This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

关于DSP28335的CAN通讯,想要同时开启CANA和CANB模块时,CANB模块发送数据无法成果的相关的问题。

Other Parts Discussed in Thread: C2000WARE

想同时利用DSP28335的CANA和CANB同时进行通信,在自响应测试(ACK)模式下,两路CAN均可以正常进行。但是,当设置为正常通讯模式时,CANB线路的信号总是会卡在ECanbRegs.CANTA.all != 0x0000FFFF的等待循环中,CAN总线上也监测不到任何响应。应该要如何修改呢?

CANB的配置完全是按照CANA的模式修改的,仅仅把ECana改成了ECanb,邮箱的地址进行了修改,保证没有冲突。是这里使用的不当吗?

具体代码如下:在ACK模式下,均可以正常运行,但是,在正常通讯模式下,ECANb会发送失败,在循环中卡住。

#include "DSP2833x_Device.h"     // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h"   // DSP2833x Examples Include File
// Global variable for this example
Uint32  MessageReceivedCount;
void main(void)
{
// eCAN control registers require read/write access using 32-bits.  Thus we
// will create a set of shadow registers for this example.  These shadow
// registers will be used to make sure the access is 32-bits and not 16.
   struct ECAN_REGS ECanaShadow; 
   struct ECAN_REGS ECanbShadow;

// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
   InitSysCtrl();

// Step 2. Initalize GPIO: 
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio();  // Skipped for this example  

// For this example, configure CAN pins using GPIO regs here
// This function is found in DSP2833x_ECan.c
   //InitECanGpio();
   InitECanaGpio();
   InitECanbGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts 
   DINT;

// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.  
// This function is found in the DSP2833x_PieCtrl.c file.
   InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:
   IER = 0x0000;
   IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt 
// Service Routines (ISR).  
// This will populate the entire table, even if the interrupt
// is not used in this example.  This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
   InitPieVectTable();

// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
 
// Step 5. User specific code, enable interrupts:
    // eCAN control registers require 32-bit access. 
    // If you want to write to a single bit, the compiler may break this
    // access into a 16-bit access.  One solution, that is presented here,
    // is to use a shadow register to force the 32-bit access. 
     
    // Read the entire register into a shadow register.  This access
    // will be 32-bits.  Change the desired bit and copy the value back
    // to the eCAN register with a 32-bit write. 
   
    // Configure the eCAN RX and TX pins for eCAN transmissions
    EALLOW;
    //CAN A
    ECanaShadow.CANTIOC.all = ECanaRegs.CANTIOC.all;
    ECanaShadow.CANTIOC.bit.TXFUNC = 1;
    ECanaRegs.CANTIOC.all = ECanaShadow.CANTIOC.all;

    ECanaShadow.CANRIOC.all = ECanaRegs.CANRIOC.all;
    ECanaShadow.CANRIOC.bit.RXFUNC = 1;
    ECanaRegs.CANRIOC.all = ECanaShadow.CANRIOC.all;

    //CAN B
    ECanbShadow.CANTIOC.all = ECanbRegs.CANTIOC.all;
    ECanbShadow.CANTIOC.bit.TXFUNC = 1;
    ECanbRegs.CANTIOC.all = ECanbShadow.CANTIOC.all;

    ECanbShadow.CANRIOC.all = ECanbRegs.CANRIOC.all;
    ECanbShadow.CANRIOC.bit.RXFUNC = 1;
    ECanbRegs.CANRIOC.all = ECanbShadow.CANRIOC.all;
    EDIS;
     
    // Disable all Mailboxes
    // Since this write is to the entire register (instead of a bit
    // field) a shadow register is not required.
    ECanaRegs.CANME.all = 0;
    ECanbRegs.CANME.all = 0;

    // Mailboxs can be written to 16-bits or 32-bits at a time
    // Write to the MSGID field of TRANSMIT mailboxes MBOX0 - 15 
      //CAN A
    ECanaMboxes.MBOX0.MSGID.all = 0x95550093;
    ECanaMboxes.MBOX1.MSGID.all = 0x95550094;
    ECanaMboxes.MBOX2.MSGID.all = 0x95550122;
    ECanaMboxes.MBOX3.MSGID.all = 0x95550125;
    ECanaMboxes.MBOX4.MSGID.all = 0x955501A1;
    ECanaMboxes.MBOX5.MSGID.all = 0x955501A2;
    ECanaMboxes.MBOX6.MSGID.all = 0x95550132;
    ECanaMboxes.MBOX7.MSGID.all = 0x95550135;
    ECanaMboxes.MBOX8.MSGID.all = 0x955501B1;
    ECanaMboxes.MBOX9.MSGID.all = 0x955501B2;
    ECanaMboxes.MBOX10.MSGID.all = 0x9555AAAA; 
    ECanaMboxes.MBOX11.MSGID.all = 0x9555AAAB; 
    ECanaMboxes.MBOX12.MSGID.all = 0x9555AAAC; 
    ECanaMboxes.MBOX13.MSGID.all = 0x9555AAAD; 
    ECanaMboxes.MBOX14.MSGID.all = 0x9555AAAE; 
    ECanaMboxes.MBOX15.MSGID.all = 0x9555AAAF; 
      //CAN B
    ECanbMboxes.MBOX0.MSGID.all = 0x9555B051;
    ECanbMboxes.MBOX1.MSGID.all = 0x9555B052;
    ECanbMboxes.MBOX2.MSGID.all = 0x9555B053;
    ECanbMboxes.MBOX3.MSGID.all = 0x9555B054;
    ECanbMboxes.MBOX4.MSGID.all = 0x9555B055;
    ECanbMboxes.MBOX5.MSGID.all = 0x9555B056;
    ECanbMboxes.MBOX6.MSGID.all = 0x9555B057;
    ECanbMboxes.MBOX7.MSGID.all = 0x9555B058;
    ECanbMboxes.MBOX8.MSGID.all = 0x9555B059;
    ECanbMboxes.MBOX9.MSGID.all = 0x9555B060;
    ECanbMboxes.MBOX10.MSGID.all = 0x9555B061;
    ECanbMboxes.MBOX11.MSGID.all = 0x9555B062;
    ECanbMboxes.MBOX12.MSGID.all = 0x9555B063;
    ECanbMboxes.MBOX13.MSGID.all = 0x9555B064;
    ECanbMboxes.MBOX14.MSGID.all = 0x9555B065;
    ECanbMboxes.MBOX15.MSGID.all = 0x9555B066;
    
    // Write to the MSGID field of RECEIVE mailboxes MBOX16 - 31
      //CAN A
    ECanaMboxes.MBOX16.MSGID.all = 0x95550093;
    ECanaMboxes.MBOX17.MSGID.all = 0x95550094;
    ECanaMboxes.MBOX18.MSGID.all = 0x95550122;
    ECanaMboxes.MBOX19.MSGID.all = 0x95550125;
    ECanaMboxes.MBOX20.MSGID.all = 0x955501A1;
    ECanaMboxes.MBOX21.MSGID.all = 0x955501A2;
    ECanaMboxes.MBOX22.MSGID.all = 0x95550132;
    ECanaMboxes.MBOX23.MSGID.all = 0x95550135;
    ECanaMboxes.MBOX24.MSGID.all = 0x955501B1;
    ECanaMboxes.MBOX25.MSGID.all = 0x955501B2;
    ECanaMboxes.MBOX26.MSGID.all = 0x95550093;
    ECanaMboxes.MBOX27.MSGID.all = 0x95550094;
    ECanaMboxes.MBOX28.MSGID.all = 0x9555AAAC; 
    ECanaMboxes.MBOX29.MSGID.all = 0x9555AAAD; 
    ECanaMboxes.MBOX30.MSGID.all = 0x9555AAAE; 
    ECanaMboxes.MBOX31.MSGID.all = 0x9555AAAF; 
      //CAN B
    ECanbMboxes.MBOX16.MSGID.all = 0x9555B051;
    ECanbMboxes.MBOX17.MSGID.all = 0x9555B052;
    ECanbMboxes.MBOX18.MSGID.all = 0x9555B053;
    ECanbMboxes.MBOX19.MSGID.all = 0x9555B054;
    ECanbMboxes.MBOX20.MSGID.all = 0x9555B055;
    ECanbMboxes.MBOX21.MSGID.all = 0x9555B056;
    ECanbMboxes.MBOX22.MSGID.all = 0x9555B057;
    ECanbMboxes.MBOX23.MSGID.all = 0x9555B058;
    ECanbMboxes.MBOX24.MSGID.all = 0x9555B059;
    ECanbMboxes.MBOX25.MSGID.all = 0x9555B060;
    ECanbMboxes.MBOX26.MSGID.all = 0x9555B061;
    ECanbMboxes.MBOX27.MSGID.all = 0x9555B062;
    ECanbMboxes.MBOX28.MSGID.all = 0x9555B063;
    ECanbMboxes.MBOX29.MSGID.all = 0x9555B064;
    ECanbMboxes.MBOX30.MSGID.all = 0x9555B065;
    ECanbMboxes.MBOX31.MSGID.all = 0x9555B066;

    // Configure Mailboxes 0-15 as Tx, 16-31 as Rx 
    // Since this write is to the entire register (instead of a bit
    // field) a shadow register is not required.
    ECanaRegs.CANMD.all = 0xFFFF0000; 
    ECanbRegs.CANMD.all = 0xFFFF0000;
    
    // Enable all Mailboxes */
    // Since this write is to the entire register (instead of a bit
    // field) a shadow register is not required.
    ECanbRegs.CANME.all = 0xFFFFFFFF;
    ECanaRegs.CANME.all = 0xFFFFFFFF;

    // Specify that 8 bits will be sent/received
      //CAN A
    ECanaMboxes.MBOX0.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX1.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX2.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX3.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX4.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX5.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX6.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX7.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX8.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX9.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX10.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX11.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX12.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX13.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX14.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX15.MSGCTRL.bit.DLC = 8;
      //CAN B
    ECanbMboxes.MBOX0.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX1.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX2.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX3.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX4.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX5.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX6.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX7.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX8.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX9.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX10.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX11.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX12.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX13.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX14.MSGCTRL.bit.DLC = 8;
    ECanbMboxes.MBOX15.MSGCTRL.bit.DLC = 8;
    
    // No remote frame is requested
    // Since RTR bit is undefined upon reset,
    // it must be initialized to the proper value 
      //CAN A
    ECanaMboxes.MBOX0.MSGCTRL.bit.RTR = 0;      
    ECanaMboxes.MBOX1.MSGCTRL.bit.RTR = 0;  
    ECanaMboxes.MBOX2.MSGCTRL.bit.RTR = 0;  
    ECanaMboxes.MBOX3.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX4.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX5.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX6.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX7.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX8.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX9.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX10.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX11.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX12.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX13.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX14.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX15.MSGCTRL.bit.RTR = 0;
      //CAN B
    ECanbMboxes.MBOX0.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX1.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX2.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX3.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX4.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX5.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX6.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX7.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX8.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX9.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX10.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX11.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX12.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX13.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX14.MSGCTRL.bit.RTR = 0;
    ECanbMboxes.MBOX15.MSGCTRL.bit.RTR = 0;
    // Write to the mailbox RAM field of MBOX0 - 15
      //CAN A
    ECanaMboxes.MBOX0.MDL.all = 0xBF;
    ECanaMboxes.MBOX0.MDH.all = 0x00;

    ECanaMboxes.MBOX1.MDL.all = 0xB5;
    ECanaMboxes.MBOX1.MDH.all = 0x00;
   
    ECanaMboxes.MBOX2.MDL.all = 0xB4;
    ECanaMboxes.MBOX2.MDH.all = 0x00;
 
    ECanaMboxes.MBOX3.MDL.all = 0xBE;
    ECanaMboxes.MBOX3.MDH.all = 0x00;
 
    ECanaMboxes.MBOX4.MDL.all = 0x1;
    ECanaMboxes.MBOX4.MDH.all = 0x00;
 
    ECanaMboxes.MBOX5.MDL.all = 0x2;
    ECanaMboxes.MBOX5.MDH.all = 0x00;
 
    ECanaMboxes.MBOX6.MDL.all = 0xB4;
    ECanaMboxes.MBOX6.MDH.all = 0x00;
 
    ECanaMboxes.MBOX7.MDL.all = 0xBE;
    ECanaMboxes.MBOX7.MDH.all = 0x00;
 
    ECanaMboxes.MBOX8.MDL.all = 0x1;
    ECanaMboxes.MBOX8.MDH.all = 0x00;
 
    ECanaMboxes.MBOX9.MDL.all = 0x2;
    ECanaMboxes.MBOX9.MDH.all = 0x00;
 
    ECanaMboxes.MBOX10.MDL.all = 0x9555AAAA;
    ECanaMboxes.MBOX10.MDH.all = 0x89ABCDEF;
 
    ECanaMboxes.MBOX11.MDL.all = 0x9555AAAB;
    ECanaMboxes.MBOX11.MDH.all = 0x89ABCDEF;
 
    ECanaMboxes.MBOX12.MDL.all = 0x9555AAAC;
    ECanaMboxes.MBOX12.MDH.all = 0x89ABCDEF;
 
    ECanaMboxes.MBOX13.MDL.all = 0x9555AAAD;
    ECanaMboxes.MBOX13.MDH.all = 0x89ABCDEF;
 
    ECanaMboxes.MBOX14.MDL.all = 0x9555AAAE;
    ECanaMboxes.MBOX14.MDH.all = 0x89ABCDEF;
 
    ECanaMboxes.MBOX15.MDL.all = 0x9555AAAF;
    ECanaMboxes.MBOX15.MDH.all = 0x89ABCDEF;
      //CAN B
    ECanbMboxes.MBOX0.MDL.all = 0xBFB;
    ECanbMboxes.MBOX0.MDH.all = 0x00B;

    ECanbMboxes.MBOX1.MDL.all = 0xB5B;
    ECanbMboxes.MBOX1.MDH.all = 0x00B;

    ECanbMboxes.MBOX2.MDL.all = 0xB4B;
    ECanbMboxes.MBOX2.MDH.all = 0x00B;

    ECanbMboxes.MBOX3.MDL.all = 0xBEB;
    ECanbMboxes.MBOX3.MDH.all = 0x00B;

    ECanbMboxes.MBOX4.MDL.all = 0x1B;
    ECanbMboxes.MBOX4.MDH.all = 0x00B;

    ECanbMboxes.MBOX5.MDL.all = 0x2B;
    ECanbMboxes.MBOX5.MDH.all = 0x00B;

    ECanbMboxes.MBOX6.MDL.all = 0xB4B;
    ECanbMboxes.MBOX6.MDH.all = 0x00B;

    ECanbMboxes.MBOX7.MDL.all = 0xBEB;
    ECanbMboxes.MBOX7.MDH.all = 0x00B;

    ECanbMboxes.MBOX8.MDL.all = 0x1B;
    ECanbMboxes.MBOX8.MDH.all = 0x00B;

    ECanbMboxes.MBOX9.MDL.all = 0x2B;
    ECanbMboxes.MBOX9.MDH.all = 0x00B;

    ECanbMboxes.MBOX10.MDL.all = 0x9555BAAA;
    ECanbMboxes.MBOX10.MDH.all = 0x89ABCDEB;

    ECanbMboxes.MBOX11.MDL.all = 0x9555BAAB;
    ECanbMboxes.MBOX11.MDH.all = 0x89ABCDEB;

    ECanbMboxes.MBOX12.MDL.all = 0x9555BAAC;
    ECanbMboxes.MBOX12.MDH.all = 0x89ABCDEB;

    ECanbMboxes.MBOX13.MDL.all = 0x9555BAAD;
    ECanbMboxes.MBOX13.MDH.all = 0x89ABCDEB;

    ECanbMboxes.MBOX14.MDL.all = 0x9555BAAE;
    ECanbMboxes.MBOX14.MDH.all = 0x89ABCDEB;

    ECanbMboxes.MBOX15.MDL.all = 0x9555BAAF;
    ECanbMboxes.MBOX15.MDH.all = 0x89ABCDEB;
    // Since this write is to the entire register (instead of a bit
    // field) a shadow register is not required. 
    EALLOW;
    ECanaRegs.CANMIM.all = 0xFFFFFFFF;
    ECanbRegs.CANMIM.all = 0xFFFFFFFF;
    // Request permission to change the configuration registers
    ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
    ECanaShadow.CANMC.bit.CCR = 1;            
    ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;

    ECanbShadow.CANMC.all = ECanbRegs.CANMC.all;
    ECanbShadow.CANMC.bit.CCR = 1;
    ECanbRegs.CANMC.all = ECanbShadow.CANMC.all;
    EDIS;
    
    // Wait until the CPU has been granted permission to change the
    // configuration registers
    // Wait for CCE bit to be set..
    do 
    {
      ECanaShadow.CANES.all = ECanaRegs.CANES.all;
    } while(ECanaShadow.CANES.bit.CCE != 1 );
    do
    {
      ECanbShadow.CANES.all = ECanbRegs.CANES.all;
    } while(ECanbShadow.CANES.bit.CCE != 1 );
    // Configure the eCAN timing
    EALLOW;
     //CAN A
    ECanaShadow.CANBTC.all = ECanaRegs.CANBTC.all;

    ECanaShadow.CANBTC.bit.BRPREG = 9;    // (BRPREG + 1) = 10 feeds a 15 MHz CAN clock
    ECanaShadow.CANBTC.bit.TSEG2REG = 5 ; // to the CAN module. (150 / 10 = 15)
    ECanaShadow.CANBTC.bit.TSEG1REG = 7;  // Bit time = 15
    ECanaRegs.CANBTC.all = ECanaShadow.CANBTC.all;
    
    ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
    ECanaShadow.CANMC.bit.CCR = 0;            
    ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
      //CAN B
    ECanbShadow.CANBTC.all = ECanbRegs.CANBTC.all;

    ECanbShadow.CANBTC.bit.BRPREG = 9;    // (BRPREG + 1) = 10 feeds a 15 MHz CAN clock
    ECanbShadow.CANBTC.bit.TSEG2REG = 5 ; // to the CAN module. (150 / 10 = 15)
    ECanbShadow.CANBTC.bit.TSEG1REG = 7;  // Bit time = 15
    ECanbRegs.CANBTC.all = ECanbShadow.CANBTC.all;

    ECanbShadow.CANMC.all = ECanbRegs.CANMC.all;
    ECanbShadow.CANMC.bit.CCR = 0;
    ECanbRegs.CANMC.all = ECanbShadow.CANMC.all;
    EDIS;

    // Wait until the CPU no longer has permission to change the
    // configuration registers
    do
    {
      ECanaShadow.CANES.all = ECanaRegs.CANES.all;
    } while(ECanaShadow.CANES.bit.CCE != 0 ); 

    do
    {
      ECanbShadow.CANES.all = ECanbRegs.CANES.all;
    } while(ECanbShadow.CANES.bit.CCE != 0 );
    // Configure the eCAN for normal mode
    // Enable the enhanced features of the eCAN.
    EALLOW;
      //CAN A
    ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
    ECanaShadow.CANMC.bit.STM = 0;    // Configure CAN for normal  mode
    ECanaShadow.CANMC.bit.SCB = 1;    // eCAN mode (reqd to access 32 mailboxes)
    ECanaShadow.CANMC.bit.ABO = 1;
    ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
      //CAN B
    ECanbShadow.CANMC.all = ECanbRegs.CANMC.all;
    ECanbShadow.CANMC.bit.STM = 0;    // Configure CAN for normal  mode
    ECanbShadow.CANMC.bit.SCB = 1;    // eCAN mode (reqd to access 32 mailboxes)
    ECanbShadow.CANMC.bit.ABO = 1;
    ECanbRegs.CANMC.all = ECanbShadow.CANMC.all;
    EDIS;
    
    // Begin transmitting 
    MessageReceivedCount=0;
    for(;;)                                
    {
         //CAN A
       ECanaRegs.CANTRS.all = 0x0000FFFF;  // Set TRS for all transmit mailboxes
       while(ECanaRegs.CANTA.all != 0x0000FFFF ) {}  // Wait for all TAn bits to be set..
       ECanaRegs.CANTA.all = 0x0000FFFF;   // Clear all TAn    
       MessageReceivedCount++;
         //CAN B
       ECanbRegs.CANTRS.all = 0x0000FFFF;  // Set TRS for all transmit mailboxes
       while(ECanbRegs.CANTA.all != 0x0000FFFF ) {}  // Wait for all TAn bits to be set..
       ECanbRegs.CANTA.all = 0x0000FFFF;   // Clear all TAn
    }
}

  • 您是否有尝试过TI例程?

    C2000Ware_3_02_00_00\device_support\f2833x\examples\ecan_a_to_b_xmit

    本示例使用MAILBOX5将数据传输到另一个CAN模块。该程序可以永远循环,也可以发送“ n”次,其中“ n”是TXCOUNT值。
    该示例可用于检查CAN-A和CAN-B。由于CAN-B是在DSP2833x_ECan.c中初始化,它将确认所有帧由运行此代码的节点传输的。
    两个CAN端 2833x DSP需要彼此连接(通过CAN收发器)

    //! \b External \b Connections \n
    //! - eCANA is on GPIO31 (CANTXA) and GPIO30 (CANRXA)
    //! - eCANB is on GPIO8 (CANTXB) and GPIO10 (CANRXB)
    //! - Connect eCANA to eCANB via CAN transceivers
  • 您好,我尝试了您说到的案例文件,可是该案例中只配置了eCANA的发送邮箱,并没有配置相应的eCANb上的接收邮箱。我把自己DSP板子的CANA和CANB的CANH和CANL分别接在了一起,但是,运行程序时,依然是卡在TA25置位的那里,说明数据并没有顺利发送出去。DSP2833x_ECan.c的初始化过程,只是把GPIO初始化,并不涉及CAN通讯的配置过程。是我对这个例程的理解有问题吗?在案例文件的基础上,我添加了eCANb接收邮箱的配置,依然是卡在同一个位置。是什么原因呢?

    正确的案例使用方法,是这样的吗?把案例程序烧写进dsp,将A路和B路的CANH和CANL分别相接,运行。是这样的操作过程吗?

  • 之前有客户上传过测试成功的程序,您可以下载测试一下can_test.zip

    e2echina.ti.com/.../24558

    另外Connect eCANA to eCANB via CAN transceivers
x 出现错误。请重试或与管理员联系。