This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

AM5708: 使用tidl_model_import.out转换后的计算结果和预期不符

Part Number: AM5708


模型是用jacinto-ai/pytorch-jacinto-ai-devkit - Jacinto - Deep Learning/CNN Training Examples & Quantization. Please see the documentation in the about tab.中的mobilenetv1,并对tidl的一些要求做了些修改(flatten层用reshape代替),生成的onnx模型在pc上推演正常。但部署到开发板后运行时得不到正确的结果.

转换时用的配置

randParams         = 0
modelType          = 2
quantRoundAdd      = 25
inElementType      = 0
rawSampleInData    = 1
foldBnInConv2D     = 1
numParamBits       = 8
Conv2dKernelType   = 0
preProcType = 0
inWidth  = 224
inHeight = 224
inNumChannels = 3
inputNetFile       = "mobilenetv1.onnx"
outputNetFile      = "tidl_net_mobilenetv1.bin"
outputParamsFile   = "tidl_param_mobilenetv1.bin"
sampleInData = "sample_img_256x256.raw"
tidlStatsTool = "eve_test_dl_algo.out"

转换时的输出

tidl_model_import.out ./tr.txt
TF Model (Proto) File  : mobilenetv1.onnx  
TIDL Network File      : tidl_net_mobilenetv1.bin  
TIDL Params  File      : tidl_param_mobilenetv1.bin  
Pading Only supported in H and W axis 
Pading Only supported in H and W axis 
Pading Only supported in H and W axis 
Pading Only supported in H and W axis 
Pading Only supported in H and W axis 
Pading Only supported in H and W axis 
Pading Only supported in H and W axis 
Pading Only supported in H and W axis 
Pading Only supported in H and W axis 
Pading Only supported in H and W axis 
Pading Only supported in H and W axis 
Pading Only supported in H and W axis 
Pading Only supported in H and W axis 
Pading Only supported in H and W axis 

Only float and INT64 tensor is suported 
Number of original layers: 57
Number of layers after tidl_addInDataLayer: 58
Number of layers after tidl_sortLayersInProcOrder: 58
Number of layers after tidl_removeMergedLayersFromNet: 58
Number of layers after second tidl_removeMergedLayersFromNet: 31
Number of layers after third tidl_removeMergedLayersFromNet: 30
Num of Layer Detected :  30 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  Num|TIDL Layer Name               |Out Data Name                                     |Group |#Ins  |#Outs |Inbuf Ids                       |Outbuf Id |In NCHW                             |Out NCHW                            |MACS       |
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    0|TIDL_DataLayer                |input.1                                           |     0|    -1|     1|  x   x   x   x   x   x   x   x |  0       |       0        0        0        0 |       1        3      224      224 |         0 |
    1|TIDL_ConvolutionLayer         |input.8                                           |     1|     1|     1|  0   x   x   x   x   x   x   x |  1       |       1        3      224      224 |       1       32      112      112 |  11239424 |
    2|TIDL_ConvolutionLayer         |input.20                                          |     1|     1|     1|  1   x   x   x   x   x   x   x |  2       |       1       32      112      112 |       1       32      112      112 |   4014080 |
    3|TIDL_ConvolutionLayer         |input.32                                          |     1|     1|     1|  2   x   x   x   x   x   x   x |  3       |       1       32      112      112 |       1       64      112      112 |  26492928 |
    4|TIDL_ConvolutionLayer         |input.44                                          |     1|     1|     1|  3   x   x   x   x   x   x   x |  4       |       1       64      112      112 |       1       64       56       56 |   2007040 |
    5|TIDL_ConvolutionLayer         |input.56                                          |     1|     1|     1|  4   x   x   x   x   x   x   x |  5       |       1       64       56       56 |       1      128       56       56 |  26091520 |
    6|TIDL_ConvolutionLayer         |input.68                                          |     1|     1|     1|  5   x   x   x   x   x   x   x |  6       |       1      128       56       56 |       1      128       56       56 |   4014080 |
    7|TIDL_ConvolutionLayer         |input.80                                          |     1|     1|     1|  6   x   x   x   x   x   x   x |  7       |       1      128       56       56 |       1      128       56       56 |  51781632 |
    8|TIDL_ConvolutionLayer         |input.92                                          |     1|     1|     1|  7   x   x   x   x   x   x   x |  8       |       1      128       56       56 |       1      128       28       28 |   1003520 |
    9|TIDL_ConvolutionLayer         |input.104                                         |     1|     1|     1|  8   x   x   x   x   x   x   x |  9       |       1      128       28       28 |       1      256       28       28 |  25890816 |
   10|TIDL_ConvolutionLayer         |input.116                                         |     1|     1|     1|  9   x   x   x   x   x   x   x | 10       |       1      256       28       28 |       1      256       28       28 |   2007040 |
   11|TIDL_ConvolutionLayer         |input.128                                         |     1|     1|     1| 10   x   x   x   x   x   x   x | 11       |       1      256       28       28 |       1      256       28       28 |  51580928 |
   12|TIDL_ConvolutionLayer         |input.140                                         |     1|     1|     1| 11   x   x   x   x   x   x   x | 12       |       1      256       28       28 |       1      256       14       14 |    501760 |
   13|TIDL_ConvolutionLayer         |input.152                                         |     1|     1|     1| 12   x   x   x   x   x   x   x | 13       |       1      256       14       14 |       1      512       14       14 |  25790464 |
   14|TIDL_ConvolutionLayer         |input.164                                         |     1|     1|     1| 13   x   x   x   x   x   x   x | 14       |       1      512       14       14 |       1      512       14       14 |   1003520 |
   15|TIDL_ConvolutionLayer         |input.176                                         |     1|     1|     1| 14   x   x   x   x   x   x   x | 15       |       1      512       14       14 |       1      512       14       14 |  51480576 |
   16|TIDL_ConvolutionLayer         |input.188                                         |     1|     1|     1| 15   x   x   x   x   x   x   x | 16       |       1      512       14       14 |       1      512       14       14 |   1003520 |
   17|TIDL_ConvolutionLayer         |input.200                                         |     1|     1|     1| 16   x   x   x   x   x   x   x | 17       |       1      512       14       14 |       1      512       14       14 |  51480576 |
   18|TIDL_ConvolutionLayer         |input.212                                         |     1|     1|     1| 17   x   x   x   x   x   x   x | 18       |       1      512       14       14 |       1      512       14       14 |   1003520 |
   19|TIDL_ConvolutionLayer         |input.224                                         |     1|     1|     1| 18   x   x   x   x   x   x   x | 19       |       1      512       14       14 |       1      512       14       14 |  51480576 |
   20|TIDL_ConvolutionLayer         |input.236                                         |     1|     1|     1| 19   x   x   x   x   x   x   x | 20       |       1      512       14       14 |       1      512       14       14 |   1003520 |
   21|TIDL_ConvolutionLayer         |input.248                                         |     1|     1|     1| 20   x   x   x   x   x   x   x | 21       |       1      512       14       14 |       1      512       14       14 |  51480576 |
   22|TIDL_ConvolutionLayer         |input.260                                         |     1|     1|     1| 21   x   x   x   x   x   x   x | 22       |       1      512       14       14 |       1      512       14       14 |   1003520 |
   23|TIDL_ConvolutionLayer         |input.272                                         |     1|     1|     1| 22   x   x   x   x   x   x   x | 23       |       1      512       14       14 |       1      512       14       14 |  51480576 |
   24|TIDL_ConvolutionLayer         |input.284                                         |     1|     1|     1| 23   x   x   x   x   x   x   x | 24       |       1      512       14       14 |       1      512        7        7 |    250880 |
   25|TIDL_ConvolutionLayer         |input.296                                         |     1|     1|     1| 24   x   x   x   x   x   x   x | 25       |       1      512        7        7 |       1     1024        7        7 |  25740288 |
   26|TIDL_ConvolutionLayer         |input.308                                         |     1|     1|     1| 25   x   x   x   x   x   x   x | 26       |       1     1024        7        7 |       1     1024        7        7 |    501760 |
   27|TIDL_ConvolutionLayer         |x                                                 |     1|     1|     1| 26   x   x   x   x   x   x   x | 27       |       1     1024        7        7 |       1     1024        7        7 |  51430400 |
   28|TIDL_PoolingLayer             |onnx::Gemm_248                                    |     1|     1|     1| 27   x   x   x   x   x   x   x | 28       |       1     1024        7        7 |       1        1        1     1024 |      2048 |
   29|TIDL_InnerProductLayer        |249                                               |     1|     1|     1| 28   x   x   x   x   x   x   x | 29       |       1        1        1     1024 |       1        1        1        9 |      9225 |
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Total Giga Macs : 0.5728
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Processing config file ./tempDir/qunat_stats_config.txt !
  0, TIDL_DataLayer                ,  0,  -1 ,  1 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  0 ,    0 ,    0 ,    0 ,    0 ,    1 ,    3 ,  224 ,  224 ,
  1, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  0 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  1 ,    1 ,    3 ,  224 ,  224 ,    1 ,   32 ,  112 ,  112 ,
  2, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  1 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  2 ,    1 ,   32 ,  112 ,  112 ,    1 ,   32 ,  112 ,  112 ,
  3, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  2 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  3 ,    1 ,   32 ,  112 ,  112 ,    1 ,   64 ,  112 ,  112 ,
  4, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  3 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  4 ,    1 ,   64 ,  112 ,  112 ,    1 ,   64 ,   56 ,   56 ,
  5, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  4 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  5 ,    1 ,   64 ,   56 ,   56 ,    1 ,  128 ,   56 ,   56 ,
  6, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  5 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  6 ,    1 ,  128 ,   56 ,   56 ,    1 ,  128 ,   56 ,   56 ,
  7, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  6 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  7 ,    1 ,  128 ,   56 ,   56 ,    1 ,  128 ,   56 ,   56 ,
  8, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  7 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  8 ,    1 ,  128 ,   56 ,   56 ,    1 ,  128 ,   28 ,   28 ,
  9, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  8 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  9 ,    1 ,  128 ,   28 ,   28 ,    1 ,  256 ,   28 ,   28 ,
 10, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  9 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 10 ,    1 ,  256 ,   28 ,   28 ,    1 ,  256 ,   28 ,   28 ,
 11, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 10 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 11 ,    1 ,  256 ,   28 ,   28 ,    1 ,  256 ,   28 ,   28 ,
 12, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 11 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 12 ,    1 ,  256 ,   28 ,   28 ,    1 ,  256 ,   14 ,   14 ,
 13, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 12 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 13 ,    1 ,  256 ,   14 ,   14 ,    1 ,  512 ,   14 ,   14 ,
 14, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 13 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 14 ,    1 ,  512 ,   14 ,   14 ,    1 ,  512 ,   14 ,   14 ,
 15, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 14 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 15 ,    1 ,  512 ,   14 ,   14 ,    1 ,  512 ,   14 ,   14 ,
 16, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 15 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 16 ,    1 ,  512 ,   14 ,   14 ,    1 ,  512 ,   14 ,   14 ,
 17, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 16 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 17 ,    1 ,  512 ,   14 ,   14 ,    1 ,  512 ,   14 ,   14 ,
 18, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 17 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 18 ,    1 ,  512 ,   14 ,   14 ,    1 ,  512 ,   14 ,   14 ,
 19, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 18 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 19 ,    1 ,  512 ,   14 ,   14 ,    1 ,  512 ,   14 ,   14 ,
 20, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 19 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 20 ,    1 ,  512 ,   14 ,   14 ,    1 ,  512 ,   14 ,   14 ,
 21, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 20 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 21 ,    1 ,  512 ,   14 ,   14 ,    1 ,  512 ,   14 ,   14 ,
 22, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 21 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 22 ,    1 ,  512 ,   14 ,   14 ,    1 ,  512 ,   14 ,   14 ,
 23, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 22 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 23 ,    1 ,  512 ,   14 ,   14 ,    1 ,  512 ,   14 ,   14 ,
 24, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 23 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 24 ,    1 ,  512 ,   14 ,   14 ,    1 ,  512 ,    7 ,    7 ,
 25, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 24 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 25 ,    1 ,  512 ,    7 ,    7 ,    1 , 1024 ,    7 ,    7 ,
 26, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 25 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 26 ,    1 , 1024 ,    7 ,    7 ,    1 , 1024 ,    7 ,    7 ,
 27, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 26 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 27 ,    1 , 1024 ,    7 ,    7 ,    1 , 1024 ,    7 ,    7 ,
 28, TIDL_PoolingLayer             ,  1,   1 ,  1 , 27 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 28 ,    1 , 1024 ,    7 ,    7 ,    1 ,    1 ,    1 , 1024 ,
 29, TIDL_InnerProductLayer        ,  1,   1 ,  1 , 28 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 29 ,    1 ,    1 ,    1 , 1024 ,    1 ,    1 ,    1 ,    9 ,
 30, TIDL_DataLayer                ,  0,   1 , -1 , 29 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  0 ,    1 ,    1 ,    1 ,    9 ,    0 ,    0 ,    0 ,    0 ,
Layer ID    ,inBlkWidth  ,inBlkHeight ,inBlkPitch  ,outBlkWidth ,outBlkHeight,outBlkPitch ,numInChs    ,numOutChs   ,numProcInChs,numLclInChs ,numLclOutChs,numProcItrs ,numAccItrs  ,numHorBlock ,numVerBlock ,inBlkChPitch,outBlkChPitc,alignOrNot 
      1           72           60           72           32           28           32            3           32            3            1            8            1            3            4            4         4320          896            1    
      2           40           30           40           32           28           32            1            1            1            1            1            1            1            4            4         1200          896            1    
      3           32           28           32           32           28           32           32           64           32            8            8            1            4            4            4          896          896            1    
      4           72           60           72           32           28           32            1            1            1            1            1            1            1            2            2         4320          896            1    
      5           32           28           32           32           28           32           64          128           64            8            8            1            8            2            2          896          896            1    
      6           40           30           40           32           28           32            1            1            1            1            1            1            1            2            2         1200          896            1    
      7           32           28           32           32           28           32          128          128          128            8            8            1           16            2            2          896          896            1    
      8           72           60           72           32           28           32            1            1            1            1            1            1            1            1            1         4320          896            1    
      9           32           28           32           32           28           32          128          256          128            8            8            1           16            1            1          896          896            1    
     10           40           30           40           32           28           32            1            1            1            1            1            1            1            1            1         1200          896            1    
     11           32           28           32           32           28           32          256          256          256            8            8            1           32            1            1          896          896            1    
     12           40           32           40           16           14           16            1            1            1            1            1            1            1            1            1         1280          224            1    
     13           16           14           16           16           14           16          256          512          256            8            8            1           32            1            1          224          224            1    
     14           24           16           24           16           14           16            1            1            1            1            1            1            1            1            1          384          224            1    
     15           16           14           16           16           14           16          512          512          512            8            8            1           64            1            1          224          224            1    
     16           24           16           24           16           14           16            1            1            1            1            1            1            1            1            1          384          224            1    
     17           16           14           16           16           14           16          512          512          512            8            8            1           64            1            1          224          224            1    
     18           24           16           24           16           14           16            1            1            1            1            1            1            1            1            1          384          224            1    
     19           16           14           16           16           14           16          512          512          512            8            8            1           64            1            1          224          224            1    
     20           24           16           24           16           14           16            1            1            1            1            1            1            1            1            1          384          224            1    
     21           16           14           16           16           14           16          512          512          512            8            8            1           64            1            1          224          224            1    
     22           24           16           24           16           14           16            1            1            1            1            1            1            1            1            1          384          224            1    
     23           16           14           16           16           14           16          512          512          512            8            8            1           64            1            1          224          224            1    
     24           40           18           40           16            7           16            1            1            1            1            1            1            1            1            1          720          112            1    
     25           16            7           16           16            7           16          512         1024          512            8            8            1           64            1            1          112          112            1    
     26           24            9           24           16            7           16            1            1            1            1            1            1            1            1            1          216          112            1    
     27           16            7           16           16            7           16         1024         1024         1024            8            8            1          128            1            1          112          112            1    

Processing Frame Number : 0 

 Layer    1 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    10.84,    12.39, Sparsity : -14.35
 Layer    2 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =     3.61,     3.61, Sparsity :   0.00
 Layer    3 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    25.69,    24.34, Sparsity :   5.27
 Layer    4 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.81,     1.81, Sparsity :   0.00
 Layer    5 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    25.69,    24.06, Sparsity :   6.35
 Layer    6 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =     3.61,     3.61, Sparsity :   0.00
 Layer    7 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    51.38,    50.23, Sparsity :   2.25
 Layer    8 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.90,     0.90, Sparsity :   0.00
 Layer    9 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    25.69,    24.90, Sparsity :   3.08
 Layer   10 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.81,     1.81, Sparsity :   0.00
 Layer   11 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    51.38,    49.00, Sparsity :   4.63
 Layer   12 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.45,     0.45, Sparsity :   0.00
 Layer   13 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    25.69,    24.74, Sparsity :   3.68
 Layer   14 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.90,     0.90, Sparsity :   0.00
 Layer   15 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    51.38,    49.84, Sparsity :   2.99
 Layer   16 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.90,     0.90, Sparsity :   0.00
 Layer   17 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    51.38,    50.13, Sparsity :   2.44
 Layer   18 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.90,     0.90, Sparsity :   0.00
 Layer   19 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    51.38,    50.47, Sparsity :   1.77
 Layer   20 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.90,     0.90, Sparsity :   0.00
 Layer   21 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    51.38,    49.79, Sparsity :   3.09
 Layer   22 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.90,     0.90, Sparsity :   0.00
 Layer   23 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    51.38,    46.24, Sparsity :  10.00
 Layer   24 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.23,     0.23, Sparsity :   0.00
 Layer   25 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    25.69,    25.16, Sparsity :   2.05
 Layer   26 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.45,     0.45, Sparsity :   0.00
 Layer   27 : Out Q :        1 , TIDL_ConvolutionLayer, PASSED  #MMACs =    51.38,    51.30, Sparsity :   0.15
 Layer   28 : Out Q :        1 , TIDL_PoolingLayer,     PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer   29 : Out Q :        1 , TIDL_InnerProductLayer,     PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
End of config list found !

转换过程中用的样本raw格式输入是用SDK手册中的脚本生成的,最后仿真工具生成的bin文件输出也不符合预期。

SDK版本:ti-processor-sdk-linux-rt-am57xx-evm-05.03.00.07

期待回复