3.MDL.all = 0xBE; ECanaMboxes.MBOX3.MDH.all = 0x00; ECanaMboxes.MBOX4.MDL.all = 0x1; ECanaMboxes.MBOX4.MDH.all = 0x00; ECanaMboxes.MBOX5.MDL.all = 0x2; ECanaMboxes.MBOX5.MDH.all = 0x00; ECanaMboxes.MBOX6.MDL.all = 0xB4; ECanaMboxes.MBOX6.MDH.all = 0x00; ECanaMboxes.MBOX7.MDL.all = 0xBE; ECanaMboxes.MBOX7.MDH.all = 0x00; ECanaMboxes.MBOX8.MDL.all = 0x1; ECanaMboxes.MBOX8.MDH.all = 0x00; ECanaMboxes.MBOX9.MDL.all = 0x2; ECanaMboxes.MBOX9.MDH.all = 0x00; ECanaMboxes.MBOX10.MDL.all = 0x9555AAAA; ECanaMboxes.MBOX10.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX11.MDL.all = 0x9555AAAB; ECanaMboxes.MBOX11.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX12.MDL.all = 0x9555AAAC; ECanaMboxes.MBOX12.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX13.MDL.all = 0x9555AAAD; ECanaMboxes.MBOX13.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX14.MDL.all = 0x9555AAAE; ECanaMboxes.MBOX14.MDH.all = 0x89ABCDEF; ECanaMboxes.MBOX15.MDL.all = 0x9555AAAF; ECanaMboxes.MBOX15.MDH.all = 0x89ABCDEF; //CAN B ECanbMboxes.MBOX0.MDL.all = 0xBFB; ECanbMboxes.MBOX0.MDH.all = 0x00B; ECanbMboxes.MBOX1.MDL.all = 0xB5B; ECanbMboxes.MBOX1.MDH.all = 0x00B; ECanbMboxes.MBOX2.MDL.all = 0xB4B; ECanbMboxes.MBOX2.MDH.all = 0x00B; ECanbMboxes.MBOX3.MDL.all = 0xBEB; ECanbMboxes.MBOX3.MDH.all = 0x00B; ECanbMboxes.MBOX4.MDL.all = 0x1B; ECanbMboxes.MBOX4.MDH.all = 0x00B; ECanbMboxes.MBOX5.MDL.all = 0x2B; ECanbMboxes.MBOX5.MDH.all = 0x00B; ECanbMboxes.MBOX6.MDL.all = 0xB4B; ECanbMboxes.MBOX6.MDH.all = 0x00B; ECanbMboxes.MBOX7.MDL.all = 0xBEB; ECanbMboxes.MBOX7.MDH.all = 0x00B; ECanbMboxes.MBOX8.MDL.all = 0x1B; ECanbMboxes.MBOX8.MDH.all = 0x00B; ECanbMboxes.MBOX9.MDL.all = 0x2B; ECanbMboxes.MBOX9.MDH.all = 0x00B; ECanbMboxes.MBOX10.MDL.all = 0x9555BAAA; ECanbMboxes.MBOX10.MDH.all = 0x89ABCDEB; ECanbMboxes.MBOX11.MDL.all = 0x9555BAAB; ECanbMboxes.MBOX11.MDH.all = 0x89ABCDEB; ECanbMboxes.MBOX12.MDL.all = 0x9555BAAC; ECanbMboxes.MBOX12.MDH.all = 0x89ABCDEB; ECanbMboxes.MBOX13.MDL.all = 0x9555BAAD; ECanbMboxes.MBOX13.MDH.all = 0x89ABCDEB; ECanbMboxes.MBOX14.MDL.all = 0x9555BAAE; ECanbMboxes.MBOX14.MDH.all = 0x89ABCDEB; ECanbMboxes.MBOX15.MDL.all = 0x9555BAAF; ECanbMboxes.MBOX15.MDH.all = 0x89ABCDEB; // Since this write is to the entire register (instead of a bit // field) a shadow register is not required. EALLOW; ECanaRegs.CANMIM.all = 0xFFFFFFFF; ECanbRegs.CANMIM.all = 0xFFFFFFFF; // Request permission to change the configuration registers ECanaShadow.CANMC.all = ECanaRegs.CANMC.all; ECanaShadow.CANMC.bit.CCR = 1; ECanaRegs.CANMC.all = ECanaShadow.CANMC.all; ECanbShadow.CANMC.all = ECanbRegs.CANMC.all; ECanbShadow.CANMC.bit.CCR = 1; ECanbRegs.CANMC.all = ECanbShadow.CANMC.all; EDIS; // Wait until the CPU has been granted permission to change the // configuration registers // Wait for CCE bit to be set.. do { ECanaShadow.CANES.all = ECanaRegs.CANES.all; } while(ECanaShadow.CANES.bit.CCE != 1 ); do { ECanbShadow.CANES.all = ECanbRegs.CANES.all; } while(ECanbShadow.CANES.bit.CCE != 1 ); // Configure the eCAN timing EALLOW; //CAN A ECanaShadow.CANBTC.all = ECanaRegs.CANBTC.all; ECanaShadow.CANBTC.bit.BRPREG = 9; // (BRPREG + 1) = 10 feeds a 15 MHz CAN clock ECanaShadow.CANBTC.bit.TSEG2REG = 5 ; // to the CAN module. (150 / 10 = 15) ECanaShadow.CANBTC.bit.TSEG1REG = 7; // Bit time = 15 ECanaRegs.CANBTC.all = ECanaShadow.CANBTC.all; ECanaShadow.CANMC.all = ECanaRegs.CANMC.all; ECanaShadow.CANMC.bit.CCR = 0; ECanaRegs.CANMC.all = ECanaShadow.CANMC.all; //CAN B ECanbShadow.CANBTC.all = ECanbRegs.CANBTC.all; ECanbShadow.CANBTC.bit.BRPREG = 9; // (BRPREG + 1) = 10 feeds a 15 MHz CAN clock ECanbShadow.CANBTC.bit.TSEG2REG = 5 ; // to the CAN module. (150 / 10 = 15) ECanbShadow.CANBTC.bit.TSEG1REG = 7; // Bit time = 15 ECanbRegs.CANBTC.all = ECanbShadow.CANBTC.all; ECanbShadow.CANMC.all = ECanbRegs.CANMC.all; ECanbShadow.CANMC.bit.CCR = 0; ECanbRegs.CANMC.all = ECanbShadow.CANMC.all; EDIS; // Wait until the CPU no longer has permission to change the // configuration registers do { ECanaShadow.CANES.all = ECanaRegs.CANES.all; } while(ECanaShadow.CANES.bit.CCE != 0 ); do { ECanbShadow.CANES.all = ECanbRegs.CANES.all; } while(ECanbShadow.CANES.bit.CCE != 0 ); // Configure the eCAN for normal mode // Enable the enhanced features of the eCAN. EALLOW; //CAN A ECanaShadow.CANMC.all = ECanaRegs.CANMC.all; ECanaShadow.CANMC.bit.STM = 0; // Configure CAN for normal mode ECanaShadow.CANMC.bit.SCB = 1; // eCAN mode (reqd to access 32 mailboxes) ECanaShadow.CANMC.bit.ABO = 1; ECanaRegs.CANMC.all = ECanaShadow.CANMC.all; //CAN B ECanbShadow.CANMC.all = ECanbRegs.CANMC.all; ECanbShadow.CANMC.bit.STM = 0; // Configure CAN for normal mode ECanbShadow.CANMC.bit.SCB = 1; // eCAN mode (reqd to access 32 mailboxes) ECanbShadow.CANMC.bit.ABO = 1; ECanbRegs.CANMC.all = ECanbShadow.CANMC.all; EDIS; // Begin transmitting MessageReceivedCount=0; for(;;) { //CAN A ECanaRegs.CANTRS.all = 0x0000FFFF; // Set TRS for all transmit mailboxes while(ECanaRegs.CANTA.all != 0x0000FFFF ) {} // Wait for all TAn bits to be set.. ECanaRegs.CANTA.all = 0x0000FFFF; // Clear all TAn MessageReceivedCount++; //CAN B ECanbRegs.CANTRS.all = 0x0000FFFF; // Set TRS for all transmit mailboxes while(ECanbRegs.CANTA.all != 0x0000FFFF ) {} // Wait for all TAn bits to be set.. ECanbRegs.CANTA.all = 0x0000FFFF; // Clear all TAn } }
您好,我尝试了您说到的案例文件,可是该案例中只配置了eCANA的发送邮箱,并没有配置相应的eCANb上的接收邮箱。我把自己DSP板子的CANA和CANB的CANH和CANL分别接在了一起,但是,运行程序时,依然是卡在TA25置位的那里,说明数据并没有顺利发送出去。DSP2833x_ECan.c的初始化过程,只是把GPIO初始化,并不涉及CAN通讯的配置过程。是我对这个例程的理解有问题吗?在案例文件的基础上,我添加了eCANb接收邮箱的配置,依然是卡在同一个位置。是什么原因呢?
正确的案例使用方法,是这样的吗?把案例程序烧写进dsp,将A路和B路的CANH和CANL分别相接,运行。是这样的操作过程吗?