在DIODES官网下载的SPICE模型,但是下载下来的模型文件是txt文本格式,如下所示,请问我怎么将他转变为合适的模型文件?
楂樹晶_浣庝晶鏍鏋侀┍鍔ㄥ櫒.spice.txt
* DIODES INCORPORATED AND ITS AFFILIATED COMPANIES AND SUBSIDIARIES (COLLECTIVELY, "DIODES") * PROVIDE THESE SPICE MODELS AND DATA (COLLECTIVELY, THE "SM DATA") "AS IS" AND WITHOUT ANY * REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY * OR FITNESS FOR A PARTICULAR PURPOSE, ANY WARRANTY ARISING FROM COURSE OF DEALING OR COURSE OF * PERFORMANCE, OR ANY WARRANTY THAT ACCESS TO OR OPERATION OF THE SM DATA WILL BE UNINTERRUPTED, * OR THAT THE SM DATA OR ANY SIMULATION USING THE SM DATA WILL BE ERROR FREE. TO THE MAXIMUM * EXTENT PERMITTED BY LAW, IN NO EVENT WILL DIODES BE LIABLE FOR ANY DIRECT OR INDIRECT, * SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH * THE PRODUCTION OR USE OF SM DATA, HOWEVER CAUSED AND UNDER WHATEVER CAUSE OF ACTION OR THEORY * OF LIABILITY BROUGHT (INCLUDING, WITHOUT LIMITATION, UNDER ANY CONTRACT, NEGLIGENCE OR OTHER * TORT THEORY OF LIABILITY), EVEN IF DIODES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, * AND DIODES' TOTAL LIABILITY (WHETHER IN CONTRACT, TORT OR OTHERWISE) WITH REGARD TO THE SM * DATA WILL NOT, IN THE AGGREGATE, EXCEED ANY SUMS PAID BY YOU TO DIODES FOR THE SM DATA. *DATE=27Jul2022 *VERSION=1.1 .subckt dgd05473 VCC NC VB HO VS EN HIN LIN COM LO C1 uvvc COM 10p S2 COM uvvc VCC COM SUVCC C4 cdh COM 28.5n C5 ondlyh COM 10p C6 ondlyl COM 10p D5 COM VCC DMOD R5 VCC COM 40k D6 COM VS DMODH D7 VS VB DMOD C7 dlyoutl COM 10p S4 drvlp illp dlyoutl COM SRSTP S5 illn drvln dlyoutl COM SRSTN R6 drvlp LO 2.25 tol=1 R7 drvln LO 1.5 tol=1 C8 LO COM 2.3n D8 COM LO DMOD D9 LO VCC DMOD R8 VB VS 130k C9 onh COM 10p S6 drvhp ilhp onh COM SRSTP S7 ilhn drvhn onh COM SRSTN R9 drvhp HO 2.25 tol=1 R10 drvhn HO 1.5 tol=1 C10 HO VS 2.3n D10 VS HO DMOD D11 HO VB DMOD R11 uvvc bias1 1k S8 COM uvbs VB VS SUVCC C11 uvbs COM 10p R12 uvbs bias2 1k tol=1 XX1 cdh offconth offdlyh VCC ideal_comparator XX2 onconth cdh ondlyh VCC ideal_comparator XX3 cdl offcontl offdlyl VCC ideal_comparator XX4 oncontl cdl ondlyl VCC ideal_comparator D12 COM VB DMODH E2 bias2 COM VCC COM 1 C12 cdl COM 28.5n XX5 lino uvvc lovc VCC ideal_nand_2 XX6 uvvc hino hivc VCC ideal_nand_2 BdlyOff1 offcontl COM V=(V(VCC)-V(VCC)*EXP(-33n/50.5n)) BdlyOn1 oncontl COM V=V(VCC)*EXP(-33n/50.5n) BdlyOff2 offconth COM V=(V(VCC)-V(VCC)*EXP(-33n/50.5n)) BdlyOn2 onconth COM V=V(VCC)*EXP(-33n/50.5n) XX7 lovc cdl VCC ideal_buffercd XX8 hivc cdh VCC ideal_buffercd XX9 ondlyh dlyouth onhrs VCC nor_2 XX10 offdlyh onhrs dlyouth VCC nor_2 XX11 ondlyl dlyoutl onlrs VCC nor_2 XX12 offdlyl onlrs dlyoutl VCC nor_2 C13 dlyouth COM 10p XX13 uvbs dlyouth onh VCC ideal_and_2 E3 bias4 VS HO drvhn 1 R17 bias4 dlyhn 10k C16 dlyhn VS 10p E4 bias5 VS drvhp HO 1 R18 bias5 dlyhp 10k C17 dlyhp VS 10p S9 ilhp VB dlyhp VS SILIMP S10 VS ilhn dlyhn VS SILIMN E5 bias6 COM LO drvln 1 R19 bias6 dlyln 10k C18 dlyln COM 10p E6 bias7 COM drvlp LO 1 R20 bias7 dlylp 10k C19 dlylp COM 10p S11 illp VCC dlylp COM SILIMP S12 COM illn dlyln COM SILIMN S1 COM hinst HIN COM SLIN D1 COM HIN DMOD D2 HIN VCC DMOD R1 HIN COM 200k R2 bias1 hinst 100k S3 COM linst LIN COM SLIN R3 LIN COM 200k R4 linst bias1 100k D3 COM LIN DMOD D4 LIN VCC DMOD E1 bias1 COM VCC COM 1 R13 hinstb hdelay {Rdelay} C2 hdelay COM {Cdelay} R14 linstb ldelay {Rdelay} C3 ldelay COM {Cdelay} XX14 hinst hinstb VCC ideal_inverter XX15 hdelay hdelayb VCC ideal_inverter XX16 linst linstb VCC ideal_inverter XX17 ldelay ldelayb VCC ideal_inverter D14 COM EN DMOD D15 EN VCC DMOD S13 COM sdown EN COM SLEN R15 EN COM 116k R16 bias1 sdown 100k XX18 linstb hdelayb sdown VCC lino ideal_nor_3 XX19 hinstb sdown ldelayb VCC hino ideal_nor_3 D13 VCC VB Dboost .MODEL DMOD D(IS=1.0e-14 RS=0.01 N=1 EG=1.11 XTI=3 BV=25 IBV=10u CJO=0 VJ=0.75 M=0.333 FC=0.5 TT=0 KF=0 AF=1) .MODEL DMODH D(IS=1.0e-14 RS=0.01 N=1 EG=1.11 XTI=3 BV=60 IBV=5u CJO=0 VJ=0.75 M=0.333 FC=0.5 TT=0 KF=0 AF=1) .MODEL SRSTN SW(Ron=10Meg Roff=1m Vt=1.5 Vh=1.2) .MODEL SRSTP SW(Ron=1m Roff=10Meg Vt=1.5 Vh=1.2) .MODEL SLIN SW(Ron=10Meg Roff=1m Vt=1.5 Vh=0.15) .MODEL SUVCC SW(Ron=10Meg Roff=1m Vt=3.55 Vh=0.25) .MODEL SILIMN SW(Ron=4.5 Roff=1m Vt=3 Vh=0.01) .MODEL SILIMP SW(Ron=5.75 Roff=1m Vt=3.375 Vh=0.01) .MODEL SDIN SW(Ron=1m Roff=100Meg Vt=1.5 Vh=0.15) .MODEL Dboost D(IS=1.5f RS=8.5 CJO=150p M=0.3 VJ=0.75 ISR=1p BV=100 Ibv=5u) .MODEL SLEN SW(Ron=1m Roff=10Meg Vt=1.05 Vh=0.35) .param Cdelay=10p Rdelay=15.3k T1=-40 T2=25 T3=125 V1=10 V2=15 V3=20 toffT2=65n tonT2=58n .ends dgd05473 .subckt ideal_comparator 1 2 3 VDD S3 3 VDD 1 2 switmod S4 0 3 2 1 switmod .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_comparator .subckt ideal_nand_2 A B Y Vdd S1 Y Vdd Vtrip A switmod S2 N001 Y A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 Y Vdd Vtrip B switmod S5 0 N001 B Vtrip switmod C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_nand_2 .subckt ideal_buffercd A Y Vdd S3 Y Vdd A N001 switmodcd S4 0 Y N001 A switmodcd E1 N001 0 Vdd 0 0.5 C1 Y 0 10p .model switmodcd SW(Ron=1 Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_buffercd .subckt nor_2 A B Y Vdd M1 Y B N001 Vdd PFET l=1u w=100u M2 N001 A Vdd Vdd PFET l=1u w=100u M3 Y B 0 0 NFET l=1u w=50u M4 Y A 0 0 NFET l=1u w=50u .MODEL PFET PMOS (LEVEL=3 TOX=200E-10 NSUB=1E17 GAMMA=0.6 PHI=0.7 VTO=-0.9 DELTA=0.1 UO=250 ETA=0 THETA=0.1 + KP=40E-6 VMAX=5E4 KAPPA=1 RSH=0 NFS=1E12 TPG=-1 XJ=500E-9 LD=100E-9 CGDO=200E-12 CGSO=200E-12 CGBO=1E-10 + CJ=400E-6 PB=1 MJ=0.5 CJSW=300E-12 MJSW=0.5) .MODEL NFET NMOS (LEVEL=3 TOX=200E-10 NSUB=1E17 GAMMA=0.5 PHI=0.7 VTO=0.8 DELTA=3.0 UO=650 ETA=3.0E-6 THETA =0.1 + KP=120E-6 VMAX=1E5 KAPPA=0.3 RSH=0 NFS=1E12 TPG=1 XJ=500E-9 LD=100E-9 CGDO=200E-12 CGSO=200E-12 CGBO=1E-10 + CJ=400E-6 PB=1 MJ= 0.5 CJSW=300E-12 MJSW=0.5) .ends nor_2 .subckt ideal_and_2 A B Y Vdd S1 N001 Vdd Vtrip A switmod S2 N002 N001 A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 N001 Vdd Vtrip B switmod S5 0 N002 B Vtrip switmod S4 Y Vdd Vtrip N001 switmod S6 0 Y N001 Vtrip switmod C1 N001 0 10p C2 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_and_2 .subckt ideal_inverter A Y Vdd S3 Y Vdd N001 A switmod S4 0 Y A N001 switmod E1 N001 0 Vdd 0 0.5 C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_inverter .subckt ideal_nor_3 A B C Vdd Y S1 Y N002 Vtrip A switmod S2 0 Y A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 N002 N001 Vtrip B switmod S5 0 Y B Vtrip switmod C1 Y 0 10p S4 N001 Vdd Vtrip C switmod S6 0 Y C Vtrip switmod .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_nor_3 ****************************************************************************** * (c) 2023 Diodes Inc * * Diodes Incorporated and its affiliated companies and subsidiaries * (collectively, "Diodes") provide these spice models and data * (collectively, the "SM data") "as is" and without any representations * or warranties, express or implied, including any warranty of * merchantability or fitness for a particular purpose, any warranty * arising from course of dealing or course of performance, or any * warranty that access to or operation of the SM data will be * uninterrupted, or that the SM data or any simulation using the SM data * will be error free. * * To the maximum extent permitted by law, in no event will Diodes be * liable for any indirect, special, incidental, punitive or consequential * damages arising out of or in connection with the production or use of * SM data, however caused and under whatever cause of action or theory of * liability brought (including, without limitation, under any contract, * negligence or other tort theory of liability), even if Diodes has been * advised of the possibility of such damages, and Diodes' total liability * (whether in contract, tort or otherwise) with regard to the SM data * will not, in the aggregate, exceed any sums paid by you to Diodes for * the SM data * * Diodes Zetex Semiconductors Ltd, Zetex Technology Park, Chadderton, * Oldham, United Kingdom, OL9 9LL ****************************************************************************** * DIODES INCORPORATED AND ITS AFFILIATED COMPANIES AND SUBSIDIARIES (COLLECTIVELY, "DIODES") * PROVIDE THESE SPICE MODELS AND DATA (COLLECTIVELY, THE "SM DATA") "AS IS" AND WITHOUT ANY * REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY * OR FITNESS FOR A PARTICULAR PURPOSE, ANY WARRANTY ARISING FROM COURSE OF DEALING OR COURSE OF * PERFORMANCE, OR ANY WARRANTY THAT ACCESS TO OR OPERATION OF THE SM DATA WILL BE UNINTERRUPTED, * OR THAT THE SM DATA OR ANY SIMULATION USING THE SM DATA WILL BE ERROR FREE. TO THE MAXIMUM * EXTENT PERMITTED BY LAW, IN NO EVENT WILL DIODES BE LIABLE FOR ANY DIRECT OR INDIRECT, * SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH * THE PRODUCTION OR USE OF SM DATA, HOWEVER CAUSED AND UNDER WHATEVER CAUSE OF ACTION OR THEORY * OF LIABILITY BROUGHT (INCLUDING, WITHOUT LIMITATION, UNDER ANY CONTRACT, NEGLIGENCE OR OTHER * TORT THEORY OF LIABILITY), EVEN IF DIODES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, * AND DIODES' TOTAL LIABILITY (WHETHER IN CONTRACT, TORT OR OTHERWISE) WITH REGARD TO THE SM * DATA WILL NOT, IN THE AGGREGATE, EXCEED ANY SUMS PAID BY YOU TO DIODES FOR THE SM DATA. *DATE=27Jul2022 *VERSION=1.1 .subckt DGD05473FNQ VCC NC VB HO VS EN HIN LIN COM LO C1 uvvc COM 10p S2 COM uvvc VCC COM SUVCC C4 cdh COM 28.5n C5 ondlyh COM 10p C6 ondlyl COM 10p D5 COM VCC DMOD R5 VCC COM 40k D6 COM VS DMODH D7 VS VB DMOD C7 dlyoutl COM 10p S4 drvlp illp dlyoutl COM SRSTP S5 illn drvln dlyoutl COM SRSTN R6 drvlp LO 2.25 tol=1 R7 drvln LO 1.5 tol=1 C8 LO COM 2.3n D8 COM LO DMOD D9 LO VCC DMOD R8 VB VS 130k C9 onh COM 10p S6 drvhp ilhp onh COM SRSTP S7 ilhn drvhn onh COM SRSTN R9 drvhp HO 2.25 tol=1 R10 drvhn HO 1.5 tol=1 C10 HO VS 2.3n D10 VS HO DMOD D11 HO VB DMOD R11 uvvc bias1 1k S8 COM uvbs VB VS SUVCC C11 uvbs COM 10p R12 uvbs bias2 1k tol=1 XX1 cdh offconth offdlyh VCC ideal_comparator XX2 onconth cdh ondlyh VCC ideal_comparator XX3 cdl offcontl offdlyl VCC ideal_comparator XX4 oncontl cdl ondlyl VCC ideal_comparator D12 COM VB DMODH E2 bias2 COM VCC COM 1 C12 cdl COM 28.5n XX5 lino uvvc lovc VCC ideal_nand_2 XX6 uvvc hino hivc VCC ideal_nand_2 BdlyOff1 offcontl COM V=(V(VCC)-V(VCC)*EXP(-33n/50.5n)) BdlyOn1 oncontl COM V=V(VCC)*EXP(-33n/50.5n) BdlyOff2 offconth COM V=(V(VCC)-V(VCC)*EXP(-33n/50.5n)) BdlyOn2 onconth COM V=V(VCC)*EXP(-33n/50.5n) XX7 lovc cdl VCC ideal_buffercd XX8 hivc cdh VCC ideal_buffercd XX9 ondlyh dlyouth onhrs VCC nor_2 XX10 offdlyh onhrs dlyouth VCC nor_2 XX11 ondlyl dlyoutl onlrs VCC nor_2 XX12 offdlyl onlrs dlyoutl VCC nor_2 C13 dlyouth COM 10p XX13 uvbs dlyouth onh VCC ideal_and_2 E3 bias4 VS HO drvhn 1 R17 bias4 dlyhn 10k C16 dlyhn VS 10p E4 bias5 VS drvhp HO 1 R18 bias5 dlyhp 10k C17 dlyhp VS 10p S9 ilhp VB dlyhp VS SILIMP S10 VS ilhn dlyhn VS SILIMN E5 bias6 COM LO drvln 1 R19 bias6 dlyln 10k C18 dlyln COM 10p E6 bias7 COM drvlp LO 1 R20 bias7 dlylp 10k C19 dlylp COM 10p S11 illp VCC dlylp COM SILIMP S12 COM illn dlyln COM SILIMN S1 COM hinst HIN COM SLIN D1 COM HIN DMOD D2 HIN VCC DMOD R1 HIN COM 200k R2 bias1 hinst 100k S3 COM linst LIN COM SLIN R3 LIN COM 200k R4 linst bias1 100k D3 COM LIN DMOD D4 LIN VCC DMOD E1 bias1 COM VCC COM 1 R13 hinstb hdelay {Rdelay} C2 hdelay COM {Cdelay} R14 linstb ldelay {Rdelay} C3 ldelay COM {Cdelay} XX14 hinst hinstb VCC ideal_inverter XX15 hdelay hdelayb VCC ideal_inverter XX16 linst linstb VCC ideal_inverter XX17 ldelay ldelayb VCC ideal_inverter D14 COM EN DMOD D15 EN VCC DMOD S13 COM sdown EN COM SLEN R15 EN COM 116k R16 bias1 sdown 100k XX18 linstb hdelayb sdown VCC lino ideal_nor_3 XX19 hinstb sdown ldelayb VCC hino ideal_nor_3 D13 VCC VB Dboost .MODEL DMOD D(IS=1.0e-14 RS=0.01 N=1 EG=1.11 XTI=3 BV=25 IBV=10u CJO=0 VJ=0.75 M=0.333 FC=0.5 TT=0 KF=0 AF=1) .MODEL DMODH D(IS=1.0e-14 RS=0.01 N=1 EG=1.11 XTI=3 BV=60 IBV=5u CJO=0 VJ=0.75 M=0.333 FC=0.5 TT=0 KF=0 AF=1) .MODEL SRSTN SW(Ron=10Meg Roff=1m Vt=1.5 Vh=1.2) .MODEL SRSTP SW(Ron=1m Roff=10Meg Vt=1.5 Vh=1.2) .MODEL SLIN SW(Ron=10Meg Roff=1m Vt=1.5 Vh=0.15) .MODEL SUVCC SW(Ron=10Meg Roff=1m Vt=3.55 Vh=0.25) .MODEL SILIMN SW(Ron=4.5 Roff=1m Vt=3 Vh=0.01) .MODEL SILIMP SW(Ron=5.75 Roff=1m Vt=3.375 Vh=0.01) .MODEL SDIN SW(Ron=1m Roff=100Meg Vt=1.5 Vh=0.15) .MODEL Dboost D(IS=1.5f RS=8.5 CJO=150p M=0.3 VJ=0.75 ISR=1p BV=100 Ibv=5u) .MODEL SLEN SW(Ron=1m Roff=10Meg Vt=1.05 Vh=0.35) .param Cdelay=10p Rdelay=15.3k T1=-40 T2=25 T3=125 V1=10 V2=15 V3=20 toffT2=65n tonT2=58n .ends DGD05473FNQ .subckt ideal_comparator 1 2 3 VDD S3 3 VDD 1 2 switmod S4 0 3 2 1 switmod .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_comparator .subckt ideal_nand_2 A B Y Vdd S1 Y Vdd Vtrip A switmod S2 N001 Y A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 Y Vdd Vtrip B switmod S5 0 N001 B Vtrip switmod C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_nand_2 .subckt ideal_buffercd A Y Vdd S3 Y Vdd A N001 switmodcd S4 0 Y N001 A switmodcd E1 N001 0 Vdd 0 0.5 C1 Y 0 10p .model switmodcd SW(Ron=1 Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_buffercd .subckt nor_2 A B Y Vdd M1 Y B N001 Vdd PFET l=1u w=100u M2 N001 A Vdd Vdd PFET l=1u w=100u M3 Y B 0 0 NFET l=1u w=50u M4 Y A 0 0 NFET l=1u w=50u .MODEL PFET PMOS (LEVEL=3 TOX=200E-10 NSUB=1E17 GAMMA=0.6 PHI=0.7 VTO=-0.9 DELTA=0.1 UO=250 ETA=0 THETA=0.1 + KP=40E-6 VMAX=5E4 KAPPA=1 RSH=0 NFS=1E12 TPG=-1 XJ=500E-9 LD=100E-9 CGDO=200E-12 CGSO=200E-12 CGBO=1E-10 + CJ=400E-6 PB=1 MJ=0.5 CJSW=300E-12 MJSW=0.5) .MODEL NFET NMOS (LEVEL=3 TOX=200E-10 NSUB=1E17 GAMMA=0.5 PHI=0.7 VTO=0.8 DELTA=3.0 UO=650 ETA=3.0E-6 THETA =0.1 + KP=120E-6 VMAX=1E5 KAPPA=0.3 RSH=0 NFS=1E12 TPG=1 XJ=500E-9 LD=100E-9 CGDO=200E-12 CGSO=200E-12 CGBO=1E-10 + CJ=400E-6 PB=1 MJ= 0.5 CJSW=300E-12 MJSW=0.5) .ends nor_2 .subckt ideal_and_2 A B Y Vdd S1 N001 Vdd Vtrip A switmod S2 N002 N001 A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 N001 Vdd Vtrip B switmod S5 0 N002 B Vtrip switmod S4 Y Vdd Vtrip N001 switmod S6 0 Y N001 Vtrip switmod C1 N001 0 10p C2 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_and_2 .subckt ideal_inverter A Y Vdd S3 Y Vdd N001 A switmod S4 0 Y A N001 switmod E1 N001 0 Vdd 0 0.5 C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_inverter .subckt ideal_nor_3 A B C Vdd Y S1 Y N002 Vtrip A switmod S2 0 Y A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 N002 N001 Vtrip B switmod S5 0 Y B Vtrip switmod C1 Y 0 10p S4 N001 Vdd Vtrip C switmod S6 0 Y C Vtrip switmod .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_nor_3 ****************************************************************************** * (c) 2023 Diodes Inc * * Diodes Incorporated and its affiliated companies and subsidiaries * (collectively, "Diodes") provide these spice models and data * (collectively, the "SM data") "as is" and without any representations * or warranties, express or implied, including any warranty of * merchantability or fitness for a particular purpose, any warranty * arising from course of dealing or course of performance, or any * warranty that access to or operation of the SM data will be * uninterrupted, or that the SM data or any simulation using the SM data * will be error free. * * To the maximum extent permitted by law, in no event will Diodes be * liable for any indirect, special, incidental, punitive or consequential * damages arising out of or in connection with the production or use of * SM data, however caused and under whatever cause of action or theory of * liability brought (including, without limitation, under any contract, * negligence or other tort theory of liability), even if Diodes has been * advised of the possibility of such damages, and Diodes' total liability * (whether in contract, tort or otherwise) with regard to the SM data * will not, in the aggregate, exceed any sums paid by you to Diodes for * the SM data * * Diodes Zetex Semiconductors Ltd, Zetex Technology Park, Chadderton, * Oldham, United Kingdom, OL9 9LL ****************************************************************************** *DATE=09May2022 *VERSION=1.1 .subckt dgd0579u VCC NC VB HO VS EN HIN LIN COM LO C1 uvvc COM 10p S1 COM hinst HIN COM SLIN D1 COM HIN DMOD D2 HIN VCC DMOD R1 HIN COM 750k R2 bias1 hinst 100k S2 COM uvvc VCC COM SUVCC S3 COM linst LIN COM SLIN R3 LIN COM 750k R4 linst bias1 100k D3 COM LIN DMOD D4 LIN VCC DMOD C4 cdh COM 50n C5 ondlyh COM 10p C6 ondlyl COM 10p D5 COM VCC DMOD R5 VCC COM 210k D6 COM VS DMODH D7 VS VB DMOD C7 dlyoutl COM 10p S4 drvlp illp dlyoutl COM SRSTP S5 illn drvln dlyoutl COM SRSTN R6 drvlp LO 4.2 tol=1 R7 drvln LO 3.77 tol=1 C8 LO COM 0.9n D8 COM LO DMOD D9 LO VCC DMOD R8 VB VS 273k C9 onh COM 10p S6 drvhp ilhp onh COM SRSTP S7 ilhn drvhn onh COM SRSTN R9 drvhp HO 4.2 tol=1 R10 drvhn HO 3.77 tol=1 C10 HO VS 0.9n D10 VS HO DMOD D11 HO VB DMOD R11 uvvc bias1 1k S8 COM uvbs VB VS SUVBS C11 uvbs COM 10p R12 uvbs bias2 1k tol=1 XX1 cdh offconth offdlyh VCC ideal_comparator XX2 onconth cdh ondlyh VCC ideal_comparator XX3 cdl offcontl offdlyl VCC ideal_comparator XX4 oncontl cdl ondlyl VCC ideal_comparator D12 COM VB DMODH E1 bias1 COM VCC COM 1 E2 bias2 COM VCC COM 1 C12 cdl COM 50n XX5 lino uvvc lovc VCC ideal_nand_2 XX6 uvvc hino hivc VCC ideal_nand_2 BdlyOff1 offcontl COM V=(V(VCC)-V(VCC)*EXP(-56n/50.5n)) BdlyOn1 oncontl COM V=V(VCC)*EXP(-65n/50.5n) BdlyOff2 offconth COM V=(V(VCC)-V(VCC)*EXP(-56n/50.5n)) BdlyOn2 onconth COM V=V(VCC)*EXP(-65n/51.5n) XX7 lovc cdl VCC ideal_buffercd XX8 hivc cdh VCC ideal_buffercd XX9 ondlyh dlyouth onhrs VCC nor_2 XX10 offdlyh onhrs dlyouth VCC nor_2 XX11 ondlyl dlyoutl onlrs VCC nor_2 XX12 offdlyl onlrs dlyoutl VCC nor_2 C13 dlyouth COM 10p XX13 uvbs dlyouth onh VCC ideal_and_2 R13 hinstb hdelay {Rdelay} C14 hdelay COM {Cdelay} R14 linstb ldelay {Rdelay} C15 ldelay COM {Cdelay} XX16 hinst hinstb VCC ideal_inverter XX17 hdelay hdelayb VCC ideal_inverter XX18 linst linstb VCC ideal_inverter XX19 ldelay ldelayb VCC ideal_inverter E3 bias4 VS HO drvhn 1 R15 bias4 dlyhn 10k C16 dlyhn VS 10p E4 bias5 VS drvhp HO 1 R16 bias5 dlyhp 10k C17 dlyhp VS 10p S9 ilhp VB dlyhp VS SILIMP S10 VS ilhn dlyhn VS SILIMN E5 bias6 COM LO drvln 1 R17 bias6 dlyln 10k C18 dlyln COM 10p E6 bias7 COM drvlp LO 1 R18 bias7 dlylp 10k C19 dlylp COM 10p S11 illp VCC dlylp COM SILIMP S12 COM illn dlyln COM SILIMN D13 COM EN DMOD D14 EN VCC DMOD S15 COM sdown EN COM SLEN R19 EN COM 750k R20 bias1 sdown 100k XX14 linstb hdelayb sdown VCC lino ideal_nor_3 XX15 hinstb sdown ldelayb VCC hino ideal_nor_3 D15 VCC VB Dboost .MODEL DMOD D(IS=1.0e-14 RS=0.01 N=1 EG=1.11 XTI=3 BV=25 IBV=0.0001 CJO=0 VJ=0.75 M=0.333 FC=0.5 TT=0 KF=0 AF=1) .MODEL DMODH D(IS=1.0e-14 RS=0.01 N=1 EG=1.11 XTI=3 BV=125 IBV=0.0001 CJO=0 VJ=0.75 M=0.333 FC=0.5 TT=0 KF=0 AF=1) .MODEL SRSTN SW(Ron=10Meg Roff=1m Vt=1.5 Vh=1.2) .MODEL SRSTP SW(Ron=1m Roff=10Meg Vt=1.5 Vh=1.2) .MODEL SLIN SW(Ron=10Meg Roff=1m Vt=1.65 Vh=0.35) .MODEL SUVCC SW(Ron=10Meg Roff=1m Vt=4.95 Vh=0.2) .param Cdelay=10p Rdelay=15.3k T1=-40 T2=25 T3=125 V1=10 V2=15 V3=20 toffT2=65n tonT2=58n .MODEL SILIMN SW(Ron=1 Roff=1m Vt=9.25 Vh=0.01) .MODEL SILIMP SW(Ron=4 Roff=1m Vt=6 Vh=0.01) .MODEL SDIN SW(Ron=1m Roff=10Meg Vt=1.5 Vh=0.15) .MODEL SUVBS SW(Ron=10Meg Roff=1m Vt=4.7 Vh=0.2) .MODEL SLEN SW(Ron=1m Roff=10Meg Vt=1.05 Vh=0.35) .MODEL Dboost D(IS=1.5f RS=5.5 CJO=150p M=0.3 VJ=0.75 ISR=1p BV=125 Ibv=5u) .ends dgd0579u .subckt ideal_comparator 1 2 3 VDD S3 3 VDD 1 2 switmod S4 0 3 2 1 switmod .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_comparator .subckt ideal_nand_2 A B Y Vdd S1 Y Vdd Vtrip A switmod S2 N001 Y A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 Y Vdd Vtrip B switmod S5 0 N001 B Vtrip switmod C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_nand_2 .subckt ideal_buffercd A Y Vdd S3 Y Vdd A N001 switmodcd S4 0 Y N001 A switmodcd E1 N001 0 Vdd 0 0.5 C1 Y 0 10p .model switmodcd SW(Ron=1 Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_buffercd .subckt nor_2 A B Y Vdd M1 Y B N001 Vdd PFET l=1u w=100u M2 N001 A Vdd Vdd PFET l=1u w=100u M3 Y B 0 0 NFET l=1u w=50u M4 Y A 0 0 NFET l=1u w=50u .MODEL PFET PMOS (LEVEL=3 TOX=200E-10 NSUB=1E17 GAMMA=0.6 PHI=0.7 VTO=-0.9 DELTA=0.1 UO=250 ETA=0 THETA=0.1 + KP=40E-6 VMAX=5E4 KAPPA=1 RSH=0 NFS=1E12 TPG=-1 XJ=500E-9 LD=100E-9 CGDO=200E-12 CGSO=200E-12 CGBO=1E-10 + CJ=400E-6 PB=1 MJ=0.5 CJSW=300E-12 MJSW=0.5) .MODEL NFET NMOS (LEVEL=3 TOX=200E-10 NSUB=1E17 GAMMA=0.5 PHI=0.7 VTO=0.8 DELTA=3.0 UO=650 ETA=3.0E-6 THETA =0.1 + KP=120E-6 VMAX=1E5 KAPPA=0.3 RSH=0 NFS=1E12 TPG=1 XJ=500E-9 LD=100E-9 CGDO=200E-12 CGSO=200E-12 CGBO=1E-10 + CJ=400E-6 PB=1 MJ= 0.5 CJSW=300E-12 MJSW=0.5) .ends nor_2 .subckt ideal_and_2 A B Y Vdd S1 N001 Vdd Vtrip A switmod S2 N002 N001 A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 N001 Vdd Vtrip B switmod S5 0 N002 B Vtrip switmod S4 Y Vdd Vtrip N001 switmod S6 0 Y N001 Vtrip switmod C1 N001 0 10p C2 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_and_2 .subckt ideal_inverter A Y Vdd S3 Y Vdd N001 A switmod S4 0 Y A N001 switmod E1 N001 0 Vdd 0 0.5 C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_inverter .subckt ideal_nor_3 A B C Vdd Y S1 Y N002 Vtrip A switmod S2 0 Y A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 N002 N001 Vtrip B switmod S5 0 Y B Vtrip switmod C1 Y 0 10p S4 N001 Vdd Vtrip C switmod S6 0 Y C Vtrip switmod .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_nor_3 ****************************************************************************** * (c) 2022 Diodes Inc * * Diodes Incorporated and its affiliated companies and subsidiaries * (collectively, "Diodes") provide these spice models and data * (collectively, the "SM data") "as is" and without any representations * or warranties, express or implied, including any warranty of * merchantability or fitness for a particular purpose, any warranty * arising from course of dealing or course of performance, or any * warranty that access to or operation of the SM data will be * uninterrupted, or that the SM data or any simulation using the SM data * will be error free. * * To the maximum extent permitted by law, in no event will Diodes be * liable for any indirect, special, incidental, punitive or consequential * damages arising out of or in connection with the production or use of * SM data, however caused and under whatever cause of action or theory of * liability brought (including, without limitation, under any contract, * negligence or other tort theory of liability), even if Diodes has been * advised of the possibility of such damages, and Diodes' total liability * (whether in contract, tort or otherwise) with regard to the SM data * will not, in the aggregate, exceed any sums paid by you to Diodes for * the SM data * * Diodes Zetex Semiconductors Ltd, Zetex Technology Park, Chadderton, * Oldham, United Kingdom, OL9 9LL ****************************************************************************** *DATE=29MAR2022 *VERSION=1.0 .subckt dgd21814m HIN LIN VSS NC COM LO VCC NC NC NC VS HO VB NC C1 uvvc COM 10p S1 COM hinst HIN COM SLIN C2 hinst COM 0.01p D1 COM HIN DMOD D2 HIN VCC DMOD R1 HIN COM 200k R2 bias1 hinst 100k S2 COM uvvc VCC COM SUVCC S3 COM linst LIN COM SLIN C3 linst COM 0.01p R3 LIN COM 200k R4 linst bias1 100k D3 COM LIN DMOD D4 LIN VCC DMOD C4 cdh COM 50n C5 ondlyh COM 10p C6 ondlyl COM 10p D5 COM VCC DMOD R5 VCC COM 172k D6 COM VS DMODH D7 VS VB DMOD C7 dlyoutl COM 10p S4 drvlp illp dlyoutl COM SRSTP S5 illn drvln dlyoutl COM SRSTN R6 drvlp LO 4 tol=1 R7 drvln LO 2 tol=1 C8 LO COM 3.53n D8 COM LO DMOD D9 LO VCC DMOD R8 VB VS 247k C9 onh COM 10p S6 drvhp ilhp onh COM SRSTP S7 ilhn drvhn onh COM SRSTN R9 drvhp HO 4 tol=2 R10 drvhn HO 2 tol=1 C10 HO VS 3.53n D10 VS HO DMOD D11 HO VB DMOD R11 uvvc bias1 1k S8 COM uvbs VB VS SUVCC C11 uvbs COM 10p R12 uvbs bias2 1k tol=1 XX1 cdh offconth offdlyh VCC ideal_comparator XX2 onconth cdh ondlyh VCC ideal_comparator XX3 cdl offcontl offdlyl VCC ideal_comparator XX4 oncontl cdl ondlyl VCC ideal_comparator D12 COM VB DMODH E1 bias1 COM VCC COM 1 E2 bias2 COM VCC COM 1 C12 cdl COM 50n XX5 lino uvvc lovc VCC ideal_nand_2 XX6 uvvc hino hivc VCC ideal_nand_2 BdlyOff1 offcontl COM V=(V(VCC)-V(VCC)*EXP(-220n/50.5n)) BdlyOn1 oncontl COM V=V(VCC)*EXP(-180n/50.5n) BdlyOff2 offconth COM V=(V(VCC)-V(VCC)*EXP(-220n/50n)) BdlyOn2 onconth COM V=V(VCC)*EXP(-180n/51n) XX7 lovc cdl VCC ideal_buffercd XX8 hivc cdh VCC ideal_buffercd XX9 ondlyh dlyouth onhrs VCC nor_2 XX10 offdlyh onhrs dlyouth VCC nor_2 XX11 ondlyl dlyoutl onlrs VCC nor_2 XX12 offdlyl onlrs dlyoutl VCC nor_2 C13 dlyouth COM 10p XX13 uvbs dlyouth onh VCC ideal_and_2 R13 hinstb hdelay {Rdelay} C14 hdelay COM {Cdelay} XX14 hinstb COM hino VCC ideal_nor_2 XX16 linstb COM lino VCC ideal_nor_2 R14 linstb ldelay {Rdelay} C15 ldelay COM {Cdelay} XX15 hinst hinstb VCC ideal_inverter XX17 hdelay hdelayb VCC ideal_inverter XX18 linst linstb VCC ideal_inverter XX19 ldelay ldelayb VCC ideal_inverter E3 bias4 VS HO drvhn 1 R17 bias4 dlyhn 10k C16 dlyhn VS 10p E4 bias5 VS drvhp HO 1 R18 bias5 dlyhp 10k C17 dlyhp VS 10p S9 ilhp VB dlyhp VS SILIMP S10 VS ilhn dlyhn VS SILIMN E5 bias6 COM LO drvln 1 R19 bias6 dlyln 10k C18 dlyln COM 10p E6 bias7 COM drvlp LO 1 R20 bias7 dlylp 10k C19 dlylp COM 10p S11 illp VCC dlylp COM SILIMP S12 COM illn dlyln COM SILIMN S13 COM hdelay hinst COM SDIN S14 COM ldelay linst COM SDIN .MODEL DMOD D(IS=1.0e-14 RS=0.01 N=1 EG=1.11 XTI=3 BV=25 IBV=0.0001 CJO=0 VJ=0.75 M=0.333 FC=0.5 TT=0 KF=0 AF=1) .MODEL DMODH D(IS=1.0e-14 RS=0.01 N=1 EG=1.11 XTI=3 BV=625 IBV=0.0001 CJO=0 VJ=0.75 M=0.333 FC=0.5 TT=0 KF=0 AF=1) .MODEL SRSTN SW(Ron=10Meg Roff=1m Vt=1.5 Vh=1.2) .MODEL SRSTP SW(Ron=1m Roff=10Meg Vt=1.5 Vh=1.2) .MODEL SLIN SW(Ron=10Meg Roff=1m Vt=1.5 Vh=0.15) .MODEL SUVCC SW(Ron=10Meg Roff=1m Vt=8.55 Vh=0.35) .param Cdelay=10p Rdelay=15.3k T1=-40 T2=25 T3=125 V1=10 V2=15 V3=20 toffT2=140n tonT2=140n .MODEL SILIMN SW(Ron=4.5 Roff=1m Vt=3 Vh=0.01) .MODEL SILIMP SW(Ron=3.9 Roff=1m Vt=7 Vh=0.01) .MODEL SDIN SW(Ron=1m Roff=10Meg Vt=1.5 Vh=0.15) .ends dgd21814m .subckt ideal_comparator 1 2 3 VDD S3 3 VDD 1 2 switmod S4 0 3 2 1 switmod .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_comparator .subckt ideal_nand_2 A B Y Vdd S1 Y Vdd Vtrip A switmod S2 N001 Y A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 Y Vdd Vtrip B switmod S5 0 N001 B Vtrip switmod C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_nand_2 .subckt ideal_buffercd A Y Vdd S3 Y Vdd A N001 switmodcd S4 0 Y N001 A switmodcd E1 N001 0 Vdd 0 0.5 C1 Y 0 10p .model switmodcd SW(Ron=1 Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_buffercd .subckt nor_2 A B Y Vdd M1 Y B N001 Vdd PFET l=1u w=100u M2 N001 A Vdd Vdd PFET l=1u w=100u M3 Y B 0 0 NFET l=1u w=50u M4 Y A 0 0 NFET l=1u w=50u .MODEL PFET PMOS (LEVEL=3 TOX=200E-10 NSUB=1E17 GAMMA=0.6 PHI=0.7 VTO=-0.9 DELTA=0.1 UO=250 ETA=0 THETA=0.1 + KP=40E-6 VMAX=5E4 KAPPA=1 RSH=0 NFS=1E12 TPG=-1 XJ=500E-9 LD=100E-9 CGDO=200E-12 CGSO=200E-12 CGBO=1E-10 + CJ=400E-6 PB=1 MJ=0.5 CJSW=300E-12 MJSW=0.5) .MODEL NFET NMOS (LEVEL=3 TOX=200E-10 NSUB=1E17 GAMMA=0.5 PHI=0.7 VTO=0.8 DELTA=3.0 UO=650 ETA=3.0E-6 THETA =0.1 + KP=120E-6 VMAX=1E5 KAPPA=0.3 RSH=0 NFS=1E12 TPG=1 XJ=500E-9 LD=100E-9 CGDO=200E-12 CGSO=200E-12 CGBO=1E-10 + CJ=400E-6 PB=1 MJ= 0.5 CJSW=300E-12 MJSW=0.5) .ends nor_2 .subckt ideal_and_2 A B Y Vdd S1 N001 Vdd Vtrip A switmod S2 N002 N001 A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 N001 Vdd Vtrip B switmod S5 0 N002 B Vtrip switmod S4 Y Vdd Vtrip N001 switmod S6 0 Y N001 Vtrip switmod C1 N001 0 10p C2 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_and_2 .subckt ideal_nor_2 A B Y Vdd S1 Y N001 Vtrip A switmod S2 0 Y A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 N001 Vdd Vtrip B switmod S5 0 Y B Vtrip switmod C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_nor_2 .subckt ideal_inverter A Y Vdd S3 Y Vdd N001 A switmod S4 0 Y A N001 switmod E1 N001 0 Vdd 0 0.5 C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_inverter ****************************************************************************** * (c) 2022 Diodes Inc * * Diodes Incorporated and its affiliated companies and subsidiaries * (collectively, "Diodes") provide these spice models and data * (collectively, the "SM data") "as is" and without any representations * or warranties, express or implied, including any warranty of * merchantability or fitness for a particular purpose, any warranty * arising from course of dealing or course of performance, or any * warranty that access to or operation of the SM data will be * uninterrupted, or that the SM data or any simulation using the SM data * will be error free. * * To the maximum extent permitted by law, in no event will Diodes be * liable for any indirect, special, incidental, punitive or consequential * damages arising out of or in connection with the production or use of * SM data, however caused and under whatever cause of action or theory of * liability brought (including, without limitation, under any contract, * negligence or other tort theory of liability), even if Diodes has been * advised of the possibility of such damages, and Diodes' total liability * (whether in contract, tort or otherwise) with regard to the SM data * will not, in the aggregate, exceed any sums paid by you to Diodes for * the SM data * * Diodes Zetex Semiconductors Ltd, Zetex Technology Park, Chadderton, * Oldham, United Kingdom, OL9 9LL ****************************************************************************** *DATE=29MAR2022 *VERSION=1.0 .subckt dgd2181m HIN LIN COM LO VCC VS HO VB C1 uvvc COM 10p S1 COM hinst HIN COM SLIN C2 hinst COM 0.01p D1 COM HIN DMOD D2 HIN VCC DMOD R1 HIN COM 200k R2 bias1 hinst 100k S2 COM uvvc VCC COM SUVCC S3 COM linst LIN COM SLIN C3 linst COM 0.01p R3 LIN COM 200k R4 linst bias1 100k D3 COM LIN DMOD D4 LIN VCC DMOD C4 cdh COM 50n C5 ondlyh COM 10p C6 ondlyl COM 10p D5 COM VCC DMOD R5 VCC COM 172k D6 COM VS DMODH D7 VS VB DMOD C7 dlyoutl COM 10p S4 drvlp illp dlyoutl COM SRSTP S5 illn drvln dlyoutl COM SRSTN R6 drvlp LO 4 tol=1 R7 drvln LO 2 tol=1 C8 LO COM 3.53n D8 COM LO DMOD D9 LO VCC DMOD R8 VB VS 247k C9 onh COM 10p S6 drvhp ilhp onh COM SRSTP S7 ilhn drvhn onh COM SRSTN R9 drvhp HO 4 tol=2 R10 drvhn HO 2 tol=1 C10 HO VS 3.53n D10 VS HO DMOD D11 HO VB DMOD R11 uvvc bias1 1k S8 COM uvbs VB VS SUVCC C11 uvbs COM 10p R12 uvbs bias2 1k tol=1 XX1 cdh offconth offdlyh VCC ideal_comparator XX2 onconth cdh ondlyh VCC ideal_comparator XX3 cdl offcontl offdlyl VCC ideal_comparator XX4 oncontl cdl ondlyl VCC ideal_comparator D12 COM VB DMODH E1 bias1 COM VCC COM 1 E2 bias2 COM VCC COM 1 C12 cdl COM 50n XX5 lino uvvc lovc VCC ideal_nand_2 XX6 uvvc hino hivc VCC ideal_nand_2 BdlyOff1 offcontl COM V=(V(VCC)-V(VCC)*EXP(-220n/50.5n)) BdlyOn1 oncontl COM V=V(VCC)*EXP(-180n/50.5n) BdlyOff2 offconth COM V=(V(VCC)-V(VCC)*EXP(-220n/50n)) BdlyOn2 onconth COM V=V(VCC)*EXP(-180n/51n) XX7 lovc cdl VCC ideal_buffercd XX8 hivc cdh VCC ideal_buffercd XX9 ondlyh dlyouth onhrs VCC nor_2 XX10 offdlyh onhrs dlyouth VCC nor_2 XX11 ondlyl dlyoutl onlrs VCC nor_2 XX12 offdlyl onlrs dlyoutl VCC nor_2 C13 dlyouth COM 10p XX13 uvbs dlyouth onh VCC ideal_and_2 R13 hinstb hdelay {Rdelay} C14 hdelay COM {Cdelay} XX14 hinstb COM hino VCC ideal_nor_2 XX16 linstb COM lino VCC ideal_nor_2 R14 linstb ldelay {Rdelay} C15 ldelay COM {Cdelay} XX15 hinst hinstb VCC ideal_inverter XX17 hdelay hdelayb VCC ideal_inverter XX18 linst linstb VCC ideal_inverter XX19 ldelay ldelayb VCC ideal_inverter E3 bias4 VS HO drvhn 1 R17 bias4 dlyhn 10k C16 dlyhn VS 10p E4 bias5 VS drvhp HO 1 R18 bias5 dlyhp 10k C17 dlyhp VS 10p S9 ilhp VB dlyhp VS SILIMP S10 VS ilhn dlyhn VS SILIMN E5 bias6 COM LO drvln 1 R19 bias6 dlyln 10k C18 dlyln COM 10p E6 bias7 COM drvlp LO 1 R20 bias7 dlylp 10k C19 dlylp COM 10p S11 illp VCC dlylp COM SILIMP S12 COM illn dlyln COM SILIMN S13 COM hdelay hinst COM SDIN S14 COM ldelay linst COM SDIN .MODEL DMOD D(IS=1.0e-14 RS=0.01 N=1 EG=1.11 XTI=3 BV=25 IBV=0.0001 CJO=0 VJ=0.75 M=0.333 FC=0.5 TT=0 KF=0 AF=1) .MODEL DMODH D(IS=1.0e-14 RS=0.01 N=1 EG=1.11 XTI=3 BV=625 IBV=0.0001 CJO=0 VJ=0.75 M=0.333 FC=0.5 TT=0 KF=0 AF=1) .MODEL SRSTN SW(Ron=10Meg Roff=1m Vt=1.5 Vh=1.2) .MODEL SRSTP SW(Ron=1m Roff=10Meg Vt=1.5 Vh=1.2) .MODEL SLIN SW(Ron=10Meg Roff=1m Vt=1.5 Vh=0.15) .MODEL SUVCC SW(Ron=10Meg Roff=1m Vt=8.55 Vh=0.35) .param Cdelay=10p Rdelay=15.3k T1=-40 T2=25 T3=125 V1=10 V2=15 V3=20 toffT2=140n tonT2=140n .MODEL SILIMN SW(Ron=4.5 Roff=1m Vt=3 Vh=0.01) .MODEL SILIMP SW(Ron=3.9 Roff=1m Vt=7 Vh=0.01) .MODEL SDIN SW(Ron=1m Roff=10Meg Vt=1.5 Vh=0.15) .ends dgd2181m .subckt ideal_comparator 1 2 3 VDD S3 3 VDD 1 2 switmod S4 0 3 2 1 switmod .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_comparator .subckt ideal_nand_2 A B Y Vdd S1 Y Vdd Vtrip A switmod S2 N001 Y A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 Y Vdd Vtrip B switmod S5 0 N001 B Vtrip switmod C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_nand_2 .subckt ideal_buffercd A Y Vdd S3 Y Vdd A N001 switmodcd S4 0 Y N001 A switmodcd E1 N001 0 Vdd 0 0.5 C1 Y 0 10p .model switmodcd SW(Ron=1 Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_buffercd .subckt nor_2 A B Y Vdd M1 Y B N001 Vdd PFET l=1u w=100u M2 N001 A Vdd Vdd PFET l=1u w=100u M3 Y B 0 0 NFET l=1u w=50u M4 Y A 0 0 NFET l=1u w=50u .MODEL PFET PMOS (LEVEL=3 TOX=200E-10 NSUB=1E17 GAMMA=0.6 PHI=0.7 VTO=-0.9 DELTA=0.1 UO=250 ETA=0 THETA=0.1 + KP=40E-6 VMAX=5E4 KAPPA=1 RSH=0 NFS=1E12 TPG=-1 XJ=500E-9 LD=100E-9 CGDO=200E-12 CGSO=200E-12 CGBO=1E-10 + CJ=400E-6 PB=1 MJ=0.5 CJSW=300E-12 MJSW=0.5) .MODEL NFET NMOS (LEVEL=3 TOX=200E-10 NSUB=1E17 GAMMA=0.5 PHI=0.7 VTO=0.8 DELTA=3.0 UO=650 ETA=3.0E-6 THETA =0.1 + KP=120E-6 VMAX=1E5 KAPPA=0.3 RSH=0 NFS=1E12 TPG=1 XJ=500E-9 LD=100E-9 CGDO=200E-12 CGSO=200E-12 CGBO=1E-10 + CJ=400E-6 PB=1 MJ= 0.5 CJSW=300E-12 MJSW=0.5) .ends nor_2 .subckt ideal_and_2 A B Y Vdd S1 N001 Vdd Vtrip A switmod S2 N002 N001 A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 N001 Vdd Vtrip B switmod S5 0 N002 B Vtrip switmod S4 Y Vdd Vtrip N001 switmod S6 0 Y N001 Vtrip switmod C1 N001 0 10p C2 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_and_2 .subckt ideal_nor_2 A B Y Vdd S1 Y N001 Vtrip A switmod S2 0 Y A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 N001 Vdd Vtrip B switmod S5 0 Y B Vtrip switmod C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_nor_2 .subckt ideal_inverter A Y Vdd S3 Y Vdd N001 A switmod S4 0 Y A N001 switmod E1 N001 0 Vdd 0 0.5 C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_inverter ****************************************************************************** * (c) 2022 Diodes Inc * * Diodes Incorporated and its affiliated companies and subsidiaries * (collectively, "Diodes") provide these spice models and data * (collectively, the "SM data") "as is" and without any representations * or warranties, express or implied, including any warranty of * merchantability or fitness for a particular purpose, any warranty * arising from course of dealing or course of performance, or any * warranty that access to or operation of the SM data will be * uninterrupted, or that the SM data or any simulation using the SM data * will be error free. * * To the maximum extent permitted by law, in no event will Diodes be * liable for any indirect, special, incidental, punitive or consequential * damages arising out of or in connection with the production or use of * SM data, however caused and under whatever cause of action or theory of * liability brought (including, without limitation, under any contract, * negligence or other tort theory of liability), even if Diodes has been * advised of the possibility of such damages, and Diodes' total liability * (whether in contract, tort or otherwise) with regard to the SM data * will not, in the aggregate, exceed any sums paid by you to Diodes for * the SM data * * Diodes Zetex Semiconductors Ltd, Zetex Technology Park, Chadderton, * Oldham, United Kingdom, OL9 9LL ****************************************************************************** *DATE=21OCT2020 *VERSION=1.0 *Simetrix .subckt dgd2190m HIN LIN COM LO VCC VS HO VB C1 uvvc COM 10p S1 COM hinst HIN COM SLIN C2 hinst COM 0.01p D1 COM HIN DMOD D2 HIN VCC DMOD R1 HIN COM 200k R2 bias1 hinst 100k S2 COM uvvc VCC COM SUVCC S3 COM linst LIN COM SLIN C3 linst COM 0.01p R3 LIN COM 200k R4 linst bias1 100k D3 COM LIN DMOD D4 LIN VCC DMOD C4 cdh COM 50n C5 ondlyh COM 10p C6 ondlyl COM 10p D5 COM VCC DMOD R5 VCC COM 360k D6 COM VS DMODH D7 VS VB DMOD C7 dlyoutl COM 10p S4 drvlp illp dlyoutl COM SRSTP S5 illn drvln dlyoutl COM SRSTN R6 drvlp LO 2.5 tol=1 R7 drvln LO 2.1 tol=1 C8 LO COM 3.3n D8 COM LO DMOD D9 LO VCC DMOD R8 VB VS 345k C9 onh COM 10p S6 drvhp ilhp onh COM SRSTP S7 ilhn drvhn onh COM SRSTN R9 drvhp HO 2.5 tol=1 R10 drvhn HO 2.1 tol=1 C10 HO VS 3.3n D10 VS HO DMOD D11 HO VB DMOD R11 uvvc bias1 1k S8 COM uvbs VB VS SUVCC C11 uvbs COM 10p R12 uvbs bias2 1k tol=1 XX1 cdh offconth offdlyh VCC ideal_comparator XX2 onconth cdh ondlyh VCC ideal_comparator XX3 cdl offcontl offdlyl VCC ideal_comparator XX4 oncontl cdl ondlyl VCC ideal_comparator D12 COM VB DMODH E1 bias1 COM VCC COM 1 E2 bias2 COM VCC COM 1 C12 cdl COM 50n XX5 lino uvvc lovc VCC ideal_nand_2 XX6 uvvc hino hivc VCC ideal_nand_2 BdlyOff1 offcontl COM V=(V(VCC)-V(VCC)*EXP(-140n/50.5n)) BdlyOn1 oncontl COM V=V(VCC)*EXP(-140n/50.5n) BdlyOff2 offconth COM V=(V(VCC)-V(VCC)*EXP(-140n/50n)) BdlyOn2 onconth COM V=V(VCC)*EXP(-140n/51n) XX7 lovc cdl VCC ideal_buffercd XX8 hivc cdh VCC ideal_buffercd XX9 ondlyh dlyouth onhrs VCC nor_2 XX10 offdlyh onhrs dlyouth VCC nor_2 XX11 ondlyl dlyoutl onlrs VCC nor_2 XX12 offdlyl onlrs dlyoutl VCC nor_2 C13 dlyouth COM 10p XX13 uvbs dlyouth onh VCC ideal_and_2 R13 hinstb hdelay {Rdelay} C14 hdelay COM {Cdelay} XX14 hinstb COM hino VCC ideal_nor_2 XX16 linstb COM lino VCC ideal_nor_2 R14 linstb ldelay {Rdelay} C15 ldelay COM {Cdelay} XX15 hinst hinstb VCC ideal_inverter XX17 hdelay hdelayb VCC ideal_inverter XX18 linst linstb VCC ideal_inverter XX19 ldelay ldelayb VCC ideal_inverter E3 bias4 VS HO drvhn 1 R17 bias4 dlyhn 10k C16 dlyhn VS 10p E4 bias5 VS drvhp HO 1 R18 bias5 dlyhp 10k C17 dlyhp VS 10p S9 ilhp VB dlyhp VS SILIMP S10 VS ilhn dlyhn VS SILIMN E5 bias6 COM LO drvln 1 R19 bias6 dlyln 10k C18 dlyln COM 10p E6 bias7 COM drvlp LO 1 R20 bias7 dlylp 10k C19 dlylp COM 10p S11 illp VCC dlylp COM SILIMP S12 COM illn dlyln COM SILIMN S13 COM hdelay hinst COM SDIN S14 COM ldelay linst COM SDIN .MODEL DMOD D(IS=1.0e-14 RS=0.01 N=1 EG=1.11 XTI=3 BV=25 IBV=0.0001 CJO=0 VJ=0.75 M=0.333 FC=0.5 TT=0 KF=0 AF=1) .MODEL DMODH D(IS=1.0e-14 RS=0.01 N=1 EG=1.11 XTI=3 BV=625 IBV=0.0001 CJO=0 VJ=0.75 M=0.333 FC=0.5 TT=0 KF=0 AF=1) .MODEL SRSTN SW(Ron=10Meg Roff=1m Vt=1.5 Vh=1.2) .MODEL SRSTP SW(Ron=1m Roff=10Meg Vt=1.5 Vh=1.2) .MODEL SLIN SW(Ron=10Meg Roff=1m Vt=1.5 Vh=0.15) .MODEL SUVCC SW(Ron=10Meg Roff=1m Vt=8.1 Vh=0.3) .param Cdelay=10p Rdelay=15.3k T1=-40 T2=25 T3=125 V1=10 V2=15 V3=20 toffT2=140n tonT2=140n .MODEL SILIMN SW(Ron=1.2 Roff=1m Vt=9.45 Vh=0.01) .MODEL SILIMP SW(Ron=0.8 Roff=1m Vt=11.25 Vh=0.01) .MODEL SDIN SW(Ron=1m Roff=10Meg Vt=1.5 Vh=0.15) .ends dgd2190m .subckt ideal_comparator 1 2 3 VDD S3 3 VDD 1 2 switmod S4 0 3 2 1 switmod .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_comparator .subckt ideal_nand_2 A B Y Vdd S1 Y Vdd Vtrip A switmod S2 N001 Y A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 Y Vdd Vtrip B switmod S5 0 N001 B Vtrip switmod C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_nand_2 .subckt ideal_buffercd A Y Vdd S3 Y Vdd A N001 switmodcd S4 0 Y N001 A switmodcd E1 N001 0 Vdd 0 0.5 C1 Y 0 10p .model switmodcd SW(Ron=1 Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_buffercd .subckt nor_2 A B Y Vdd M1 Y B N001 Vdd PFET l=1u w=100u M2 N001 A Vdd Vdd PFET l=1u w=100u M3 Y B 0 0 NFET l=1u w=50u M4 Y A 0 0 NFET l=1u w=50u .MODEL PFET PMOS (LEVEL=3 TOX=200E-10 NSUB=1E17 GAMMA=0.6 PHI=0.7 VTO=-0.9 DELTA=0.1 UO=250 ETA=0 THETA=0.1 + KP=40E-6 VMAX=5E4 KAPPA=1 RSH=0 NFS=1E12 TPG=-1 XJ=500E-9 LD=100E-9 CGDO=200E-12 CGSO=200E-12 CGBO=1E-10 + CJ=400E-6 PB=1 MJ=0.5 CJSW=300E-12 MJSW=0.5) .MODEL NFET NMOS (LEVEL=3 TOX=200E-10 NSUB=1E17 GAMMA=0.5 PHI=0.7 VTO=0.8 DELTA=3.0 UO=650 ETA=3.0E-6 THETA =0.1 + KP=120E-6 VMAX=1E5 KAPPA=0.3 RSH=0 NFS=1E12 TPG=1 XJ=500E-9 LD=100E-9 CGDO=200E-12 CGSO=200E-12 CGBO=1E-10 + CJ=400E-6 PB=1 MJ= 0.5 CJSW=300E-12 MJSW=0.5) .ends nor_2 .subckt ideal_and_2 A B Y Vdd S1 N001 Vdd Vtrip A switmod S2 N002 N001 A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 N001 Vdd Vtrip B switmod S5 0 N002 B Vtrip switmod S4 Y Vdd Vtrip N001 switmod S6 0 Y N001 Vtrip switmod C1 N001 0 10p C2 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.000001) .ends ideal_and_2 .subckt ideal_nor_2 A B Y Vdd S1 Y N001 Vtrip A switmod S2 0 Y A Vtrip switmod E1 Vtrip 0 Vdd 0 0.5 S3 N001 Vdd Vtrip B switmod S5 0 Y B Vtrip switmod C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_nor_2 .subckt ideal_inverter A Y Vdd S3 Y Vdd N001 A switmod S4 0 Y A N001 switmod E1 N001 0 Vdd 0 0.5 C1 Y 0 10p .model switmod SW(Ron=1m Roff=10Meg Vt=0 Vh=0.00001) .ends ideal_inverter ****************************************************************************** * (c) 2020 Diodes Inc * * The copyright in these models and the designs embodied belong * to Diodes Incorporated (" Zetex "). They are supplied * free of charge by Zetex for the purpose of research and design * and may be used or copied intact (including this notice) for * that purpose only. All other rights are reserved. The models * are believed accurate but no condition or warranty as to their * merchantability or fitness for purpose is given and no liability * in respect of any use is accepted by Diodes Incorporated, its distributors * or agents. * * Diodes Zetex Semiconductors Ltd, Zetex Technology Park, Chadderton, * Oldham, United Kingdom, OL9 9LL ******************************************************************************