最新技术文章
  • 电源管理: 多相位降压转换器的优势

    Other Parts Discussed in Post: LM3754, LM25119, LM5119

    作者:David Baba,德州仪器  

    引言

    对于电流在 25 A 左右的低压转换器应用而言,单相降压控制器非常有效。若电流再大的话,功耗和效率就开始出现问题。一种较好的方法是使用多相降压控制器。本文将简单比较,使用多相降压转换器和单相转换器的好处,并说明电路实现时一个多相降压转换器能够提供什么样的值。

    图 1 显示了一款二相电路。由该电路的波形(图 2 所示)可以清楚地看到各相互相交错。这种交错可减少输入和输出纹波电流。另外,它还减少了印刷电路板或者某个特定组件上的热点。实际上,二相降压转换器让 FET 和电感的 RMS-电流功耗降低了一半。相交错还可以降低传导损耗。

     

    图 1 二相降压转换器

    图 2 相 1 和 2 的节点波形

    输出滤波器考虑

    由于每个相位的功率级电流更低,多相实现的输出滤波器要求也随之降低…

  • 模拟: 简易 I2C 隔离器设计小贴士

    作者:Thomas Kugelstadt,德州仪器 (TI) 应用工程师

     

     

    通常产品设计时间非常紧张,用于新产品设计的资金也并不宽余,但不管怎样,我们都必须要在不增加成本的前提下设计出能够运行于恶劣环境下的稳健系统。一般而言,这会要求使用电流隔离,用于保护敏感控制电子组件免受外部突入和瞬态浪涌电流的损害。

     

    如果您的设计涉及许多工业接口,那么当您在各大半导体厂商的官方网站上看到琳琅满目的RS-485、RS-232、CAN和I2C信号隔离器时,您会发现自己像一个进到糖果店里的小孩一样兴奋不已。但是,当您想要采购经理批准购买这些产品时,他会立马给您泼上一盆冷水:“不能利用一些已有的标准组件吗?不管用什么方法,把它们都利用起来!”

     

    今后碰到这种情况,您可以热情洋溢的回答“没问题”,因为本文将为您介绍一部分工业接口电路,它们几乎都只使用一个标准隔离器。图 1-4 显示了工业应用中最为常见的数字接口的简化示意图…

  • 模拟: 利用 SPICE 设计 TEC 温度环路 PID 控制

    Other Parts Discussed in Post: OPA2314

    作者:Mathew Hann,德州仪器

     

    使用模拟比例积分微分 (PID) 控制器的温度控制是一种非常简单的电路,是确保热电冷却器 (TEC) 的设置点能够对温度或者激光进行调节的有效方法。比例积分项协同工作,精确地伺服TEC的电流,以维持控制器的温度设置点。与此同时,微分项对完成上述工作的速率进行调节,从而优化总体系统响应。如果可以对总体系统响应H (s) 进行描述,则为其设计 PID 控制器G (s) 的最为方便和有效的方法是利用 SPICE 进行仿真。

     

    步骤1:确定SPICE模型的TEC/Temp传感器热阻抗。

    要想把 SPICE 作为 PID 环路设计的一种有效工具,获取温度环路的热响应非常重要,目的是获得 PCBàTECà 激光二极管à 温度传感器接线的实际热敏电阻、电容和传输函数。记住,由于实际热特性会出现高达50%的变化,因此最好是向实际系统注入一个热步进输入…

  • 模拟: 时钟抖动使随机抖动和相位噪声不再神秘

    Other Parts Discussed in Post: ONET1191P

    John Johnson 德州仪器

     

    在本文中,我们将讨论抖动传递及其性能,以及相位噪声测量技术的局限性。

     

    时钟抖动和边沿速率

     

    图1显示了由一个通用公式表述的三种波形。该公式包括相位噪声项“φ(t)”和幅度噪声项“λ(t)。对评估的三个频率来说,φ(t)=0和λ(t)是个伪随机函数,该函数为每个波形都产生噪声的恒定包络。图1显示三个波形中每一波形的Vth穿越分解视图,以及Vth可被穿越的位置分布。

     


    图1:时间抖动引入与信号边缘速率

     

    图1强调了噪声源而不是固有抖动会引起定时抖动错误。更快的边沿速率减少了时钟信号上的电压噪声对时钟抖动性能的影响。这种现象并非是仅属于时钟信号的特点。在接收时钟信号或测量抖动性能的设备内,这种机理也表现得很明显。

  • 模拟: 工业远距离通信使用的RS-232至RS-485转换器

    作者:Thomas Kugelstadt,德州仪器

     

    要求远距离或者在多个RS-232应用之间实现RS-232数据传输的一些工业用数据链路,通常都使用RS-232到RS-485转换器。尽管存在高达±13V的高信号摆幅,但RS-232仍然是一种非平衡或单端接口,而且本身极易受噪声影响。它的总线最大长度被限定在20米(60英尺)左右。尽管允许进行全双工数据传输(通过一些单独的信号导线同时发送和接收数据),但是RS-232并不支持在同一条总线上连接多个节点。

    与之形成鲜明对比的是,RS-485是一种使用差分信号传输的平衡接口,从而让其拥有较高的共模噪声抗扰性。因此,延长RS-232数据链路传输距离和实现多总线节点连接,要求通过接口转换器将其转换为RS-485信号(参见图1)。

     

     

    图 1 短距、点对点数据链路到远距、多点网络的转换

     

    图2显示了一个低功耗、隔离式转换器设计的原理图。这里,一台个人计算机…

  • 模拟: 高速数模转换器的数字特性

    Other Parts Discussed in Post: DAC34H84

    作者:Robert Keller,德州仪器

     

    当今的高速数模转换器 (DAC) 通常都包含有许多数字信号处理模块,让其更加易于使用。应论述需要,我们使用了 TI 的 DAC34H84(详见《参考文献 1》),它是一款 4 通道、16 位、1250  Msps 的 DAC。这样做的原因是,它是一种典型的高速数模转换器,拥有隔离输入和 DAC 时钟域的输入 FIFO、插值数字模块、精细频率分辨率数字正交调制、模拟正交调制器校正以及 sin(x)/x 校正(请参见图 1)。本文将逐一介绍这些特性的功能和作用。

     

    图 1 DAC34H84 功能结构图

     

    第一个数字模块是插值模块,它负责增加 DAC 内部数字信号的采样速率。一般而言,利用两倍采样速率增加步骤,来实现插值。利用在输入采样点之间插入零来完成这项工作,其在 fIF 和 FIN – f…

  • 模拟: 谁是音频时钟的“老板”?

    作者:Dafydd Roche,德州仪器

     

    传统 I2S—为何要包括系统时钟?

    过去,我们在讨论音频话题时,偶尔会提及 I2S。我在以前的一些文章中提到过 I2S,其他人在做音频研究时也都会提到它。简而言之,它是一种将立体声数据从一端传输至另一端的同步方法。

    大多数人认为 I2S 有三种信号:

    1. 数据:输入或者输出数据
    2. 位时钟 (Bitclock,BCK):确立数据流中两个相邻位之间边界的信号
    3. 左/右时钟 (LRCK)/字时钟 (Wordclock):一个在采样速率下运行、占空比为 50% 的慢时钟,它确立数据流中两条相邻通道(左和右)之间的边界。

    I2S 的幕后英雄是主时钟 (MCK),也称作系统时钟 (SCK),它常常被数字信号处理器 (DSP) 程序员和其他处理器爱好者们忽略。主时钟 (MCK/SCK),通常为一个64、128、256 和 512 倍采样速率 (FS) 的时钟。它可以由一个输入引脚直接提供…

  • 模拟: 正确调节滤波器各组件以提高降噪效果

    Other Parts Discussed in Post: INA333

    作者:Matthew Hann,德州仪器

     

    在 DC 到低频传感器信号调节应用中,仅依靠仪表放大器的共模抑制比 (CMRR) 并不足以在恶劣的工业使用环境中提供稳健的噪声抑制。要想避免多余噪声信号的传播,对仪表放大器输入端低通滤波器中各组件进行正确的匹配和调节至关重要。最终,才能让内部电磁干扰/无线电频率干扰 (EMI/RFI) 滤波和 CMRR 共同作用,降低其他噪声,从而达到可以接受的信噪比 (SNR)。

     

    例如,请思考图 1 所示低通滤波器实施。电阻传感器通过一个低通滤波器网络差动连接至一个高阻抗仪表放大器,而低通滤波器网络由 RSX 和 CCM 组成。理想情况下,如果每条输入支线的 CCM 都完全匹配,则两个输入端共有的噪声量将在到达 INA 输入端以前得到相应的降低。

     

     

    图 1 共模输入滤波

     

    共模滤波器电容 (Ccm) 完全匹配时…

  • 模拟: 总线电流要求与收发器驱动能力

    作者:Thomas Kugelstadt,德州仪器

    越来越多的人在问关于 EIA/TIA-485(俗称 RS-485 数据传输标准)基本概念的一些问题,这一事实表明未来数年 RS-485 仍会在各种工业接口中起到举足轻重的作用。

     

    本文中,我们将为您解答许多常见和最新的问题,例如:

    1)RS-485 收发器可以驱动多大的总线电流?

    2)可以驱动 32 以上单位负载吗?

     

    要回答第一个问题,我们需要研究图 1 所示典型 RS-485 数据链路。我们看到,除驱动通过端接电阻器的差分电流以外,驱动器还必须驱动通过许多接收机输入阻抗的电流,以及通过位于总线上的故障保护网络的电流。这些阻抗在差分信号线路和接地之间形成电流通路,同时影响了 A 和 B 信号线的电流,且影响程度相同。因此,可以将它们表示为共模阻抗 RCM

     

     

    图 1 典型 RS-485 数据链路

     

    为了对最大共模负载进行定义,RS-485 使用了一个单位负载的理论概念…

  • 模拟: 时钟抖动解秘—高速链路时钟抖动规范基础知识

    作者:John Johnson,德州仪器 

     

    本文介绍时钟抖动对高速链路性能的影响。我们将重点介绍抖动预算基础。

     

    用于在更远距离对日益增长的海量数据进行传输的一些标准不断出现。来自各行业的工程师们组成了各种委员会和标准机构,根据其开发标准的目标(数据吞吐量和通信距离)确定抖动预算;同时还要考虑到组成通信链路的模块的局限性。

     

     

    图 1 通信链路—抖动组件

     

    图 1 显示了集成有一个嵌入式时钟的典型高速通信链路。每个子系统(时钟、发送器、通道和接收机)都会对整体抖动预算的增加产生影响。子系统抖动包括一个决定性 (DJ) 组件和一个随机组件 (RJ),如图 1 所示。为了实现可接受的通信效果,必须满足下列条件:

     

                                                           方程式 1

     

    其中:TJSYS 是总抖动,而 1UI 为1个单位时间间隔(1 比特时间)

     

    总抖动 (TJ) 包括每个子系统决定性抖动和随机抖动的和。由于随机抖动自身的属性,进行这种求和时需要特别注意…

  • 模拟: 弥合高速数据转换器连续波和调制信号测量之间的差异

    作者:Robert Keller,德州仪器

     

    我们一般使用连续波 (CW) 信号来描述高速模数转换器 (ADC) 和数模转换器 (DAC)。这样做的原因是:1)就 ADC 而言,CW 信号更易于通过 CW 生成器和窄带通滤波器无噪生成;2)就 DAC 而言,CW 信号更容易分析;3)它们具有许多标准参考测试,可在各种器件之间清楚地比较。然而,大多数现实系统都将高速数据转换器用于采样调制波形。弥合基于 CW 测量的各种规范和调制信号的系统要求之间存在的差异具有一定的挑战。

     

    CW 信号和调制信号之间存在两种差异,会影响高速数据转换器的行为。首先,CW 信号没有带宽——能量被限定在某个单一频率;而调制信号有带宽,能量分布于某个频率范围。其中的一个结果便是 CW 信号失真在另一个频率引起 CW 谐波,而调制信号失真引起该信号之外更宽频率范围的谐波和交叉调制:二次谐波 2x、三次谐波 3x 等。在带宽与调制信号相同的某个频段能量的传播带来更低完整度的失真能量…

  • 模拟: 单电源高精度整流器

    作者:Rick Downs,德州仪器 (TI) 高精度模拟应用工程经理

     

    在需要某个信号的绝对值时,我们常常使用高精度整流器电路,其作为计量应用中信号大小测量电路的组成部分。针对这类电路的设计不计其数,但在单电源系统中实现这一功能却具有一定的挑战性。

     

    最近的许多设计都依靠单电源运算放大器 (op amp) 的饱和行为来实现整流。在许多情况下,这样做是可以接受的,但如果您想避免出现运算放大器饱和以及这种饱和带来的许多固有问题(缓慢的恢复时间、潜在的非理想相位反向),则图 1 所示电路是一款较好的解决方案。

     

     

    图 1    单电源高精度整流器

     

    图 1 所示电路接受负信号(高达器件的电源轨;本例中为 5V)。利用一个 +5V 电源,该电路可以接受高达 10vp-p 的零伏集中信号(即 ±5V)。

     

    就正信号 (Vin > 0V) 而言,U1 起到一个加法器放大器的作用,而 U2 和 U1 则不相干…

  • 模拟: G 类音频放大器构架让便携式音频设计者激动不已

    作者:ShreHarsha Rao,德州仪器 

    音频是便携式消费类电子设备不可或缺的一个重要组成部分。集成耳机音频功率放大器有助于放大低功耗基带音频信号,以在使用耳机时驱动清脆、清晰的音 频。另外,这些放大器都需要具有极高的效率,以实现更长时间的电池寿命。为了迎接这种挑战,广大设计人员将使用 G 类音频放大器拓扑结构。

     

    典型的线性音频放大器拓扑结构为 A 类、B 类、C 类和 AB 类。虽然这些音频放大器均为线性;但它们的效率并不是很高。请参见表 1 和图 1。

     

    表 1 线性音频放大器拓扑结构

     

    拓扑

    类别

    描述

    效率

    A 类

    线性

    输出器件持续导电

    20%

    B 类

    线性

    输出器件导电 1/2 正弦周期。(一个在正区域导电,一个在负区域导电)在交叉点存在线性问题。

    50%

  • 模拟: 使用运算放大器来驱动高精度模数转换器

    Other Parts Discussed in Post: ADS8342

    作者:Rick Downs,德州仪器 (TI) 高精度模拟应用工程经理

     

    大多数高精度模数转换器 (ADC) 都没有高阻抗输入。输入信号直接通过一个开关连接到一个采样电容器。这种负载存在一些有趣的挑战。

     

    有人试图通过直接连接一个电位计到输入来验证其 ADC 的运行,如图 1 所示。这样做的结果通常让人失望,因为获得的结果并不理想。这种情况下,在 ADC 输入上看到的信号呈现出巨大的峰值,因为大输入阻抗从采样电容器吸取电流,从而导致对电容器充电需要大量的电流。如果在转换器的采集时间 tACQ 内稳定下来,便不会出现问题。但是,如果没有在 tACQ 内稳定到 0.5 最低有效位 (LSB) 以下,则会损耗精度。

     

     

    图 1 高源阻抗会引起精度损耗

     

    图 2 显示了驱动一个高精度 ADC 的建议电路。CSH 为 ADC 内部的采样电容,而…

  • 模拟: 数字接口(续)— SPI 总线

    作者: Thomas Kugelstadt   德州仪器

    串行外设接口 (SPI) 总线是一个工作在全双工模式下的同步串行数据链路。它可用于在单个主控制器和一个或多个从设备之间交换数据。其简单的实施方案只使用四条支持数据与控制的信号线(图 1):


    图 1:基本 SPI 总线
    虽然表 1 中的引脚名称来自摩托罗拉开发的 SPI 标准,但具体集成电路的 SPI 端口名称往往与图 1 中所示的不同。


    表 1:SPI 引脚名称分配

    SPI 数据速率一般在 1 到 70MHz 的范围内,字长为从 8 位及 12 位到这两个值的倍数。

    数据传输一般由数据交换构成。在主控制器向从设备发送数据时,从设备也向主控制器发送数据。因此主控制器的内部移位寄存器和从设备都采用环形设置(图 2)。

     

    图 2:双移位寄存器形成一个芯片间的环形缓存器

    在数据交换之前,主控制器和从设备会将存储器数据加载至它们的内部移位寄存器。收到时钟信号后…

  • 模拟: 数字接口—单端接口与差动接口的对比

    作者:Thomas Kugelstadt,德州仪器 (TI) 高级应用工程师 

     

    单端数据传输仅使用一条信号线,其电势被看作接地。在信号线为信号电流提供正向通道时,接地线会提供回流通道。图 1 显示了单端传输通道的基本原理图。

     

    图 1 单端传输通道

     

    单端接口的主要优点可概括为简洁性和较低的实施成本。然而,它们极易受噪声拾取的影响,因为引入到信号或者接地通道的噪声直接加到接收机输入,从而引起伪接收机触发。另一个问题是串扰,特别是在一些更高频率条件下,其为邻近信号和控制线路之间的电容和电感耦合。最终,由于信号线迹和接地层之间的物理差异,单端系统中产生的横向电磁波 (TEM) 会辐射到电路环境中,从而成为邻近电路的巨大电磁干扰源(EMI)。

     

    差动信号传输使用由两条导线组成的信号对:一个用于正向电流,而另一个用于返回电流。每个信号导线均有一个共模电压 VCM,其由 50% 差动驱动器输出 VOD 叠加,但极性相反…

  • 模拟: 高 K 陶瓷电容器形成的信号失真

    Other Parts Discussed in Post: OPA1611, TINA-TI

    作者:John Caldwell   德州仪器

    简介

    多层陶瓷电容器 (MLCC) 因其拥有价格低、体积效率高和等效串联电阻低等优势,在当今电子产品中获得广泛应用。这些优势使 MLCC 近乎完美地适用于各种应用,如用于电源的输出电容器以及用于集成电路的本地去耦电容器。MLCC 的不同类型主要根据其温度系数来定义,温度系数是指通过特定温度范围内的电容变化量。根据 NP0 或 C0G 的规定,I 类 MLCC 在工作温度范围内的电容变化必须少于 +/–30ppm,而 II 类 MLCC 的变化范围则可介于 +/–15% (X7R) 到 +22%/–82%(Z5V)[1] 之间。

     

    MLCC 的温度系数直接受形成电容器介电的陶瓷材料的影响。此外,介电材料还可决定电容器的电气特性。II 类介电(X7R、Z5U…

  • 模拟: 信号链中的"桥接"知识

    作者:Rick Downs,TI 高精度模拟应用工程经理

     

    测量现实世界现象的许多传感器都以改变电阻的形式表现其输出:热敏电阻为温度敏感型电阻,应变计随作用力而改变电阻大小,诸如此类。系统设计人员面对的挑战是如何精确地测量电阻。

     

    图 1 简易分压器

     

    图 1 显示的是您如何使用一个分压器测量电阻。VE 表示激发电压。RG 值为:

    就大多数传感器而言,如果 R1 和 RG 的值大约相等,则该电路往往会产生非常小的电压变化,且具有较大的失调电压。当失调量未知时,要进行测量非常困难且关系也为非线性。增加一个分压器并差分测量输出可以消除大失调量,请见图 2。

    图 2 增加第二个分压器并进行差分测量

    该电路的输出电压为:

     其假设,静止 RG 约等于 R1,同时所有 R1 均非常近似。桥接传感器几乎总是以这种方法来构建。请注意,关系仍为非线性。

    图 3 绘制桥接的传统方法

     

    图 3 所示的电路与图

  • 模拟: 控制板级时钟分配期间出现的 EMI

    Other Parts Discussed in Post: CDCS502, CDCE949

    作者:Lin Wu,德州仪器 (TI) 产品市场营销经理

     

    今天,我们来谈谈所有电子系统都存在的一种常见问题——电磁干扰也即 EMI,并侧重讨论时钟的影响。

    从广义来讲,EMI  是中断、阻碍或者降低电子器件有效性能的所有电磁干扰。其产生的方式有两种:1)通过存在于信号之间的寄生电感/电容,或者通过电源或接地连接的无用耦合,从而产生 EMI;或者2)直接通过电子/磁辐射,即辐射性 EMI。

    由于两个原因,时钟信号常归咎于 EMI。即使时钟低频率运行,较好的时钟上升/下降沿也包含大量的奇次谐波,其在更高频率时会引起 EMI。另外,时钟通常会在板上传播一段较长的距离,从而更可能给其他组件带来干扰。通常,EMI 可通过频谱分析仪测量,如图 1 所示。图中,绿色信号存在一些超出红色 FCC 屏蔽的频率分量(300MHz…

  • 模拟: 调制器输出端的 DAC 寄生信号分析

    作者:Habeeb Ur Rahman Mohammed  德州仪器

    我最近应一位客户的特别要求,评估了 TRF3720 全面集成型 IQ 调制器和 PLL/VCO 线性性能。在测量 OIP3 性能时,我观察到了出乎预料的寄生信号,如图 1 所示。经与同事讨论,我们得出的结论是数模转换器 (DAC) 基带 (BB) 影像与 TRF3720 电压控制振荡器 (VCO) 及本地振荡器 (LO) 的混合产生了这些寄生信号。整合 BB 滤波器可最大限度地消除这些寄生信号。本文将探讨这些寄生信号是如何出现在调制器输出端的。

    图 1:OIP3 测量频谱分析仪截图

    在图 1 所示的频谱分析仪截图中,有两个 RF 音调(RF1 与 RF2)和两个互调失真 (IMD) 音调(IMD1 和 IMD2),以及两个寄生信号(SPUR1 和 SPUR2)。使用的 BB 频率 BB1 为 123.6MHz,BB2 为 183.6MHz。TRF3720…

  • 模拟: "驱动 ADC 输入" 时的第一经验法则

    作者:Vaibhav Kumar  德州仪器

     

    工程师们喜欢通过多种方法简化设计流程。我最喜欢的是一直采用低阻抗电源驱动模数转换器 (ADC) 输入。为什么我会对这种方法情有独钟?因为它可为精确数据采集模块带来诸多优势。

    我们首先来看一种常见应用,其中需要将高电压信号源进行电平转换,将其转换为所需的 ADC 输入范围。图 1 中的简单分压器可用来解决该问题,即将 +/-5V 信号电平转换为 0-5V。该分压器的等效阻抗 Req 等于 R1 与 R2 的并行结合。

    那么,这种有限电源阻抗会如何影响数据采集系统?

    图 1

    高电源阻抗会在数据采集过程中产生线性和非线性错误。导致数据采集系统低 SNR 及 THD 性能的主要错误包括:

    • 增益错误:ADC 输入端的电源阻抗与 ADC 的输入阻抗构成分压器。电源阻抗中的这种输入压降会产生测量过程中的增益错误。保持低电源阻抗有助于将这种系统错误保持在较低水平;
    • 趋稳时间错误…
  • 模拟: 使用一下 TINA,电路设计更轻松

    作者:Soufiane Bendaoud  德州仪器

    在开始前,首先我要承认没有什么可以取代良好的传统工作方式,即在实验室工作台上采用示波器、分析仪以及高精度音频测量设备开展工作!

    话虽如此,但 TINA-TI™ 等仿真工具现在在设计过程中确实能够实现巨大的增值,为您节省大量时间,这是实验室工作台无法做到的。TINA-TI 是一款免费模拟电路仿真工具,可为全球用户带来数百种行为及宏模型。

    其中一种我认为非常有用的特性是参数分级,其可帮助您使用所选组件通过尽可能多的值仿真电路。这特别有助于避免反复试验与错误。

    使用 TINA-TI,需要先后点击主屏幕上的“分析 (analysis)”和“模式 (mode)”。 然后转到“分析 (analysis)”条目下的“选择目标控制 (select object control)”,点击屏幕中的“Riso”并选择“列表 (list)”以便为您所选组件输入不同的值。…

  • 模拟: 为何视频系统需要一种以上的均衡器?

    作者:Mark Sauerwald    德州仪器

     

    在用户访问www.ti.com 时,在搜索框中输入“均衡器”一词时,会发现两类截然不同的产品。一类是像 LMH0394 这样的自适应线缆均衡器,而另一类则是 DS32EV100,即所谓的可编程单一均衡器。这两类均衡器之间有什么区别,是否能用一种均衡器替换另一种?下面我来说明一下。

    在通过传输介质(线缆或 PCB 线迹)发送信号时,存在两种类型的损耗:一种是集肤效应损耗,另一种是介电损耗。集肤效应产生的原因是电场渗入导体的深度与 1/√ω 成比例,引起导体有效厚度随频率增大而缩小。

    集肤效应会造成与频率的平方根成比例的衰减。介电损耗来自围绕导体的电场对导体周围的绝缘体的加热效应。对 PCB 线迹来说,就是指 PCB 材料本身。对于线缆而言,就是导体周边的绝缘体。

    图 1:线缆(双同轴 — 实心线)和 FR4 PCB 线迹(点线路…

  • 模拟: 想了解 ADC 的非线性度吗?揭开地毯看一看:)

    作者:Vinay Tucson Agarwal   德州仪器

    上周,我把家里的地毯换成了木制地板。在移除客厅楼梯的地毯后,我注意到原本“一致”的楼梯台阶的进深宽度其实很不均匀。对此,我感到非常惊奇,因为这么多年来我上上下下却从未注意到台阶是不均匀的。这是因为地毯绝妙地掩盖了这个问题。

    以我书呆子式的思维方式,这件让我不禁想到了高分辨率 SAR 模数转换器 (ADC) 的问题。我原本以为我家的楼梯是均匀的,就像具有完美对称的量化步进的无噪声 ADC 的理想转换函数一样。图 1 显示了 3 位 ADC 的实例情况。

    图 1.ADC 转换函数——“均匀一致的楼梯”

    这再次让我这个书呆子开动脑筋思考,我家里不太完美的楼梯在尺寸上是非线性的(图 2),这与 ADC 代码转换永远不会完全均匀的情况非常类似。ADC  的这种不均匀特性主要取决于两个方面,即微分非线性…

  • 汽车: 适用于汽车应用的开关峰值电流模式控制电路优化技术

    概要

    如何将开关频率提升到超过 1.7MHz 以避免 AM 频段干扰和如何提供快速的负载瞬态响应,是当前汽车信息娱乐系统使用开关模式电源持续面临的压力。如今,多核处理器和片上系统 (SoC) 所需的内核电压甚至低于 1V,需要从 2.5V 到 6V 的中间电压进行严格稳压得来。同时,电源设计人员还需要满足多个目标,如提供高开关频率、实现小巧紧凑的解决方案和快速的瞬态响应。本文将深度探讨峰值电流模式控制环路的设计优化技术。这种分步设计兼顾了参数变动、寄生元件及典型的汽车需求。电路的优化使用了一系列异步降压转换器器件。

    介绍

    当今的多核处理器和片上系统 (SoC) 要求内核电源不仅电压低且经严格稳压,能实现超快速的瞬态响应。在我们提供的测试案例中,需要的内核电压为 1.2V,包含瞬态响应等在内的总体精度为 +/–3%。负载瞬态的指定范围为 0.5A 到 2A(400ns 内)。此外,本文还阐述了负载瞬态过程中的电路行为,以及相关的公式推导及其在本例中的应用…