作者:Hayden Hast – 系统工程师
当我第一次光顾德克萨斯的一家烧烤店时,菜单上各式各样的肉类选择让我感到非常惊讶,以至于我不知道要选哪一种。但幸运的是,烧烤店提供了三种肉类的拼盘,因而我就可以试尝一下不同肉类的风味。
其实,类似于烤肉店的经历,工程师们在选择运算放大器(op amp)时也会面临很多选择。此外,随着如今生产周期的不断缩短,工程师们往往需要快速做出决定。而不小心选择了不合适的运算放大器…
作者: TI 专家 Bruce Trump
翻译: TI信号链工程师 Rickey Xiong (熊尧)
每一个读过我博客的人都知道,我使用SPICE模型仿真电路。你可能听说过Bob Pease,在SPICE领域相当执有己见,他曾经说过:“SPCIE模型削弱了你对所发生事物的洞察能力。***”。今天,为了纪念Bob的生日,让我们来考虑一下SPICE模型的优点和缺点。
Bob是一个有趣的人并且经常夸张地表达某一种观点…
作者: TI专家 Bruce Trump
翻译: TI信号链工程师 Michael Huang (黄翔)
运放的输入电容参数经常使人困惑或是忽略。现在让我们明确这些参数怎样才是最好的应用。
运放电路的稳定性受输入电容的影响,它在反向输入端引入了一个相移,即到达反向输入端的反馈支路的延迟。反馈网络受输入电容影响形成了一个不想要的极点。引入输入电容来计算反馈网络的阻抗特性是保证运放电路稳定性的重要一步。但是,哪种电容有影响?差模电容?共模电容?还是都有?
运放输入电容一般可以在输入阻抗参数一栏找到…
作者: TI专家 Bruce Trump
翻译: TI信号链工程师 Michael Huang (黄翔)
单位增益稳定的运放在增益大于等于1的情况下是稳定的,增益更小的时候还正确吗?怎么办?
这个问题在E2E论坛上隔段时间就出现。好吧,来个简洁的答案:反向衰减器稳定。你想知道为什么吗?关于这个问题有很多方法来看,快速阅读以下内容也许能让您对运放稳定性有更清楚的认识。
思考这个问题:如果G=-0.1时不稳定…
作者: Collin Wells TI 高精度线性产品部的模拟应用工程师
今年夏天,我有幸负责培训实习生“John”,帮助他排除系统设计项目的故障。这个经历让我想起了我职业生涯中所吸取的一些重要的经验教训。
几天前,John 在测试某个设计的瞬态稳定性数据时,获得了一个重要发现:输出信号的步长对实现准确的结果极其重要。
在当 John 开发某个设计并需要用运算放大器来缓冲 1μF 的负载时,问题出现了。大部分运算放大器都无法直接驱动非常大的电容性负载,因而他不得不设计一套适合的补偿方案…
作者:Michael Mock 德州仪器
工程师们几十年来一直在努力理解神秘的共模电压 (VCM) 与输出电压 (VOUT) 比较图。尽管 VCM 与 VOUT 形状经常会因器件及设置配置的不同而不同,但最常见的形状则如图 1 所示。
随着 VCM 接近电源电压,内部运算放大器的输入/输出限制会限制器件的 VOUT 范围。因此,所应用 VCM 的输出摆幅通常取决于内部运算放大器拓扑、电源电压、增益以及参考电压。
…在这个包含三篇文章的博客系列中,我介绍了如何为您的互阻抗放大器电路选择具有足够带宽的运算放大器。
阅读第 1 部分了解相关内容。在第 2 部分中,我不仅创建了一个设计实例(使用该过程选择可满足这些电路需求的运算放大器),而且还确定了所需的运算放大器带宽是 5.26MHz。
表 1:互阻抗放大器的实例性能要求
现在,我们将对比两个运算放大器:一个符合要求,另一个不符合。
表 2:设计实例中两个运算放大器的增益带宽积对比
相位裕度对比
相位裕度是一个稳定性指标…
作者:Kevin Duke 德州仪器
我在上篇文章中讨论了电阻串 DAC 架构及其趋势。如果您没有看到,可以在这里阅读该博客文章。本文将重点介绍两种非常相似的架构:R-2R DAC 与 MDAC。
首先回顾一下,电阻串 DAC 的较大局限性是与实现高分辨率和维持线性度有关的挑战。如果不实施级联电阻串或内插放大器等巧妙设计技术,电阻串 DAC 所需的电阻器数量将随分辨率的提高呈指数级增长。R-2R 可通过采用二进制加权电阻器梯形结构(如下图所示)直接解决该问题。
DAC 的每一位分辨率都由…
Kunal Gandhi /Pahul Rrakash
对于工程师来说,最令他们担心和紧张的时刻也许就是他们的设计从制造厂返回、准备进行测试的时候。虽然在实验室中首次看到我们的概念或者设计作品时令人很激动,但是有时我们也必须接受重大失败的现实。
在这篇博客中,我们将重点讲述系统性能预测及如何避免设计失败。可立即映入我脑海中能避免这些失败的术语就是“仿真”。当前,除了数模转换器 (DAC) 之外,用户可以在SPICE仿真工具中建模并仿真模拟信号链组件中的绝大多数组件。借助于针对高精度DAC的SPICE模型…
跨阻放大器(TIA)是光学传感器(如光电二极管)的前端放大器,用于将传感器的输出电流转换为电压。跨阻放大器的概念很简单,即运算放大器(op amp)两端的反馈电阻(RF)使用欧姆定律VOUT= I × RF 将电流(I)转换为电压(VOUT)。在这一系列博文中,我将介绍如何补偿TIA,及如何优化其噪声性能。对于TIA带宽、稳定性和噪声等关键参数的定量分析,请参见标题为“用于高速放大器的跨阻抗注意事项”的应用注释。
在实际电路中,寄生电容会与反馈电阻交互,在放大器的回路增益响应中形成不必要的极点和零点…
TINA-TI 系列文章的本期内容主要针对第 1 部分读者所提出的需求。本文我们将了解如何生成:
时变源:
在实践过程中,标准波形(即方波与三角波等)可能无法满足您的仿真需求,您需要生成类似于您系统中所出现情况的真实激励波形,用以验证工作台表现或者预测构建前的性能。对于这些情况,TINA-TI 可提供能够创建瞬态或重复波形的分段线性源。
创建分段线性源的关键是,先将时间(x 轴)和电压或电流(y 轴)输入统计表格…
作者:Hooman Hashemi 德州仪器
使用 TINA-TI 可以做很多事情,比第一眼看到的还要多。TI 这款免费电气仿真软件支持无限节点,其不仅已经构建了大多数 TI 器件,而且还可运行其他厂商的器件模型。即使您在构建电路之前一般不仿真,一旦亲身感受了 TINA-TI,您就会明白自己错过了什么。
我在下面列出了一些重要的 TINA-TI 主题,供您查看和评论: