msp430怎么实现位操作?现在想用一个普通I/O口往外围芯片发送串行数据,不带标准串行接口,我觉得是编程问题,怎么写啊
This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
msp430怎么实现位操作?现在想用一个普通I/O口往外围芯片发送串行数据,不带标准串行接口,我觉得是编程问题,怎么写啊
你好,MSP430 可以利用定时器来实现软件串口,如下程序供参考:
//******************************************************************************
// MSP430G2xx2 Demo - Timer_A, Ultra-Low Pwr UART 9600 Echo, 32kHz ACLK
//
// Description: Use Timer_A CCR0 hardware output modes and SCCI data latch
// to implement UART function @ 9600 baud. Software does not directly read and
// write to RX and TX pins, instead proper use of output modes and SCCI data
// latch are demonstrated. Use of these hardware features eliminates ISR
// latency effects as hardware insures that output and input bit latching and
// timing are perfectly synchronised with Timer_A regardless of other
// software activity. In the Mainloop the UART function readies the UART to
// receive one character and waits in LPM3 with all activity interrupt driven.
// After a character has been received, the UART receive function forces exit
// from LPM3 in the Mainloop which configures the port pins (P1 & P2) based
// on the value of the received byte (i.e., if BIT0 is set, turn on P1.0).
// ACLK = TACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO
// //* An external watch crystal is required on XIN XOUT for ACLK *//
//
// MSP430G2xx2
// -----------------
// /|\| XIN|-
// | | | 32kHz
// --|RST XOUT|-
// | |
// | CCI0B/TXD/P1.1|-------->
// | | 9600 8N1
// | CCI0A/RXD/P1.2|<--------
//
// D. Dang
// Texas Instruments Inc.
// December 2010
// Built with CCS Version 4.2.0 and IAR Embedded Workbench Version: 5.10
//******************************************************************************
#include <msp430.h>
//------------------------------------------------------------------------------
// Hardware-related definitions
//------------------------------------------------------------------------------
#define UART_TXD 0x02 // TXD on P1.1 (Timer0_A.OUT0)
#define UART_RXD 0x04 // RXD on P1.2 (Timer0_A.CCI1A)
//------------------------------------------------------------------------------
// Conditions for 9600 Baud SW UART, SMCLK = 1MHz
//------------------------------------------------------------------------------
#define UART_TBIT_DIV_2 (1000000 / (9600 * 2))
#define UART_TBIT (1000000 / 9600)
//------------------------------------------------------------------------------
// Global variables used for full-duplex UART communication
//------------------------------------------------------------------------------
unsigned int txData; // UART internal variable for TX
unsigned char rxBuffer; // Received UART character
//------------------------------------------------------------------------------
// Function prototypes
//------------------------------------------------------------------------------
void TimerA_UART_init(void);
void TimerA_UART_tx(unsigned char byte);
void TimerA_UART_print(char *string);
//------------------------------------------------------------------------------
// main()
//------------------------------------------------------------------------------
int main(void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
if (CALBC1_1MHZ==0xFF) // If calibration constants erased
{
while(1); // do not load, trap CPU!!
}
DCOCTL = 0; // Select lowest DCOx and MODx settings
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;
P1OUT = 0x00; // Initialize all GPIO
P1SEL = UART_TXD + UART_RXD; // Timer function for TXD/RXD pins
P1DIR = 0xFF & ~UART_RXD; // Set all pins but RXD to output
P2OUT = 0x00;
P2SEL = 0x00;
P2DIR = 0xFF;
__enable_interrupt();
TimerA_UART_init(); // Start Timer_A UART
TimerA_UART_print("G2xx2 TimerA UART\r\n");
TimerA_UART_print("READY.\r\n");
for (;;)
{
// Wait for incoming character
__bis_SR_register(LPM0_bits);
// Update board outputs according to received byte
if (rxBuffer & 0x01) P1OUT |= 0x01; else P1OUT &= ~0x01; // P1.0
if (rxBuffer & 0x02) P1OUT |= 0x08; else P1OUT &= ~0x08; // P1.3
if (rxBuffer & 0x04) P1OUT |= 0x10; else P1OUT &= ~0x10; // P1.4
if (rxBuffer & 0x08) P1OUT |= 0x20; else P1OUT &= ~0x20; // P1.5
if (rxBuffer & 0x10) P1OUT |= 0x40; else P1OUT &= ~0x40; // P1.6
if (rxBuffer & 0x20) P1OUT |= 0x80; else P1OUT &= ~0x80; // P1.7
if (rxBuffer & 0x40) P2OUT |= 0x40; else P2OUT &= ~0x40; // P2.6
if (rxBuffer & 0x80) P2OUT |= 0x80; else P2OUT &= ~0x80; // P2.7
// Echo received character
TimerA_UART_tx(rxBuffer);
}
}
//------------------------------------------------------------------------------
// Function configures Timer_A for full-duplex UART operation
//------------------------------------------------------------------------------
void TimerA_UART_init(void)
{
TACCTL0 = OUT; // Set TXD Idle as Mark = '1'
TACCTL1 = SCS + CM1 + CAP + CCIE; // Sync, Neg Edge, Capture, Int
TACTL = TASSEL_2 + MC_2; // SMCLK, start in continuous mode
}
//------------------------------------------------------------------------------
// Outputs one byte using the Timer_A UART
//------------------------------------------------------------------------------
void TimerA_UART_tx(unsigned char byte)
{
while (TACCTL0 & CCIE); // Ensure last char got TX'd
TACCR0 = TAR; // Current state of TA counter
TACCR0 += UART_TBIT; // One bit time till first bit
TACCTL0 = OUTMOD0 + CCIE; // Set TXD on EQU0, Int
txData = byte; // Load global variable
txData |= 0x100; // Add mark stop bit to TXData
txData <<= 1; // Add space start bit
}
//------------------------------------------------------------------------------
// Prints a string over using the Timer_A UART
//------------------------------------------------------------------------------
void TimerA_UART_print(char *string)
{
while (*string) {
TimerA_UART_tx(*string++);
}
}
//------------------------------------------------------------------------------
// Timer_A UART - Transmit Interrupt Handler
//------------------------------------------------------------------------------
#pragma vector = TIMER0_A0_VECTOR
__interrupt void Timer_A0_ISR(void)
{
static unsigned char txBitCnt = 10;
TACCR0 += UART_TBIT; // Add Offset to CCRx
if (txBitCnt == 0) { // All bits TXed?
TACCTL0 &= ~CCIE; // All bits TXed, disable interrupt
txBitCnt = 10; // Re-load bit counter
}
else {
if (txData & 0x01) {
TACCTL0 &= ~OUTMOD2; // TX Mark '1'
}
else {
TACCTL0 |= OUTMOD2; // TX Space '0'
}
txData >>= 1;
txBitCnt--;
}
}
//------------------------------------------------------------------------------
// Timer_A UART - Receive Interrupt Handler
//------------------------------------------------------------------------------
#pragma vector = TIMER0_A1_VECTOR
__interrupt void Timer_A1_ISR(void)
{
static unsigned char rxBitCnt = 8;
static unsigned char rxData = 0;
switch (__even_in_range(TA0IV, TA0IV_TAIFG)) { // Use calculated branching
case TA0IV_TACCR1: // TACCR1 CCIFG - UART RX
TACCR1 += UART_TBIT; // Add Offset to CCRx
if (TACCTL1 & CAP) { // Capture mode = start bit edge
TACCTL1 &= ~CAP; // Switch capture to compare mode
TACCR1 += UART_TBIT_DIV_2; // Point CCRx to middle of D0
}
else {
rxData >>= 1;
if (TACCTL1 & SCCI) { // Get bit waiting in receive latch
rxData |= 0x80;
}
rxBitCnt--;
if (rxBitCnt == 0) { // All bits RXed?
rxBuffer = rxData; // Store in global variable
rxBitCnt = 8; // Re-load bit counter
TACCTL1 |= CAP; // Switch compare to capture mode
__bic_SR_register_on_exit(LPM0_bits); // Clear LPM0 bits from 0(SR)
}
}
break;
}
}
//------------------------------------------------------------------------------
你好,
1. 除非你是单线制操作(像DS18B20那样),否则一般发送数据至少需要一根数据线和一根时钟线,没有节拍,数据会传乱的。。。
2. MSP430的位操作可以通过 |= 和 &=~ 来实现。比如:
P1OUT |= BIT0; //P1.0置高
P1OUT &=~ BIT0; //P1.0置低
#define DS_H P1OUT |= BIT0
#define DS_L P1OUT &=~ BIT0
for (i=8; i>0; i--)
{
if(DATA&0x80) DS_H;
else DS_L;
delay();
DATA <<= 1;
}
就OK了呀~