This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
摘录自官方的例程,这里面用到了好几个中断,中断函数表的配置,需要自己去配置的
//***************************************************************************** // // udma_demo.c - uDMA example. // // Copyright (c) 2012-2014 Texas Instruments Incorporated. All rights reserved. // Software License Agreement // // Texas Instruments (TI) is supplying this software for use solely and // exclusively on TI's microcontroller products. The software is owned by // TI and/or its suppliers, and is protected under applicable copyright // laws. You may not combine this software with "viral" open-source // software in order to form a larger program. // // THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS. // NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT // NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY // CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL // DAMAGES, FOR ANY REASON WHATSOEVER. // // This is part of revision 2.1.0.12573 of the EK-TM4C123GXL Firmware Package. // //***************************************************************************** #include <stdint.h> #include <stdbool.h> #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "inc/hw_types.h" #include "inc/hw_uart.h" #include "driverlib/fpu.h" #include "driverlib/gpio.h" #include "driverlib/interrupt.h" #include "driverlib/pin_map.h" #include "driverlib/rom.h" #include "driverlib/sysctl.h" #include "driverlib/systick.h" #include "driverlib/uart.h" #include "driverlib/udma.h" #include "utils/cpu_usage.h" #include "utils/uartstdio.h" #include "utils/ustdlib.h" //***************************************************************************** // //! \addtogroup example_list //! <h1>uDMA (udma_demo)</h1> //! //! This example application demonstrates the use of the uDMA controller to //! transfer data between memory buffers, and to transfer data to and from a //! UART. The test runs for 10 seconds before exiting. //! //! UART0, connected to the FTDI virtual COM port and running at 115,200, //! 8-N-1, is used to display messages from this application. // //***************************************************************************** //***************************************************************************** // // The number of SysTick ticks per second used for the SysTick interrupt. // //***************************************************************************** #define SYSTICKS_PER_SECOND 100 //***************************************************************************** // // The size of the memory transfer source and destination buffers (in words). // //***************************************************************************** #define MEM_BUFFER_SIZE 1024 //***************************************************************************** // // The size of the UART transmit and receive buffers. They do not need to be // the same size. // //***************************************************************************** #define UART_TXBUF_SIZE 256 #define UART_RXBUF_SIZE 256 //***************************************************************************** // // The source and destination buffers used for memory transfers. // //***************************************************************************** static uint32_t g_ui32SrcBuf[MEM_BUFFER_SIZE]; static uint32_t g_ui32DstBuf[MEM_BUFFER_SIZE]; //***************************************************************************** // // The transmit and receive buffers used for the UART transfers. There is one // transmit buffer and a pair of recieve ping-pong buffers. // //***************************************************************************** static uint8_t g_ui8TxBuf[UART_TXBUF_SIZE]; static uint8_t g_ui8RxBufA[UART_RXBUF_SIZE]; static uint8_t g_ui8RxBufB[UART_RXBUF_SIZE]; //***************************************************************************** // // The count of uDMA errors. This value is incremented by the uDMA error // handler. // //***************************************************************************** static uint32_t g_ui32uDMAErrCount = 0; //***************************************************************************** // // The count of times the uDMA interrupt occurred but the uDMA transfer was not // complete. This should remain 0. // //***************************************************************************** static uint32_t g_ui32BadISR = 0; //***************************************************************************** // // The count of UART buffers filled, one for each ping-pong buffer. // //***************************************************************************** static uint32_t g_ui32RxBufACount = 0; static uint32_t g_ui32RxBufBCount = 0; //***************************************************************************** // // The count of memory uDMA transfer blocks. This value is incremented by the // uDMA interrupt handler whenever a memory block transfer is completed. // //***************************************************************************** static uint32_t g_ui32MemXferCount = 0; //***************************************************************************** // // The CPU usage in percent, in 16.16 fixed point format. // //***************************************************************************** static uint32_t g_ui32CPUUsage; //***************************************************************************** // // The number of seconds elapsed since the start of the program. This value is // maintained by the SysTick interrupt handler. // //***************************************************************************** static uint32_t g_ui32Seconds = 0; //***************************************************************************** // // The control table used by the uDMA controller. This table must be aligned // to a 1024 byte boundary. // //***************************************************************************** #if defined(ewarm) #pragma data_alignment=1024 uint8_t ui8ControlTable[1024]; #elif defined(ccs) #pragma DATA_ALIGN(ui8ControlTable, 1024) uint8_t ui8ControlTable[1024]; #else uint8_t ui8ControlTable[1024] __attribute__ ((aligned(1024))); #endif //***************************************************************************** // // The error routine that is called if the driver library encounters an error. // //***************************************************************************** #ifdef DEBUG void __error__(char *pcFilename, uint32_t ui32Line) { while(1) { // // Hang on runtime error. // } } #endif //***************************************************************************** // // The interrupt handler for the SysTick timer. This handler will increment a // seconds counter whenever the appropriate number of ticks has occurred. It // will also call the CPU usage tick function to find the CPU usage percent. // //***************************************************************************** void SysTickHandler(void) { static uint32_t ui32TickCount = 0; // // Increment the tick counter. // ui32TickCount++; // // If the number of ticks per second has occurred, then increment the // seconds counter. // if(!(ui32TickCount % SYSTICKS_PER_SECOND)) { g_ui32Seconds++; } // // Call the CPU usage tick function. This function will compute the amount // of cycles used by the CPU since the last call and return the result in // percent in fixed point 16.16 format. // g_ui32CPUUsage = CPUUsageTick(); } //***************************************************************************** // // The interrupt handler for uDMA errors. This interrupt will occur if the // uDMA encounters a bus error while trying to perform a transfer. This // handler just increments a counter if an error occurs. // //***************************************************************************** void uDMAErrorHandler(void) { uint32_t ui32Status; // // Check for uDMA error bit // ui32Status = ROM_uDMAErrorStatusGet(); // // If there is a uDMA error, then clear the error and increment // the error counter. // if(ui32Status) { ROM_uDMAErrorStatusClear(); g_ui32uDMAErrCount++; } } //***************************************************************************** // // The interrupt handler for uDMA interrupts from the memory channel. This // interrupt will increment a counter, and then restart another memory // transfer. // //***************************************************************************** void uDMAIntHandler(void) { uint32_t ui32Mode; // // Check for the primary control structure to indicate complete. // ui32Mode = ROM_uDMAChannelModeGet(UDMA_CHANNEL_SW); if(ui32Mode == UDMA_MODE_STOP) { // // Increment the count of completed transfers. // g_ui32MemXferCount++; // // Configure it for another transfer. // ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SW, UDMA_MODE_AUTO, g_ui32SrcBuf, g_ui32DstBuf, MEM_BUFFER_SIZE); // // Initiate another transfer. // ROM_uDMAChannelEnable(UDMA_CHANNEL_SW); ROM_uDMAChannelRequest(UDMA_CHANNEL_SW); } // // If the channel is not stopped, then something is wrong. // else { g_ui32BadISR++; } } //***************************************************************************** // // The interrupt handler for UART1. This interrupt will occur when a DMA // transfer is complete using the UART1 uDMA channel. It will also be // triggered if the peripheral signals an error. This interrupt handler will // switch between receive ping-pong buffers A and B. It will also restart a TX // uDMA transfer if the prior transfer is complete. This will keep the UART // running continuously (looping TX data back to RX). // //***************************************************************************** void UART1IntHandler(void) { uint32_t ui32Status; uint32_t ui32Mode; // // Read the interrupt status of the UART. // ui32Status = ROM_UARTIntStatus(UART1_BASE, 1); // // Clear any pending status, even though there should be none since no UART // interrupts were enabled. If UART error interrupts were enabled, then // those interrupts could occur here and should be handled. Since uDMA is // used for both the RX and TX, then neither of those interrupts should be // enabled. // ROM_UARTIntClear(UART1_BASE, ui32Status); // // Check the DMA control table to see if the ping-pong "A" transfer is // complete. The "A" transfer uses receive buffer "A", and the primary // control structure. // ui32Mode = ROM_uDMAChannelModeGet(UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT); // // If the primary control structure indicates stop, that means the "A" // receive buffer is done. The uDMA controller should still be receiving // data into the "B" buffer. // if(ui32Mode == UDMA_MODE_STOP) { // // Increment a counter to indicate data was received into buffer A. In // a real application this would be used to signal the main thread that // data was received so the main thread can process the data. // g_ui32RxBufACount++; // // Set up the next transfer for the "A" buffer, using the primary // control structure. When the ongoing receive into the "B" buffer is // done, the uDMA controller will switch back to this one. This // example re-uses buffer A, but a more sophisticated application could // use a rotating set of buffers to increase the amount of time that // the main thread has to process the data in the buffer before it is // reused. // ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT, UDMA_MODE_PINGPONG, (void *)(UART1_BASE + UART_O_DR), g_ui8RxBufA, sizeof(g_ui8RxBufA)); } // // Check the DMA control table to see if the ping-pong "B" transfer is // complete. The "B" transfer uses receive buffer "B", and the alternate // control structure. // ui32Mode = ROM_uDMAChannelModeGet(UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT); // // If the alternate control structure indicates stop, that means the "B" // receive buffer is done. The uDMA controller should still be receiving // data into the "A" buffer. // if(ui32Mode == UDMA_MODE_STOP) { // // Increment a counter to indicate data was received into buffer A. In // a real application this would be used to signal the main thread that // data was received so the main thread can process the data. // g_ui32RxBufBCount++; // // Set up the next transfer for the "B" buffer, using the alternate // control structure. When the ongoing receive into the "A" buffer is // done, the uDMA controller will switch back to this one. This // example re-uses buffer B, but a more sophisticated application could // use a rotating set of buffers to increase the amount of time that // the main thread has to process the data in the buffer before it is // reused. // ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT, UDMA_MODE_PINGPONG, (void *)(UART1_BASE + UART_O_DR), g_ui8RxBufB, sizeof(g_ui8RxBufB)); } // // If the UART1 DMA TX channel is disabled, that means the TX DMA transfer // is done. // if(!ROM_uDMAChannelIsEnabled(UDMA_CHANNEL_UART1TX)) { // // Start another DMA transfer to UART1 TX. // ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT, UDMA_MODE_BASIC, g_ui8TxBuf, (void *)(UART1_BASE + UART_O_DR), sizeof(g_ui8TxBuf)); // // The uDMA TX channel must be re-enabled. // ROM_uDMAChannelEnable(UDMA_CHANNEL_UART1TX); } } //***************************************************************************** // // Initializes the UART1 peripheral and sets up the TX and RX uDMA channels. // The UART is configured for loopback mode so that any data sent on TX will be // received on RX. The uDMA channels are configured so that the TX channel // will copy data from a buffer to the UART TX output. And the uDMA RX channel // will receive any incoming data into a pair of buffers in ping-pong mode. // //***************************************************************************** void InitUART1Transfer(void) { unsigned int uIdx; // // Fill the TX buffer with a simple data pattern. // for(uIdx = 0; uIdx < UART_TXBUF_SIZE; uIdx++) { g_ui8TxBuf[uIdx] = uIdx; } // // Enable the UART peripheral, and configure it to operate even if the CPU // is in sleep. // ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1); ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART1); // // Configure the UART communication parameters. // ROM_UARTConfigSetExpClk(UART1_BASE, ROM_SysCtlClockGet(), 115200, UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE); // // Set both the TX and RX trigger thresholds to 4. This will be used by // the uDMA controller to signal when more data should be transferred. The // uDMA TX and RX channels will be configured so that it can transfer 4 // bytes in a burst when the UART is ready to transfer more data. // ROM_UARTFIFOLevelSet(UART1_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8); // // Enable the UART for operation, and enable the uDMA interface for both TX // and RX channels. // ROM_UARTEnable(UART1_BASE); ROM_UARTDMAEnable(UART1_BASE, UART_DMA_RX | UART_DMA_TX); // // This register write will set the UART to operate in loopback mode. Any // data sent on the TX output will be received on the RX input. // HWREG(UART1_BASE + UART_O_CTL) |= UART_CTL_LBE; // // Enable the UART peripheral interrupts. Note that no UART interrupts // were enabled, but the uDMA controller will cause an interrupt on the // UART interrupt signal when a uDMA transfer is complete. // ROM_IntEnable(INT_UART1); // // Put the attributes in a known state for the uDMA UART1RX channel. These // should already be disabled by default. // ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_UART1RX, UDMA_ATTR_ALTSELECT | UDMA_ATTR_USEBURST | UDMA_ATTR_HIGH_PRIORITY | UDMA_ATTR_REQMASK); // // Configure the control parameters for the primary control structure for // the UART RX channel. The primary contol structure is used for the "A" // part of the ping-pong receive. The transfer data size is 8 bits, the // source address does not increment since it will be reading from a // register. The destination address increment is byte 8-bit bytes. The // arbitration size is set to 4 to match the RX FIFO trigger threshold. // The uDMA controller will use a 4 byte burst transfer if possible. This // will be somewhat more effecient that single byte transfers. // ROM_uDMAChannelControlSet(UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT, UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 | UDMA_ARB_4); // // Configure the control parameters for the alternate control structure for // the UART RX channel. The alternate contol structure is used for the "B" // part of the ping-pong receive. The configuration is identical to the // primary/A control structure. // ROM_uDMAChannelControlSet(UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT, UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 | UDMA_ARB_4); // // Set up the transfer parameters for the UART RX primary control // structure. The mode is set to ping-pong, the transfer source is the // UART data register, and the destination is the receive "A" buffer. The // transfer size is set to match the size of the buffer. // ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT, UDMA_MODE_PINGPONG, (void *)(UART1_BASE + UART_O_DR), g_ui8RxBufA, sizeof(g_ui8RxBufA)); // // Set up the transfer parameters for the UART RX alternate control // structure. The mode is set to ping-pong, the transfer source is the // UART data register, and the destination is the receive "B" buffer. The // transfer size is set to match the size of the buffer. // ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT, UDMA_MODE_PINGPONG, (void *)(UART1_BASE + UART_O_DR), g_ui8RxBufB, sizeof(g_ui8RxBufB)); // // Put the attributes in a known state for the uDMA UART1TX channel. These // should already be disabled by default. // ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_UART1TX, UDMA_ATTR_ALTSELECT | UDMA_ATTR_HIGH_PRIORITY | UDMA_ATTR_REQMASK); // // Set the USEBURST attribute for the uDMA UART TX channel. This will // force the controller to always use a burst when transferring data from // the TX buffer to the UART. This is somewhat more effecient bus usage // than the default which allows single or burst transfers. // ROM_uDMAChannelAttributeEnable(UDMA_CHANNEL_UART1TX, UDMA_ATTR_USEBURST); // // Configure the control parameters for the UART TX. The uDMA UART TX // channel is used to transfer a block of data from a buffer to the UART. // The data size is 8 bits. The source address increment is 8-bit bytes // since the data is coming from a buffer. The destination increment is // none since the data is to be written to the UART data register. The // arbitration size is set to 4, which matches the UART TX FIFO trigger // threshold. // ROM_uDMAChannelControlSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT, UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE | UDMA_ARB_4); // // Set up the transfer parameters for the uDMA UART TX channel. This will // configure the transfer source and destination and the transfer size. // Basic mode is used because the peripheral is making the uDMA transfer // request. The source is the TX buffer and the destination is the UART // data register. // ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT, UDMA_MODE_BASIC, g_ui8TxBuf, (void *)(UART1_BASE + UART_O_DR), sizeof(g_ui8TxBuf)); // // Now both the uDMA UART TX and RX channels are primed to start a // transfer. As soon as the channels are enabled, the peripheral will // issue a transfer request and the data transfers will begin. // ROM_uDMAChannelEnable(UDMA_CHANNEL_UART1RX); ROM_uDMAChannelEnable(UDMA_CHANNEL_UART1TX); } //***************************************************************************** // // Initializes the uDMA software channel to perform a memory to memory uDMA // transfer. // //***************************************************************************** void InitSWTransfer(void) { unsigned int uIdx; // // Fill the source memory buffer with a simple incrementing pattern. // for(uIdx = 0; uIdx < MEM_BUFFER_SIZE; uIdx++) { g_ui32SrcBuf[uIdx] = uIdx; } // // Enable interrupts from the uDMA software channel. // ROM_IntEnable(INT_UDMA); // // Put the attributes in a known state for the uDMA software channel. // These should already be disabled by default. // ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_SW, UDMA_ATTR_USEBURST | UDMA_ATTR_ALTSELECT | (UDMA_ATTR_HIGH_PRIORITY | UDMA_ATTR_REQMASK)); // // Configure the control parameters for the SW channel. The SW channel // will be used to transfer between two memory buffers, 32 bits at a time. // Therefore the data size is 32 bits, and the address increment is 32 bits // for both source and destination. The arbitration size will be set to 8, // which causes the uDMA controller to rearbitrate after 8 items are // transferred. This keeps this channel from hogging the uDMA controller // once the transfer is started, and allows other channels cycles if they // are higher priority. // ROM_uDMAChannelControlSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT, UDMA_SIZE_32 | UDMA_SRC_INC_32 | UDMA_DST_INC_32 | UDMA_ARB_8); // // Set up the transfer parameters for the software channel. This will // configure the transfer buffers and the transfer size. Auto mode must be // used for software transfers. // ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT, UDMA_MODE_AUTO, g_ui32SrcBuf, g_ui32DstBuf, MEM_BUFFER_SIZE); // // Now the software channel is primed to start a transfer. The channel // must be enabled. For software based transfers, a request must be // issued. After this, the uDMA memory transfer begins. // ROM_uDMAChannelEnable(UDMA_CHANNEL_SW); ROM_uDMAChannelRequest(UDMA_CHANNEL_SW); } //***************************************************************************** // // Configure the UART and its pins. This must be called before UARTprintf(). // //***************************************************************************** void ConfigureUART(void) { // // Enable the GPIO Peripheral used by the UART. // ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); // // Enable UART0 // ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0); ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART0); // // Configure GPIO Pins for UART mode. // ROM_GPIOPinConfigure(GPIO_PA0_U0RX); ROM_GPIOPinConfigure(GPIO_PA1_U0TX); ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1); // // Use the internal 16MHz oscillator as the UART clock source. // UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC); // // Initialize the UART for console I/O. // UARTStdioConfig(0, 115200, 16000000); } //***************************************************************************** // // This example demonstrates how to use the uDMA controller to transfer data // between memory buffers and to and from a peripheral, in this case a UART. // The uDMA controller is configured to repeatedly transfer a block of data // from one memory buffer to another. It is also set up to repeatedly copy a // block of data from a buffer to the UART output. The UART data is looped // back so the same data is received, and the uDMA controlled is configured to // continuously receive the UART data using ping-pong buffers. // // The processor is put to sleep when it is not doing anything, and this allows // collection of CPU usage data to see how much CPU is being used while the // data transfers are ongoing. // //***************************************************************************** int main(void) { static uint32_t ui32PrevSeconds; static uint32_t ui32PrevXferCount; static uint32_t ui32PrevUARTCount = 0; uint32_t ui32XfersCompleted; uint32_t ui32BytesTransferred; // // Enable lazy stacking for interrupt handlers. This allows floating-point // instructions to be used within interrupt handlers, but at the expense of // extra stack usage. // ROM_FPULazyStackingEnable(); // // Set the clocking to run from the PLL at 50 MHz. // ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ); // // Enable peripherals to operate when CPU is in sleep. // ROM_SysCtlPeripheralClockGating(true); // // Enable the GPIO port that is used for the on-board LED. // ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); // // Enable the GPIO pins for the LED (PF2). // ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2); // // Initialize the UART. // ConfigureUART(); UARTprintf("\033[2JuDMA Example\n"); // // Show the clock frequency on the display. // UARTprintf("Tiva C Series @ %u MHz\n\n", ROM_SysCtlClockGet() / 1000000); // // Show statistics headings. // UARTprintf("CPU Memory UART Remaining\n"); UARTprintf("Usage Transfers Transfers Time\n"); // // Configure SysTick to occur 100 times per second, to use as a time // reference. Enable SysTick to generate interrupts. // ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND); ROM_SysTickIntEnable(); ROM_SysTickEnable(); // // Initialize the CPU usage measurement routine. // CPUUsageInit(ROM_SysCtlClockGet(), SYSTICKS_PER_SECOND, 2); // // Enable the uDMA controller at the system level. Enable it to continue // to run while the processor is in sleep. // ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA); ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA); // // Enable the uDMA controller error interrupt. This interrupt will occur // if there is a bus error during a transfer. // ROM_IntEnable(INT_UDMAERR); // // Enable the uDMA controller. // ROM_uDMAEnable(); // // Point at the control table to use for channel control structures. // ROM_uDMAControlBaseSet(ui8ControlTable); // // Initialize the uDMA memory to memory transfers. // InitSWTransfer(); // // Initialize the uDMA UART transfers. // InitUART1Transfer(); // // Remember the current SysTick seconds count. // ui32PrevSeconds = g_ui32Seconds; // // Remember the current count of memory buffer transfers. // ui32PrevXferCount = g_ui32MemXferCount; // // Loop until the button is pressed. The processor is put to sleep // in this loop so that CPU utilization can be measured. // while(1) { // // Check to see if one second has elapsed. If so, the make some // updates. // if(g_ui32Seconds != ui32PrevSeconds) { // // Turn on the LED as a heartbeat // GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2); // // Print a message to the display showing the CPU usage percent. // The fractional part of the percent value is ignored. // UARTprintf("\r%3d%% ", g_ui32CPUUsage >> 16); // // Remember the new seconds count. // ui32PrevSeconds = g_ui32Seconds; // // Calculate how many memory transfers have occurred since the last // second. // ui32XfersCompleted = g_ui32MemXferCount - ui32PrevXferCount; // // Remember the new transfer count. // ui32PrevXferCount = g_ui32MemXferCount; // // Compute how many bytes were transferred in the memory transfer // since the last second. // ui32BytesTransferred = ui32XfersCompleted * MEM_BUFFER_SIZE * 4; // // Print a message showing the memory transfer rate. // if(ui32BytesTransferred >= 100000000) { UARTprintf("%3d MB/s ", ui32BytesTransferred / 1000000); } else if(ui32BytesTransferred >= 10000000) { UARTprintf("%2d.%01d MB/s ", ui32BytesTransferred / 1000000, (ui32BytesTransferred % 1000000) / 100000); } else if(ui32BytesTransferred >= 1000000) { UARTprintf("%1d.%02d MB/s ", ui32BytesTransferred / 1000000, (ui32BytesTransferred % 1000000) / 10000); } else if(ui32BytesTransferred >= 100000) { UARTprintf("%3d KB/s ", ui32BytesTransferred / 1000); } else if(ui32BytesTransferred >= 10000) { UARTprintf("%2d.%01d KB/s ", ui32BytesTransferred / 1000, (ui32BytesTransferred % 1000) / 100); } else if(ui32BytesTransferred >= 1000) { UARTprintf("%1d.%02d KB/s ", ui32BytesTransferred / 1000, (ui32BytesTransferred % 1000) / 10); } else if(ui32BytesTransferred >= 100) { UARTprintf("%3d B/s ", ui32BytesTransferred); } else if(ui32BytesTransferred >= 10) { UARTprintf("%2d B/s ", ui32BytesTransferred); } else { UARTprintf("%1d B/s ", ui32BytesTransferred); } // // Calculate how many UART transfers have occurred since the last // second. // ui32XfersCompleted = (g_ui32RxBufACount + g_ui32RxBufBCount - ui32PrevUARTCount); // // Remember the new UART transfer count. // ui32PrevUARTCount = g_ui32RxBufACount + g_ui32RxBufBCount; // // Compute how many bytes were transferred by the UART. The number // of bytes received is multiplied by 2 so that the TX bytes // transferred are also accounted for. // ui32BytesTransferred = ui32XfersCompleted * UART_RXBUF_SIZE * 2; // // Print a message showing the UART transfer rate. // if(ui32BytesTransferred >= 1000000) { UARTprintf("%1d.%02d MB/s ", ui32BytesTransferred / 1000000, (ui32BytesTransferred % 1000000) / 10000); } else if(ui32BytesTransferred >= 100000) { UARTprintf("%3d KB/s ", ui32BytesTransferred / 1000); } else if(ui32BytesTransferred >= 10000) { UARTprintf("%2d.%01d KB/s ", ui32BytesTransferred / 1000, (ui32BytesTransferred % 1000) / 100); } else if(ui32BytesTransferred >= 1000) { UARTprintf("%1d.%02d KB/s ", ui32BytesTransferred / 1000, (ui32BytesTransferred % 1000) / 10); } else if(ui32BytesTransferred >= 100) { UARTprintf("%3d B/s ", ui32BytesTransferred); } else if(ui32BytesTransferred >= 10) { UARTprintf("%2d B/s ", ui32BytesTransferred); } else { UARTprintf("%1d B/s ", ui32BytesTransferred); } // // Print a spinning line to make it more apparent that there is // something happening. // UARTprintf("%2ds", 10 - ui32PrevSeconds); // // Turn off the LED. // GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0); } // // Put the processor to sleep if there is nothing to do. This allows // the CPU usage routine to measure the number of free CPU cycles. // If the processor is sleeping a lot, it can be hard to connect to // the target with the debugger. // ROM_SysCtlSleep(); // // See if we have run int32_t enough and exit the loop if so. // if(g_ui32Seconds >= 10) { break; } } // // Indicate on the display that the example is stopped. // UARTprintf("\nStopped\n"); // // Loop forever with the CPU not sleeping, so the debugger can connect. // while(1) { // // Turn on the GREEN LED. // GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2); // // Delay for a bit. // SysCtlDelay(SysCtlClockGet() / 20 / 3); // // Turn off the GREEN LED. // GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0); // // Delay for a bit. // SysCtlDelay(SysCtlClockGet() / 20 / 3); } }
中断服务函数的配置,CCS中在启动文件startup_ccs.c中修改的
//***************************************************************************** // // startup_ccs.c - Startup code for use with TI's Code Composer Studio. // // Copyright (c) 2012-2014 Texas Instruments Incorporated. All rights reserved. // Software License Agreement // // Texas Instruments (TI) is supplying this software for use solely and // exclusively on TI's microcontroller products. The software is owned by // TI and/or its suppliers, and is protected under applicable copyright // laws. You may not combine this software with "viral" open-source // software in order to form a larger program. // // THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS. // NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT // NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY // CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL // DAMAGES, FOR ANY REASON WHATSOEVER. // // This is part of revision 2.1.0.12573 of the EK-TM4C123GXL Firmware Package. // //***************************************************************************** #include <stdint.h> #include "inc/hw_nvic.h" #include "inc/hw_types.h" //***************************************************************************** // // Forward declaration of the default fault handlers. // //***************************************************************************** void ResetISR(void); static void NmiSR(void); static void FaultISR(void); static void IntDefaultHandler(void); //***************************************************************************** // // External declaration for the reset handler that is to be called when the // processor is started // //***************************************************************************** extern void _c_int00(void); //***************************************************************************** // // Linker variable that marks the top of the stack. // //***************************************************************************** extern uint32_t __STACK_TOP; //***************************************************************************** // // External declarations for the interrupt handlers used by the application. // //***************************************************************************** extern void SysTickHandler(void); extern void UART1IntHandler(void); extern void uDMAIntHandler(void); extern void uDMAErrorHandler(void); //***************************************************************************** // // The vector table. Note that the proper constructs must be placed on this to // ensure that it ends up at physical address 0x0000.0000 or at the start of // the program if located at a start address other than 0. // //***************************************************************************** #pragma DATA_SECTION(g_pfnVectors, ".intvecs") void (* const g_pfnVectors[])(void) = { (void (*)(void))((uint32_t)&__STACK_TOP), // The initial stack pointer ResetISR, // The reset handler NmiSR, // The NMI handler FaultISR, // The hard fault handler IntDefaultHandler, // The MPU fault handler IntDefaultHandler, // The bus fault handler IntDefaultHandler, // The usage fault handler 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved IntDefaultHandler, // SVCall handler IntDefaultHandler, // Debug monitor handler 0, // Reserved IntDefaultHandler, // The PendSV handler SysTickHandler, // The SysTick handler IntDefaultHandler, // GPIO Port A IntDefaultHandler, // GPIO Port B IntDefaultHandler, // GPIO Port C IntDefaultHandler, // GPIO Port D IntDefaultHandler, // GPIO Port E IntDefaultHandler, // UART0 Rx and Tx UART1IntHandler, // UART1 Rx and Tx IntDefaultHandler, // SSI0 Rx and Tx IntDefaultHandler, // I2C0 Master and Slave IntDefaultHandler, // PWM Fault IntDefaultHandler, // PWM Generator 0 IntDefaultHandler, // PWM Generator 1 IntDefaultHandler, // PWM Generator 2 IntDefaultHandler, // Quadrature Encoder 0 IntDefaultHandler, // ADC Sequence 0 IntDefaultHandler, // ADC Sequence 1 IntDefaultHandler, // ADC Sequence 2 IntDefaultHandler, // ADC Sequence 3 IntDefaultHandler, // Watchdog timer IntDefaultHandler, // Timer 0 subtimer A IntDefaultHandler, // Timer 0 subtimer B IntDefaultHandler, // Timer 1 subtimer A IntDefaultHandler, // Timer 1 subtimer B IntDefaultHandler, // Timer 2 subtimer A IntDefaultHandler, // Timer 2 subtimer B IntDefaultHandler, // Analog Comparator 0 IntDefaultHandler, // Analog Comparator 1 IntDefaultHandler, // Analog Comparator 2 IntDefaultHandler, // System Control (PLL, OSC, BO) IntDefaultHandler, // FLASH Control IntDefaultHandler, // GPIO Port F IntDefaultHandler, // GPIO Port G IntDefaultHandler, // GPIO Port H IntDefaultHandler, // UART2 Rx and Tx IntDefaultHandler, // SSI1 Rx and Tx IntDefaultHandler, // Timer 3 subtimer A IntDefaultHandler, // Timer 3 subtimer B IntDefaultHandler, // I2C1 Master and Slave IntDefaultHandler, // Quadrature Encoder 1 IntDefaultHandler, // CAN0 IntDefaultHandler, // CAN1 0, // Reserved 0, // Reserved IntDefaultHandler, // Hibernate IntDefaultHandler, // USB0 IntDefaultHandler, // PWM Generator 3 uDMAIntHandler, // uDMA Software Transfer uDMAErrorHandler, // uDMA Error IntDefaultHandler, // ADC1 Sequence 0 IntDefaultHandler, // ADC1 Sequence 1 IntDefaultHandler, // ADC1 Sequence 2 IntDefaultHandler, // ADC1 Sequence 3 0, // Reserved 0, // Reserved IntDefaultHandler, // GPIO Port J IntDefaultHandler, // GPIO Port K IntDefaultHandler, // GPIO Port L IntDefaultHandler, // SSI2 Rx and Tx IntDefaultHandler, // SSI3 Rx and Tx IntDefaultHandler, // UART3 Rx and Tx IntDefaultHandler, // UART4 Rx and Tx IntDefaultHandler, // UART5 Rx and Tx IntDefaultHandler, // UART6 Rx and Tx IntDefaultHandler, // UART7 Rx and Tx 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved IntDefaultHandler, // I2C2 Master and Slave IntDefaultHandler, // I2C3 Master and Slave IntDefaultHandler, // Timer 4 subtimer A IntDefaultHandler, // Timer 4 subtimer B 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved IntDefaultHandler, // Timer 5 subtimer A IntDefaultHandler, // Timer 5 subtimer B IntDefaultHandler, // Wide Timer 0 subtimer A IntDefaultHandler, // Wide Timer 0 subtimer B IntDefaultHandler, // Wide Timer 1 subtimer A IntDefaultHandler, // Wide Timer 1 subtimer B IntDefaultHandler, // Wide Timer 2 subtimer A IntDefaultHandler, // Wide Timer 2 subtimer B IntDefaultHandler, // Wide Timer 3 subtimer A IntDefaultHandler, // Wide Timer 3 subtimer B IntDefaultHandler, // Wide Timer 4 subtimer A IntDefaultHandler, // Wide Timer 4 subtimer B IntDefaultHandler, // Wide Timer 5 subtimer A IntDefaultHandler, // Wide Timer 5 subtimer B IntDefaultHandler, // FPU 0, // Reserved 0, // Reserved IntDefaultHandler, // I2C4 Master and Slave IntDefaultHandler, // I2C5 Master and Slave IntDefaultHandler, // GPIO Port M IntDefaultHandler, // GPIO Port N IntDefaultHandler, // Quadrature Encoder 2 0, // Reserved 0, // Reserved IntDefaultHandler, // GPIO Port P (Summary or P0) IntDefaultHandler, // GPIO Port P1 IntDefaultHandler, // GPIO Port P2 IntDefaultHandler, // GPIO Port P3 IntDefaultHandler, // GPIO Port P4 IntDefaultHandler, // GPIO Port P5 IntDefaultHandler, // GPIO Port P6 IntDefaultHandler, // GPIO Port P7 IntDefaultHandler, // GPIO Port Q (Summary or Q0) IntDefaultHandler, // GPIO Port Q1 IntDefaultHandler, // GPIO Port Q2 IntDefaultHandler, // GPIO Port Q3 IntDefaultHandler, // GPIO Port Q4 IntDefaultHandler, // GPIO Port Q5 IntDefaultHandler, // GPIO Port Q6 IntDefaultHandler, // GPIO Port Q7 IntDefaultHandler, // GPIO Port R IntDefaultHandler, // GPIO Port S IntDefaultHandler, // PWM 1 Generator 0 IntDefaultHandler, // PWM 1 Generator 1 IntDefaultHandler, // PWM 1 Generator 2 IntDefaultHandler, // PWM 1 Generator 3 IntDefaultHandler // PWM 1 Fault }; //***************************************************************************** // // This is the code that gets called when the processor first starts execution // following a reset event. Only the absolutely necessary set is performed, // after which the application supplied entry() routine is called. Any fancy // actions (such as making decisions based on the reset cause register, and // resetting the bits in that register) are left solely in the hands of the // application. // //***************************************************************************** void ResetISR(void) { // // Jump to the CCS C initialization routine. This will enable the // floating-point unit as well, so that does not need to be done here. // __asm(" .global _c_int00\n" " b.w _c_int00"); } //***************************************************************************** // // This is the code that gets called when the processor receives a NMI. This // simply enters an infinite loop, preserving the system state for examination // by a debugger. // //***************************************************************************** static void NmiSR(void) { // // Enter an infinite loop. // while(1) { } } //***************************************************************************** // // This is the code that gets called when the processor receives a fault // interrupt. This simply enters an infinite loop, preserving the system state // for examination by a debugger. // //***************************************************************************** static void FaultISR(void) { // // Enter an infinite loop. // while(1) { } } //***************************************************************************** // // This is the code that gets called when the processor receives an unexpected // interrupt. This simply enters an infinite loop, preserving the system state // for examination by a debugger. // //***************************************************************************** static void IntDefaultHandler(void) { // // Go into an infinite loop. // while(1) { } }