This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
#include <stdint.h> #include <stdbool.h> #include "inc/hw_memmap.h" #include "inc/hw_types.h" #include "driverlib/debug.h" #include "driverlib/gpio.h" #include "driverlib/fpu.h" #include "driverlib/pin_map.h" #include "driverlib/sysctl.h" #include "driverlib/systick.h" #include "driverlib/rom.h" #include "driverlib/uart.h" #include "utils/uartstdio.h" //***************************************************************************** // //! \addtogroup example_list //! <h1>Bit-Banding (bitband)</h1> //! //! This example application demonstrates the use of the bit-banding //! capabilities of the Cortex-M4F microprocessor. All of SRAM and all of the //! peripherals reside within bit-band regions, meaning that bit-banding //! operations can be applied to any of them. In this example, a variable in //! SRAM is set to a particular value one bit at a time using bit-banding //! operations (it would be more efficient to do a single non-bit-banded write; //! this simply demonstrates the operation of bit-banding). // //***************************************************************************** //***************************************************************************** // // The value that is to be modified via bit-banding. // //***************************************************************************** static volatile uint32_t g_ui32Value; //***************************************************************************** // // The error routine that is called if the driver library encounters an error. // //***************************************************************************** #ifdef DEBUG void __error__(char *pcFilename, uint32_t ui32Line) { while(1) { // // Hang on runtime error. // } } #endif //***************************************************************************** // // Configure the UART and its pins. This must be called before UARTprintf(). // //***************************************************************************** void ConfigureUART(void) { // // Enable the GPIO Peripheral used by the UART. // ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); // // Enable UART0 // ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0); // // Configure GPIO Pins for UART mode. // ROM_GPIOPinConfigure(GPIO_PA0_U0RX); ROM_GPIOPinConfigure(GPIO_PA1_U0TX); ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1); // // Use the internal 16MHz oscillator as the UART clock source. // UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC); // // Initialize the UART for console I/O. // UARTStdioConfig(0, 115200, 16000000); } //***************************************************************************** // // This example demonstrates the use of bit-banding to set individual bits // within a word of SRAM. // //***************************************************************************** int main(void) { // Set the clocking to run directly from the crystal. // ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ); // // Initialize the UART interface. // ConfigureUART(); UARTprintf("Hello this is TM4C123H6PM USART0!\n"); UARTprintf("USART0 by stdio.h!\n"); // Loop forever. // while(1) { } }