在官方例程adc0_singleended_multichannel_timertrigger_dmareq_MSP_EXP432E401Y 中,如果直接将srcBuffer[0]的值赋给定义的数组,最后得到的数据不是预期的。
代码如下所示,在while循环中直接将srcBuffer的值赋给a[i],得到的结果并不是预期的值。
请问这个是什么原因,同时如果想要将缓冲区的数据读取到指定的数组当中,应该用什么样的方法。
/* --COPYRIGHT--,BSD
* Copyright (c) 2017, Texas Instruments Incorporated
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* --/COPYRIGHT--*/
/******************************************************************************
* MSP432E4 Example project for ADC with multiple channel and single sequencer
* with Timer Trigger and DMA Request from ADC.
*
* Description: In this application example the ADC0 is configured for a single
* sequencer sampling 4 channels in single ended mode. The ADC is triggered by
* a timer running in periodic mode with a sampling frequency of 1 KHz. After
* the conversion is completed a DMA request is generated by the ADC Sequencer.
* The data is read by the DMA and an interrupt request to the CPU is
* generated. The CPU reads the data from the DMA buffer and re-enables the
* DMA to transfer more data.
*
* MSP432E401Y
* ------------------
* /|\| PE3|<-- AIN0
* | | PE2|<-- AIN1
* --|RST PE1|<-- AIN2
* | PE0|<-- AIN3
* | |
* | |
* | PA0|<--U0RX
* | PA1|-->U0TX
* Author: Amit Ashara
*******************************************************************************/
/* DriverLib Includes */
#include <ti/devices/msp432e4/driverlib/driverlib.h>
/* Standard Includes */
#include <stdint.h>
#include <stdbool.h>
/* Display Include via console */
#include "uartstdio.h"
static uint16_t srcBuffer[4];
volatile bool bgetConvStatus = false;;
/* The control table used by the uDMA controller. This table must be aligned
* to a 1024 byte boundary. */
#if defined(__ICCARM__)
#pragma data_alignment=1024
uint8_t pui8ControlTable[1024];
#elif defined(__TI_ARM__)
#pragma DATA_ALIGN(pui8ControlTable, 1024)
uint8_t pui8ControlTable[1024];
#else
uint8_t pui8ControlTable[1024] __attribute__ ((aligned(1024)));
#endif
void ADC0SS2_IRQHandler(void)
{
uint32_t getIntStatus;
/* Get the interrupt status from the ADC */
getIntStatus = MAP_ADCIntStatusEx(ADC0_BASE, true);
/* If the interrupt status for Sequencer-2 is set the
* clear the status and read the data */
if((getIntStatus & ADC_INT_DMA_SS2) == ADC_INT_DMA_SS2)
{
/* Clear the ADC interrupt flag. */
MAP_ADCIntClearEx(ADC0_BASE, ADC_INT_DMA_SS2);
/* Reconfigure the channel control structure and enable the channel */
MAP_uDMAChannelTransferSet(UDMA_CH16_ADC0_2 | UDMA_PRI_SELECT,
UDMA_MODE_BASIC,
(void *)&ADC0->SSFIFO2, (void *)&srcBuffer,
sizeof(srcBuffer)/2);
MAP_uDMAChannelEnable(UDMA_CH16_ADC0_2);
/* Set conversion flag to true */
bgetConvStatus = true;
}
}
void ConfigureUART(uint32_t systemClock)
{
/* Enable the clock to GPIO port A and UART 0 */
MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
/* Configure the GPIO Port A for UART 0 */
MAP_GPIOPinConfigure(GPIO_PA0_U0RX);
MAP_GPIOPinConfigure(GPIO_PA1_U0TX);
MAP_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
/* Configure the UART for 115200 bps 8-N-1 format */
UARTStdioConfig(0, 115200, systemClock);
}
void swap(int* arr1, int* arr2, int index){
int j = index;
int i = 0;
for(i = 0; i < 256; i++,j++){
arr2[j] = arr1[i];
}
}
int main(void)
{
uint32_t systemClock;
/* Configure the system clock for 120 MHz */
systemClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN |
SYSCTL_USE_PLL | SYSCTL_CFG_VCO_480),
120000000);
/* Initialize serial console */
ConfigureUART(systemClock);
/* Enable the clock to GPIO Port E and wait for it to be ready */
MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
while(!(MAP_SysCtlPeripheralReady(SYSCTL_PERIPH_GPIOE)))
{
}
/* Configure PE0-PE3 as ADC input channel */
MAP_GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_3);
/* Enable the clock to ADC-0 and wait for it to be ready */
MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
while(!(MAP_SysCtlPeripheralReady(SYSCTL_PERIPH_ADC0)))
{
}
/* Configure Sequencer 2 to sample the analog channel : AIN0-AIN3. The
* end of conversion and interrupt generation is set for AIN3 */
MAP_ADCSequenceStepConfigure(ADC0_BASE, 2, 0, ADC_CTL_CH1 | ADC_CTL_IE |
ADC_CTL_END);
/* Enable sample sequence 2 with a timer signal trigger. Sequencer 2
* will do a single sample when the timer generates a trigger on timeout*/
MAP_ADCSequenceConfigure(ADC0_BASE, 2, ADC_TRIGGER_TIMER, 2);
/* Clear the interrupt status flag before enabling. This is done to make
* sure the interrupt flag is cleared before we sample. */
MAP_ADCIntClearEx(ADC0_BASE, ADC_INT_DMA_SS2);
MAP_ADCIntEnableEx(ADC0_BASE, ADC_INT_DMA_SS2);
/* Enable the DMA request from ADC0 Sequencer 2 */
MAP_ADCSequenceDMAEnable(ADC0_BASE, 2);
/* Since sample sequence 2 is now configured, it must be enabled. */
MAP_ADCSequenceEnable(ADC0_BASE, 2);
/* Enable the Interrupt generation from the ADC-0 Sequencer */
MAP_IntEnable(INT_ADC0SS2);
/* Enable the DMA and Configure Channel for TIMER0A for Ping Pong mode of
* transfer */
MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
while(!(SysCtlPeripheralReady(SYSCTL_PERIPH_UDMA)))
{
}
MAP_uDMAEnable();
/* Point at the control table to use for channel control structures. */
MAP_uDMAControlBaseSet(pui8ControlTable);
/* Map the ADC0 Sequencer 2 DMA channel */
MAP_uDMAChannelAssign(UDMA_CH16_ADC0_2);
/* Put the attributes in a known state for the uDMA ADC0 Sequencer 2
* channel. These should already be disabled by default. */
MAP_uDMAChannelAttributeDisable(UDMA_CH16_ADC0_2,
UDMA_ATTR_ALTSELECT | UDMA_ATTR_USEBURST |
UDMA_ATTR_HIGH_PRIORITY |
UDMA_ATTR_REQMASK);
/* Configure the control parameters for the primary control structure for
* the ADC0 Sequencer 2 channel. The primary control structure is used for
* copying the data from ADC0 Sequencer 2 FIFO to srcBuffer. The transfer
* data size is 16 bits and the source address is not incremented while
* the destination address is incremented at 16-bit boundary.
*/
MAP_uDMAChannelControlSet(UDMA_CH16_ADC0_2 | UDMA_PRI_SELECT,
UDMA_SIZE_16 | UDMA_SRC_INC_NONE | UDMA_DST_INC_16 |
UDMA_ARB_4);
/* Set up the transfer parameters for the ADC0 Sequencer 2 primary control
* structure. The mode is Basic mode so it will run to completion. */
MAP_uDMAChannelTransferSet(UDMA_CH16_ADC0_2 | UDMA_PRI_SELECT,
UDMA_MODE_BASIC,
(void *)&ADC0->SSFIFO2, (void *)&srcBuffer,
sizeof(srcBuffer)/2);
/* The uDMA ADC0 Sequencer 2 channel is primed to start a transfer. As
* soon as the channel is enabled and the Timer will issue an ADC trigger,
* the ADC will perform the conversion and send a DMA Request. The data
* transfers will begin. */
MAP_uDMAChannelEnable(UDMA_CH16_ADC0_2);
/* Enable Timer-0 clock and configure the timer in periodic mode with
* a frequency of 1 KHz. Enable the ADC trigger generation from the
* timer-0. */
MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);
while(!(MAP_SysCtlPeripheralReady(SYSCTL_PERIPH_TIMER0)))
{
}
MAP_TimerConfigure(TIMER0_BASE, TIMER_CFG_A_PERIODIC);
MAP_TimerLoadSet(TIMER0_BASE, TIMER_A, (systemClock/1000));
MAP_TimerADCEventSet(TIMER0_BASE, TIMER_ADC_TIMEOUT_A);
MAP_TimerControlTrigger(TIMER0_BASE, TIMER_A, true);
MAP_TimerEnable(TIMER0_BASE, TIMER_A);
int a[256];
int i=0;
/* Wait loop */
while(1){
/* Wait for the conversion to complete */
while(i<256)
{
a[i]=srcBuffer[0];
i++;
}
for(i=0;i<256;i++)
UARTprintf("a[%d] = %d\r",i, a[i]);
}
}
