• 如何利用TINA-TI来完成跨阻放大电路的稳定性设计

    Other Parts Discussed in Post: TINA-TI, LMH32401, OPA855, OPA858, OPA320
    ——作者:TI 技术支持苏智超
    在测试测量和医疗行业中,许多应用采集的原始信号都是光信号,例如LiDAR,OTDR,PCR等。在采集的过程中这类应用会不可避免的进行光电转换,首先通过光电二极管把光信号转化成电流信号,然后在通过跨阻放大电路把电流信号转成电压信号,之后再进行信号调理,最终输入ADC中。
    其中跨阻放大电路的设计尤为关键…
  • 什么是运算放大器?

    许多教材和参考指南将运算放大器(运放)定义为可以执行各种功能或操作(如放大、加法和减法)的专用集成电路(IC)。虽然我同意这个定义,但仍需注重芯片的输入引脚的电压。

    当输入电压相等时,运算放大器通常在线性范围内工作,而运算放大器正是在线性范围内准确地执行上述功能。然而,运算放大器只能改变一个条件来使输入电压相等,即输出电压。因此,运算放大器的输出通常以某种方式连接到输入,这种通常被称为电压反馈。

    在本文中,我将解释一个通用电压反馈运算放大器的基本操作,并请您参阅其他内容以了解更多信息。

    运算放大…

  • 采用“系列优先”的方法进行运算放大器设计

    Other Parts Discussed in Post: TINA-TI

    作者:Hayden Hast – 系统工程师

    当我第一次光顾德克萨斯的一家烧烤店时,菜单上各式各样的肉类选择让我感到非常惊讶,以至于我不知道要选哪一种。但幸运的是,烧烤店提供了三种肉类的拼盘,因而我就可以试尝一下不同肉类的风味。

    其实,类似于烤肉店的经历,工程师们在选择运算放大器(op amp)时也会面临很多选择。此外,随着如今生产周期的不断缩短,工程师们往往需要快速做出决定。而不小心选择了不合适的运算放大器…

  • *** - Bob Pease会说No吗?

    Other Parts Discussed in Post: TINA-TI

    作者: TI 专家 Bruce Trump

    翻译: TI信号链工程师 Rickey Xiong (熊尧)

    每一个读过我博客的人都知道,我使用SPICE模型仿真电路。你可能听说过Bob Pease,在SPICE领域相当执有己见,他曾经说过:“SPCIE模型削弱了你对所发生事物的洞察能力。***”。今天,为了纪念Bob的生日,让我们来考虑一下SPICE模型的优点和缺点。

    Bob是一个有趣的人并且经常夸张地表达某一种观点…

  • 输入电容——共模?差模?

    作者: TI专家 Bruce Trump

    翻译: TI信号链工程师 Michael Huang (黄翔)

     

    运放的输入电容参数经常使人困惑或是忽略。现在让我们明确这些参数怎样才是最好的应用。

    运放电路的稳定性受输入电容的影响,它在反向输入端引入了一个相移,即到达反向输入端的反馈支路的延迟。反馈网络受输入电容影响形成了一个不想要的极点。引入输入电容来计算反馈网络的阻抗特性是保证运放电路稳定性的重要一步。但是,哪种电容有影响?差模电容?共模电容?还是都有?

    运放输入电容一般可以在输入阻抗参数一栏找到…

  • 反向衰减器,G=-0.1……会不稳定吗?

    Other Parts Discussed in Post: TINA-TI

    作者: TI专家 Bruce Trump

    翻译: TI信号链工程师 Michael Huang (黄翔)

     

    单位增益稳定的运放在增益大于等于1的情况下是稳定的,增益更小的时候还正确吗?怎么办?

    这个问题在E2E论坛上隔段时间就出现。好吧,来个简洁的答案:反向衰减器稳定。你想知道为什么吗?关于这个问题有很多方法来看,快速阅读以下内容也许能让您对运放稳定性有更清楚的认识。

    思考这个问题:如果G=-0.1时不稳定…

  • 注意:宽泛负载!

    Other Parts Discussed in Post: INA333, INA326

    作者: Pete Semig 德州仪器(TI)高精度线性产品部的模拟应用工程师

    在TI E2E 论坛上为客户提供支持时,我遇到的最常见的问题就是直流感应。直流感应方法很简单,就是安放一个与负载(分流电阻器)串联的电阻器,然后测量整个电阻器的电压(分流电压)。对于频程为 10 至 15 倍的负载电流而言,这种方法极为有效。

    但是低功耗应用需要 30 倍乃至更高频程的电流感应解决方案。使用线性器件测量分流电压时…

  • 瞬态稳定性测试:注意步长

    作者: Collin Wells  TI 高精度线性产品部的模拟应用工程师

     

    今年夏天,我有幸负责培训实习生“John”,帮助他排除系统设计项目的故障。这个经历让我想起了我职业生涯中所吸取的一些重要的经验教训。

    几天前,John 在测试某个设计的瞬态稳定性数据时,获得了一个重要发现:输出信号的步长对实现准确的结果极其重要。

    在当 John 开发某个设计并需要用运算放大器来缓冲 1μF 的负载时,问题出现了。大部分运算放大器都无法直接驱动非常大的电容性负载,因而他不得不设计一套适合的补偿方案…

  • 一个六边拼图:仪表放大器的 VCM 与 VOUT 比较图

    Other Parts Discussed in Post: TINA-TI

    作者:Michael Mock  德州仪器

    工程师们几十年来一直在努力理解神秘的共模电压 (VCM) 与输出电压 (VOUT) 比较图。尽管 VCM 与 VOUT 形状经常会因器件及设置配置的不同而不同,但最常见的形状则如图 1 所示。

    随着 VCM 接近电源电压,内部运算放大器的输入/输出限制会限制器件的 VOUT 范围。因此,所应用 VCM 的输出摆幅通常取决于内部运算放大器拓扑、电源电压、增益以及参考电压。

      

  • 我需要多大的运算放大器带宽?(2)

    作者:John Caldwell

    上篇博客中,我介绍了互阻抗放大器所需运算放大器带宽的三步计算过程中的前两步。在本文中,我不仅将介绍最后一个步骤,而且还将介绍使用本计算过程的设计实例。

    步骤 3:计算所需运算放大器增益带宽积

    进行基本稳定性分析,我们将获得本步骤背后的逻辑,如果您只想进行计算,可以直接跳到公式 5。图 1 是用于分析的 TINA-TI™ 电路。反馈环路使用大电感器 (L1) 中断,而电压源则可通过大电容器 (C1) AC 耦合至该环路。该环路在运算放大器输出端中断,以便输入电容的效果包含在分析中…

  • 我需要多大的运算放大器带宽?(3)

    作者:John Caldwell

    在这个包含三篇文章的博客系列中,我介绍了如何为您的互阻抗放大器电路选择具有足够带宽的运算放大器。

    阅读第 1 部分了解相关内容。在第 2 部分中,我不仅创建了一个设计实例(使用该过程选择可满足这些电路需求的运算放大器),而且还确定了所需的运算放大器带宽是 5.26MHz。

    1:互阻抗放大器的实例性能要求

    现在,我们将对比两个运算放大器:一个符合要求,另一个不符合。

    2:设计实例中两个运算放大器的增益带宽积对比

    相位裕度对比

    相位裕度是一个稳定性指标…

  • 运算放大器测试基础第 4 部分: 测试运算放大器需要稳定的测试环路

    Other Parts Discussed in Post: OPA454, OPA445, OPA551, OPA227, TINA-TI

    作者:Martin Rowe — 2012 年 5 月 11 日

     

    在前几篇文章中,我们介绍了一些基本测试技术以及设计和测试运算放大器时会出现的误差源。我们建议您在根据最后这篇文章介绍的测试电路知识及使用进行任何设想之前,先阅读一下之前的几篇文章。

    本文我们将介绍使用推荐测试电路时所涉及的补偿问题。如果测试电路中的环路不稳定,那它就没有用。在测试过程中要一直监控被测试器件测试环路的输出…

  • 电阻器梯形结构

    作者:Kevin Duke  德州仪器

    我在上篇文章中讨论了电阻串 DAC 架构及其趋势。如果您没有看到,可以在这里阅读该博客文章。本文将重点介绍两种非常相似的架构:R-2R DAC 与 MDAC。

    首先回顾一下,电阻串 DAC 的较大局限性是与实现高分辨率和维持线性度有关的挑战。如果不实施级联电阻串或内插放大器等巧妙设计技术,电阻串 DAC 所需的电阻器数量将随分辨率的提高呈指数级增长。R-2R 可通过采用二进制加权电阻器梯形结构(如下图所示)直接解决该问题。

    DAC 的每一位分辨率都由…

  • 用SPICE仿真高精度数模转换器

    Kunal Gandhi /Pahul Rrakash

    对于工程师来说,最令他们担心和紧张的时刻也许就是他们的设计从制造厂返回、准备进行测试的时候。虽然在实验室中首次看到我们的概念或者设计作品时令人很激动,但是有时我们也必须接受重大失败的现实。

    在这篇博客中,我们将重点讲述系统性能预测及如何避免设计失败。可立即映入我脑海中能避免这些失败的术语就是“仿真”。当前,除了数模转换器 (DAC) 之外,用户可以在SPICE仿真工具中建模并仿真模拟信号链组件中的绝大多数组件。借助于针对高精度DAC的SPICE模型…

  • Simulating the front-end of your ADC - 仿真 ADC 的前端

    Other Parts Discussed in Post: ADS8860, TINA-TI

    作者:Bonnie Baker

    逐次逼近、模数转换器 (SAR-ADC) 很简单直接,用户将模拟电压接在输入端上 (AINP, AINN, REF),会看到一个输出数字代码,这个代码表示相对于基准的模拟输入电压。

    此时,用户也许很想分析一下转换器的技术规格,来验证转换器的运行是否符合数据表中的标准。尤其当用户发现不够快的时候,更需要确定转换器是否已经接收到内部正确的模拟信号。

    用户可以通过使用仿真工具来预测发生这些问题的可能性…

  • 利用高精密模拟数字转换器评估放大器的噪声性能

    Other Parts Discussed in Post: ADS127L01, TINA-TI

    作者:SZ OEM, Shen Jun

    典型的信号采集链路会包含放大器,ADC 这些核心部件,根据实际的需求可能会有模拟开关一类的实现多路信号采样。通常放大器的噪声会有针对不同放大拓扑结构的计算方法,由噪声密度在等效带宽内积分而成,然后使用TINA-TI这种仿真工具实现噪声的仿真与验证。通常在高精密系统里面,噪声是微弱的,比如下面的一个典型的放大电路,TINA-TI的仿真结果是噪声为300uVrms, 

  • 您需要了解的跨阻放大器——第1部分

    跨阻放大器(TIA)是光学传感器(如光电二极管)的前端放大器,用于将传感器的输出电流转换为电压。跨阻放大器的概念很简单,即运算放大器(op amp)两端的反馈电阻(RF)使用欧姆定律VOUT= I × RF 将电流(I)转换为电压(VOUT)。在这一系列博文中,我将介绍如何补偿TIA,及如何优化其噪声性能。对于TIA带宽、稳定性和噪声等关键参数的定量分析,请参见标题为“用于高速放大器的跨阻抗注意事项”的应用注释。

    在实际电路中,寄生电容会与反馈电阻交互,在放大器的回路增益响应中形成不必要的极点和零点…

  • 一些也许您还不知道的 TINA -TI 某些资源! (III)

    作者:Hooman Hashemi

    对于我们在本《模拟线路》系列第 1 部分第 2 部分中讨论的 TINA-TI 主题,无论有没有您所“不敢”问的内容,我都希望我的下一个主题《使用 TINA-TI 进行噪声分析》能为您的日常工作带来帮助。

    下面是一些可使 TINA-TI 成为出色分析及优化工具的噪声仿真特性:

    1. 任何噪声带宽下的输出 RMS 噪声图

    • 启动噪声分析时输入整合“下限”及“上限”频率。
    • 使用光标读取任何带宽下的…
  • 一些也许您还不知道的 TINA-TI 某些资源! (IV)

    作者:Hooman Hashemi

    TINA-TI 系列文章的本期内容主要针对第 1 部分读者所提出的需求。本文我们将了解如何生成:

    1. 时变(分段线性)源
    2. 频变源

    时变源:

    在实践过程中,标准波形(即方波与三角波等)可能无法满足您的仿真需求,您需要生成类似于您系统中所出现情况的真实激励波形,用以验证工作台表现或者预测构建前的性能。对于这些情况,TINA-TI 可提供能够创建瞬态或重复波形的分段线性源。

    创建分段线性源的关键是,先将时间(x 轴)和电压或电流(y 轴)输入统计表格…

  • 一些也许您还不知道的 TINA-TI 的那些资源!

    作者:Hooman Hashemi  德州仪器

    使用 TINA-TI 可以做很多事情,比第一眼看到的还要多。TI 这款免费电气仿真软件支持无限节点,其不仅已经构建了大多数 TI 器件,而且还可运行其他厂商的器件模型。即使您在构建电路之前一般不仿真,一旦亲身感受了 TINA-TI,您就会明白自己错过了什么。

    我在下面列出了一些重要的 TINA-TI 主题,供您查看和评论:

    1. 差分信号源,可帮助实现 AC 响应
    2. 将另一个器件(非 TI) 模型导入 TINA-TI
    3. 生成一个随时间变化的/分段…
  • 一些也许您还不知道的 TINA-TI 某些资源! (II)

    作者:Hooman Hashemi  德州仪器

    第 1 部分中,我介绍了如何在 TINA-TI 中创建通用高精度差分信号源,其在处理全差分放大器 (FDA) 或其它差分电路时十分便捷。在这篇博客中,我将介绍将其它器件(非 TI)模型导入 TINA-TI 的流程。

    问题:如何使用 TINA-TI 仿真可能包含非 TI 器件的电路?

    解决方案:将非 TI 器件的仿真模型导入 TINA-TI 并执行仿真!让我们来考虑一种必须应用该技术、然后要通过其展开工作的情况。

    实例学习:您正在尝试构建一款快速…