This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
自制的板子28335 CAN接口原理如图所示,A路使用引脚GPIO18和GPIO19,B路使用引脚GPIO12和GPIO13,在端口处将CANA+和CANB+相连,CANA-和CANB-相连,并在CANA+和CANA-之间并联120欧的电阻,调试附件工程,即A路发送0X55555555和0XAAAAAAAA,B路接收,发现异常描述如下:
1、 该工程在开发板上测试正常,在开发板上测试TXD波形如图
2、 自制板子的串口和指示灯等功能都正常,仿真器的连接正常
3、 自制的板子和开发板的CANA和CANB接口引脚相同,但是自制的板子CAN接口异常,具体表现在A路TA无法置位
4、 直接测量A路TXD波形,约每隔3.8ms有一次宽度约2us的低电平,波形如图所示:
5、 尝试改成B发送,测量B路TXD的波形和上面波形一致,尝试将A路CAN用GPIO30和GPIO31,现象一样
6、 比较开发板和自制板子区别,发现芯片丝印不同,开发板上的芯片批次号是CA,而自制板子芯片批次号是G4A,如图所示:
请问一下自制板子CAN不行是怎么回事?
// TI File $Revision: /main/8 $ // Checkin $Date: August 10, 2007 09:04:22 $ //########################################################################### // Filename: Example_28xEcan_A_to_B_Xmit.c // // Description: eCAN-A To eCAN-B TXLOOP - Transmit loop // // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // Both CAN ports of the 2833x DSP need to be connected // to each other (via CAN transceivers) // // eCANA is on GPIO19(CANTXA) and // GPIO18 (CANRXA) // // eCANB is on GPIO20 (CANTXB) and // GPIO21 (CANRXB) // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // DESCRIPTION: // // This example TRANSMITS data to another CAN module using MAILBOX5 // This program could either loop forever or transmit "n" # of times, // where "n" is the TXCOUNT value. // // This example can be used to check CAN-A and CAN-B. Since CAN-B is // initialized in DSP2833x_ECan.c, it will acknowledge all frames // transmitted by the node on which this code runs. Both CAN ports of // the 2833x DSP need to be connected to each other (via CAN transceivers) // //########################################################################### // Original Author: HJ // // $TI Release: DSP2833x Header Files V1.10 $ // $Release Date: February 15, 2008 $ //########################################################################### #include "DSP2833x_Device.h" // DSP2833x Headerfile Include File #include "DSP2833x_Examples.h" // DSP2833x Examples Include File #define TXCOUNT 100 // Transmission will take place (TXCOUNT) times.. #define LED1 GpioDataRegs.GPATOGGLE.bit.GPIO4 #define LED2 GpioDataRegs.GPATOGGLE.bit.GPIO5 #define LED3 GpioDataRegs.GPATOGGLE.bit.GPIO6 #define LED4 GpioDataRegs.GPATOGGLE.bit.GPIO7 // Globals for this example long i,j; long loopcount = 0; volatile struct MBOX *Mailbox; Uint32 ErrorCount; Uint32 PassCount; Uint32 MessageReceivedCount; Uint32 TestMbox1 = 0; Uint32 TestMbox2 = 0; Uint32 TestMbox3 = 0; void mailbox_check(int32 T1, int32 T2, int32 T3) { if((T1 !=0x55555555 ) || ( T2 != 0xAAAAAAAA)|| ( T3 != 0x95555555)) { ErrorCount++; } else { PassCount++; } } void main() { /* Create a shadow register structure for the CAN control registers. This is needed, since, only 32-bit access is allowed to these registers. 16-bit access to these registers could potentially corrupt the register contents. This is especially true while writing to a bit (or group of bits) among bits 16 - 31 */ struct ECAN_REGS ECanaShadow; struct ECAN_REGS ECanbShadow; // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); EALLOW; GpioCtrlRegs.GPAMUX1.bit.GPIO4 = 0; GpioCtrlRegs.GPADIR.bit.GPIO4 = 1; GpioCtrlRegs.GPAMUX1.bit.GPIO5 = 0; GpioCtrlRegs.GPADIR.bit.GPIO5 = 1; GpioCtrlRegs.GPAMUX1.bit.GPIO6 = 0; GpioCtrlRegs.GPADIR.bit.GPIO6 = 1; GpioCtrlRegs.GPAMUX1.bit.GPIO7 = 0; GpioCtrlRegs.GPADIR.bit.GPIO7 = 1; EDIS; // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // Just initalize eCAN pins for this example // This function is in DSP2833x_ECan.c InitECanGpio(); // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. // No interrupts used in this example. // Step 4. Initialize all the Device Peripherals: // This function is found in DSP2833x_InitPeripherals.c // InitPeripherals(); // Not required for this example // In this case just initalize eCAN-A and eCAN-B // This function is in DSP2833x_ECan.c InitECan(); ErrorCount = 0; PassCount = 0; // Step 5. User specific code: /* Write to the MSGID field */ ECanaMboxes.MBOX10.MSGID.all = 0x95555555; // Extended Identifier ECanbMboxes.MBOX10.MSGID.all = 0x95555555; // Extended Identifier /* Configure Mailbox under test as a Transmit mailbox */ ECanaShadow.CANMD.all = ECanaRegs.CANMD.all; ECanaShadow.CANMD.bit.MD10 = 0; ECanaRegs.CANMD.all = ECanaShadow.CANMD.all; ECanbShadow.CANMD.all = ECanbRegs.CANMD.all; ECanbShadow.CANMD.bit.MD10 = 1; ECanbRegs.CANMD.all = ECanbShadow.CANMD.all; /* Enable Mailbox under test */ ECanaShadow.CANME.all = ECanaRegs.CANME.all; ECanaShadow.CANME.bit.ME10 = 1; ECanaRegs.CANME.all = ECanaShadow.CANME.all; ECanbShadow.CANME.all = ECanbRegs.CANME.all; ECanbShadow.CANME.bit.ME10 = 1; ECanbRegs.CANME.all = ECanbShadow.CANME.all; /* Write to DLC field in Master Control reg */ ECanaMboxes.MBOX10.MSGCTRL.bit.DLC = 8; /* Write to the mailbox RAM field */ ECanaMboxes.MBOX10.MDL.all = 0x55555555; ECanaMboxes.MBOX10.MDH.all = 0xAAAAAAAA; ECanbMboxes.MBOX10.MSGCTRL.bit.DLC = 8; /* Write to the mailbox RAM field */ ECanbMboxes.MBOX10.MDL.all = 0x55555555; ECanbMboxes.MBOX10.MDH.all = 0xAAAAAAAA; /* Begin transmitting */ for(i=0; i < TXCOUNT; i++) { ECanaShadow.CANTRS.all = 0; ECanaShadow.CANTRS.bit.TRS10 = 1; // Set TRS for mailbox under test ECanaRegs.CANTRS.all = ECanaShadow.CANTRS.all; do { ECanaShadow.CANTA.all = ECanaRegs.CANTA.all; } while(ECanaShadow.CANTA.bit.TA10 == 0 ); // Wait for TA5 bit to be set..//如果线没有连接,如果线连接错误 ECanaShadow.CANTA.all = 0; ECanaShadow.CANTA.bit.TA10 = 1; // Clear TA5 ECanaRegs.CANTA.all = ECanaShadow.CANTA.all; Mailbox = &ECanbMboxes.MBOX0 + 25; //CANB读数据 TestMbox1 = Mailbox->MDL.all; // = 0x (n is the MBX number) TestMbox2 = Mailbox->MDH.all; // = 0x (a constant) TestMbox3 = Mailbox->MSGID.all;// = 0x (n is the MBX number) mailbox_check(TestMbox1,TestMbox2,TestMbox3); // Checks the received data loopcount ++; } if(ErrorCount == 0) { asm(" ESTOP0"); // OK,数据校验正确 } else { asm(" ESTOP0"); // ERROR, } //asm(" ESTOP0"); // Stop here }