This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

请问怎么用6678评估板将HWI或SWI与helloworld里的NDK配合使用呀?(附代码了,感谢)



1.我要做的事情是:

通过触发中断(SWI或HWI),使NDK里面的UDP跑起来,实现DSP与PC数据传输。

2.我现在的问题是:

(1)单独跑NDK没有问题,能够实现DSP与PC通信,但是我加了SWI和信号量来触发NDK的StackTest的话,没有成功。

(我的逻辑是,创建两个任务,第一个任务是int StackTest(),作用是配置UDP并实现DSP与PC通信,它里面放了一个等待信号量Semaphore_pend(sem0, BIOS_WAIT_FOREVER),信号量来了才运行;  第二个任务是void fun_enswi0(void),作用是触发软中断,软中断我用的是计数器Swi_dec(swi0),当swi0减了我设定的数就触发软中断;  软中断是void func_swi0(void),作用是释放信号量,这样第一个任务就能运行起来了)

(2)NDK例程里的StackTest是不是和直接用cfg创建的task不一样?

(我是在helloworld例程,也就是在原任务是int StackTest()的基础上添加的task和软中断,我在创建任务时,发现原来的StackTest创建方式是用的xdc而不是cfg方式。)

(3)如果是想通过软中断或者硬中断来触发NDK,实现通信是必须要用到多核吗?

(4)刚学DSP不久的学生,然后这几天急着要用这个,请问有大佬能分享下经验吗,如果能参考一下程序万分感谢!

3.我的主函数程序是:

#include <stdio.h>
#include <ti/ndk/inc/netmain.h>

/* BIOS6 include */
#include <ti/sysbios/BIOS.h>
/*TASK SWI*/
#include <ti/sysbios/knl/Task.h>
#include <ti/sysbios/knl/Swi.h>
#include <ti/sysbios/knl/Semaphore.h>
#include <xdc/runtime/Log.h>

/* Platform utilities include */
#include "ti/platform/platform.h"
#include "ti/platform/resource_mgr.h"

#include "TSC.h"
#include "My_edma.h"

#include "srio_var.h"

#include "KeyStone_common.h"
#include "KeyStone_DDR_Init.h"

#include "ledcommon.h"

/* Platform Information - we will read it form the Platform Library */
platform_info  gPlatformInfo;


//---------------------------------------------------------------------------
// Title String
//
char *VerStr = "\nTCP/IP Stack 'Hello World!' Application\n\n";

// Our NETCTRL callback functions
static void   NetworkOpen();
static void   NetworkClose();
static void   NetworkIPAddr( IPN IPAddr, uint IfIdx, uint fAdd );

// Fun reporting function
static void   ServiceReport( uint Item, uint Status, uint Report, HANDLE hCfgEntry );

// External references
extern int dtask_udp_hello();

//---------------------------------------------------------------------------
// Configuration
//
char *HostName    = "tidsp";
char *LocalIPAddr = "169.254.198.113";
char *LocalIPMask = "255.255.255.0";    // Not used when using DHCP
char *GatewayIP   = "169.254.198.101";    // Not used when using DHCP
char *DomainName  = "demo.net";         // Not used when using DHCP
char *DNSServer   = "0.0.0.0";          // Used when set to anything but zero

// Simulator EMAC Switch does not handle ALE_LEARN mode, so please configure the
// MAC address of the PC where you want to launch the webpages and initiate PING to NDK */

Uint8 clientMACAddress [6] = {0x00, 0xE1, 0x8C, 0xA4, 0x6C, 0x08}; /* MAC address for my PC */


void EVM_init()
{
 platform_init_flags   sFlags;
 platform_init_config  sConfig;
 /* Status of the call to initialize the platform */
 int32_t pform_status;

 /*
  * You can choose what to initialize on the platform by setting the following
  * flags. Things like the DDR, PLL, etc should have been set by the boot loader.
 */
 memset( (void *) &sFlags,  0, sizeof(platform_init_flags));
 memset( (void *) &sConfig, 0, sizeof(platform_init_config));

    sFlags.pll  = 0; /* PLLs for clocking    */
    sFlags.ddr  = 0;     /* External memory    */
    sFlags.tcsl = 1; /* Time stamp counter   */
#ifdef _SCBP6618X_
    sFlags.phy  = 0; /* Ethernet       */
#else
    sFlags.phy  = 1; /* Ethernet       */
#endif
    sFlags.ecc  = 0; /* Memory ECC       */

    sConfig.pllm = 0;  /* Use libraries default clock divisor */

 pform_status = platform_init(&sFlags, &sConfig);

 /* If we initialized the platform okay */
 if (pform_status != Platform_EOK) {
   /* Initialization of the platform failed... die */
   while (1) {
     (void) platform_led(1, PLATFORM_LED_ON, PLATFORM_USER_LED_CLASS);
     (void) platform_delay(50000);
     (void) platform_led(1, PLATFORM_LED_OFF, PLATFORM_USER_LED_CLASS);
     (void) platform_delay(50000);
   }
 }

}

//---------------------------------------------------------------------
// Main Entry Point Disable all EDMA3 interrupts and events
//---------------------------------------------------------------------

//#pragma DATA_SECTION(SRIO_BUF, ".srio_data")
//MhalMessage_S32	SRIO_BUF;

Swi_Handle swi0;//声明一个全局的SWI句柄*************
Semaphore_Handle sem0;//声明一个全局信号量句柄
Int count = 0;//用来判断stacktest何时开始运行

void fun_enswi0(void);
void func_swi0(void);

int main()
{

    //初始化SWI参数
    Swi_Params swiParams;
    Swi_Params_init(&swiParams);
    swiParams.priority = 8;//软件中断优先级设置为2
    swiParams.trigger = 2;//设置软件中断计数器
    swi0 = Swi_create(func_swi0,&swiParams,NULL);//创建软件中断swi0,func_swi0为软件中断函数

    //初始化信号量参数
    sem0 = Semaphore_create(0, NULL, NULL);//创建信号量


	TSC_init();

	BIOS_start();//执行这个就会打开进程StackTest 网口初始化相关
}

//-------------------------------SWI_TASK_LISHIYONG------------------------------------------//
//中断函数
void func_swi0(void){
	static int count_swi0 = 0;
	printf("swi0 is doing %d\n",count_swi0);
	count_swi0++;
	Semaphore_post(sem0);//在中断函数里增加一个解锁信号量的函数
}

//触发中断的函数 void fun_enswi0(void) { //Int count = 0; while(count<10) { //Semaphore_pend(sem0, BIOS_WAIT_FOREVER); //在任务函数中增加一个等待信号量为1的函数,BIOS_WAIT_FOREVER表示一直等待,直到信号量为1 //printf("Task1 is doing %d\n",count); Swi_dec(swi0); //Task_yield();//优先级调度函数,其作用就是如果有相同优先级的任务,则调度到同优先级的其它任务执行! count++; } }

// // UDP任务,在其中创建了dtask_udp_hello实现通信 // int StackTest() { //printf("StackTest is doing !"); Semaphore_pend(sem0, BIOS_WAIT_FOREVER); //在需要增加互斥信号量的任务函数中增加一个等待信号量为1的函数,BIOS_WAIT_FOREVER表示一直等待,直到信号量为1 int rc; int i; HANDLE hCfg; QMSS_CFG_T qmss_cfg; CPPI_CFG_T cppi_cfg; /* Get information about the platform so we can use it in various places */ memset( (void *) &gPlatformInfo, 0, sizeof(platform_info)); (void) platform_get_info(&gPlatformInfo); (void) platform_uart_init(); (void) platform_uart_set_baudrate(115200); (void) platform_write_configure(PLATFORM_WRITE_ALL); /* Clear the state of the User LEDs to OFF */ for (i=0; i < gPlatformInfo.led[PLATFORM_USER_LED_CLASS].count; i++) { (void) platform_led(i, PLATFORM_LED_OFF, PLATFORM_USER_LED_CLASS); } /* Initialize the components required to run this application: * (1) QMSS * (2) CPPI * (3) Packet Accelerator */ /* Initialize QMSS */ if (platform_get_coreid() == 0) { qmss_cfg.master_core = 1; } else { qmss_cfg.master_core = 0; } qmss_cfg.max_num_desc = MAX_NUM_DESC; qmss_cfg.desc_size = MAX_DESC_SIZE; qmss_cfg.mem_region = Qmss_MemRegion_MEMORY_REGION0; if (res_mgr_init_qmss (&qmss_cfg) != 0) { platform_write ("Failed to initialize the QMSS subsystem \n"); goto main_exit; } else { platform_write ("QMSS successfully initialized \n"); } /* Initialize CPPI */ if (platform_get_coreid() == 0) { cppi_cfg.master_core = 1; } else { cppi_cfg.master_core = 0; } cppi_cfg.dma_num = Cppi_CpDma_PASS_CPDMA; cppi_cfg.num_tx_queues = NUM_PA_TX_QUEUES; cppi_cfg.num_rx_channels = NUM_PA_RX_CHANNELS; if (res_mgr_init_cppi (&cppi_cfg) != 0) { platform_write ("Failed to initialize CPPI subsystem \n"); goto main_exit; } else { platform_write ("CPPI successfully initialized \n"); } if (res_mgr_init_pass()!= 0) { platform_write ("Failed to initialize the Packet Accelerator \n"); goto main_exit; } else { platform_write ("PA successfully initialized \n"); } // // THIS MUST BE THE ABSOLUTE FIRST THING DONE IN AN APPLICATION before // using the stack!! // rc = NC_SystemOpen( NC_PRIORITY_LOW, NC_OPMODE_INTERRUPT ); if( rc ) { platform_write("NC_SystemOpen Failed (%d)\n",rc); for(;;); } // Print out our banner platform_write(VerStr); // // Create and build the system configuration from scratch. // // Create a new configuration hCfg = CfgNew(); if( !hCfg ) { platform_write("Unable to create configuration\n"); goto main_exit; } // // THIS MUST BE THE ABSOLUTE FIRST THING DONE IN AN APPLICATION!! // rc = NC_SystemOpen( NC_PRIORITY_LOW, NC_OPMODE_INTERRUPT ); if( rc ) { printf("NC_SystemOpen Failed (%d)\n",rc); for(;;); } // Print out our banner printf(VerStr); // // Create and build the system configuration from scratch. // // Create a new configuration hCfg = CfgNew(); if( !hCfg ) { printf("Unable to create configuration\n"); goto main_exit; } // We better validate the length of the supplied names if( strlen( DomainName ) >= CFG_DOMAIN_MAX || strlen( HostName ) >= CFG_HOSTNAME_MAX ) { printf("Names too long\n"); goto main_exit; } // Add our global hostname to hCfg (to be claimed in all connected domains) CfgAddEntry( hCfg, CFGTAG_SYSINFO, CFGITEM_DHCP_HOSTNAME, 0, strlen(HostName), (UINT8 *)HostName, 0 ); // If the IP address is specified, manually configure IP and Gateway //#if defined(_SCBP6618X_) || defined(_EVMTCI6614_) || defined(DEVICE_K2H) || defined(DEVICE_K2K) /* SCBP6618x, EVMTCI6614, EVMK2H, EVMK2K always uses DHCP */ // if (0) //#else //if (!platform_get_switch_state(1)) if(1) //#endif { printf("IP address is specified.\n"); CI_IPNET NA; CI_ROUTE RT; IPN IPTmp; // Setup manual IP address bzero( &NA, sizeof(NA) ); NA.IPAddr = inet_addr(LocalIPAddr); NA.IPMask = inet_addr(LocalIPMask); strcpy( NA.Domain, DomainName ); NA.NetType = 0; // Add the address to interface 1 CfgAddEntry( hCfg, CFGTAG_IPNET, 1, 0, sizeof(CI_IPNET), (UINT8 *)&NA, 0 ); // Add the default gateway. Since it is the default, the // destination address and mask are both zero (we go ahead // and show the assignment for clarity). bzero( &RT, sizeof(RT) ); RT.IPDestAddr = 0; RT.IPDestMask = 0; RT.IPGateAddr = inet_addr(GatewayIP); // Add the route CfgAddEntry( hCfg, CFGTAG_ROUTE, 0, 0, sizeof(CI_ROUTE), (UINT8 *)&RT, 0 ); // Manually add the DNS server when specified IPTmp = inet_addr(DNSServer); if( IPTmp ) CfgAddEntry( hCfg, CFGTAG_SYSINFO, CFGITEM_DHCP_DOMAINNAMESERVER, 0, sizeof(IPTmp), (UINT8 *)&IPTmp, 0 ); } // Else we specify DHCP else { CI_SERVICE_DHCPC dhcpc; // Specify DHCP Service on IF-1 bzero( &dhcpc, sizeof(dhcpc) ); dhcpc.cisargs.Mode = CIS_FLG_IFIDXVALID; dhcpc.cisargs.IfIdx = 1; dhcpc.cisargs.pCbSrv = &ServiceReport; CfgAddEntry( hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_DHCPCLIENT, 0, sizeof(dhcpc), (UINT8 *)&dhcpc, 0 ); } // // Configure IPStack/OS Options // // We don't want to see debug messages less than WARNINGS rc = DBG_WARN; CfgAddEntry( hCfg, CFGTAG_OS, CFGITEM_OS_DBGPRINTLEVEL, CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0 ); // // This code sets up the TCP and UDP buffer sizes // (Note 8192 is actually the default. This code is here to // illustrate how the buffer and limit sizes are configured.) // // UDP Receive limit //rc = 8192; rc = 64000; CfgAddEntry( hCfg, CFGTAG_IP, CFGITEM_IP_SOCKUDPRXLIMIT, CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0 ); //TCP Receive Buffer Size //rc = 64000; //CfgAddEntry( hCfg, CFGTAG_IP, CFGITEM_IP_SOCKTCPTXBUF,CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0 ); // // Boot the system using this configuration // // We keep booting until the function returns 0. This allows // us to have a "reboot" command. // do { rc = NC_NetStart( hCfg, NetworkOpen, NetworkClose, NetworkIPAddr ); } while( rc > 0 ); // Delete Configuration CfgFree( hCfg ); printf("TEST END!!!\n"); // Close the OS main_exit: NC_SystemClose(); return(0); } // // System Task Code [ Server Daemon Servers ] // static HANDLE hHello=0; // // NetworkOpen // // This function is called after the configuration has booted // static void NetworkOpen() { // Create our local server 创建一个守护进程 可能是反应堆模式 //hHello = DaemonNew( SOCK_STREAMNC, 0, 7, dtask_udp_hello, // OS_TASKPRINORM, OS_TASKSTKNORM, 0, 1 ); //DMA_Init_region(edma_channel_1); hHello = DaemonNew( SOCK_DGRAM, 0, 7, dtask_udp_hello, OS_TASKPRINORM, OS_TASKSTKNORM, 0, 1 ); } // // NetworkClose // // This function is called when the network is shutting down, // or when it no longer has any IP addresses assigned to it. // static void NetworkClose() { DaemonFree( hHello ); } // // NetworkIPAddr // // This function is called whenever an IP address binding is // added or removed from the system. // static void NetworkIPAddr( IPN IPAddr, uint IfIdx, uint fAdd ) { IPN IPTmp; if( fAdd ) printf("Network Added: "); else printf("Network Removed: "); // Print a message IPTmp = ntohl( IPAddr ); printf("If-%d:%d.%d.%d.%d\n", IfIdx, (UINT8)(IPTmp>>24)&0xFF, (UINT8)(IPTmp>>16)&0xFF, (UINT8)(IPTmp>>8)&0xFF, (UINT8)IPTmp&0xFF ); } // // Service Status Reports // // Here's a quick example of using service status updates // static char *TaskName[] = { "Telnet","HTTP","NAT","DHCPS","DHCPC","DNS" }; static char *ReportStr[] = { "","Running","Updated","Complete","Fault" }; static char *StatusStr[] = { "Disabled","Waiting","IPTerm","Failed","Enabled" }; static void ServiceReport( uint Item, uint Status, uint Report, HANDLE h ) { printf( "Service Status: %-9s: %-9s: %-9s: %03d\n", TaskName[Item-1], StatusStr[Status], ReportStr[Report/256], Report&0xFF ); // // Example of adding to the DHCP configuration space // // When using the DHCP client, the client has full control over access // to the first 256 entries in the CFGTAG_SYSINFO space. // // Note that the DHCP client will erase all CFGTAG_SYSINFO tags except // CFGITEM_DHCP_HOSTNAME. If the application needs to keep manual // entries in the DHCP tag range, then the code to maintain them should // be placed here. // // Here, we want to manually add a DNS server to the configuration, but // we can only do it once DHCP has finished its programming. // if( Item == CFGITEM_SERVICE_DHCPCLIENT && Status == CIS_SRV_STATUS_ENABLED && (Report == (NETTOOLS_STAT_RUNNING|DHCPCODE_IPADD) || Report == (NETTOOLS_STAT_RUNNING|DHCPCODE_IPRENEW)) ) { IPN IPTmp; // Manually add the DNS server when specified IPTmp = inet_addr(DNSServer); if( IPTmp ) CfgAddEntry( 0, CFGTAG_SYSINFO, CFGITEM_DHCP_DOMAINNAMESERVER, 0, sizeof(IPTmp), (UINT8 *)&IPTmp, 0 ); } }