Other Parts Discussed in Thread: C2000WARE
在例程的基础上,我改了C28X1的程序,接收也采用中断的形式。代码如下:
// // Included Files // #include "driverlib.h" #include "device.h" // // Defines // #define IPC_CMD_READ_MEM 0x1001 #define IPC_CMD_RESP 0x2001 #define TEST_PASS 0x5555 #define TEST_FAIL 0xAAAA #pragma DATA_SECTION(readData, "MSGRAM_CPU_TO_CM") uint32_t readData[10]; uint32_t pass; // // Main // void main(void) { int i; IPC_MessageQueue_t messageQueue; IPC_Message_t TxMsg, RxMsg; // // Initialize device clock and peripherals // Device_init(); // // Boot CM core // #ifdef _FLASH Device_bootCM(BOOTMODE_BOOT_TO_FLASH_SECTOR0); #else Device_bootCM(BOOTMODE_BOOT_TO_S0RAM); #endif // // Initialize PIE and clear PIE registers. Disables CPU interrupts. // Interrupt_initModule(); // // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // Interrupt_initVectorTable(); // // Clear any IPC flags if set already // IPC_clearFlagLtoR(IPC_CPU1_L_CM_R, IPC_FLAG_ALL); // // Initialize message queue // IPC_initMessageQueue(IPC_CPU1_L_CM_R, &messageQueue, IPC_INT1, IPC_INT1); // // Synchronize both the cores // IPC_sync(IPC_CPU1_L_CM_R, IPC_FLAG31); // // Enable Global Interrupt (INTM) and realtime interrupt (DBGM) // EINT; ERTM; // // Fill in the data to be sent // for(i=0; i<10; i++) { readData[i] = i; } // // Update the message // TxMsg.command = IPC_CMD_READ_MEM; TxMsg.address = (uint32_t)readData; TxMsg.dataw1 = 10; // Using dataw1 as data length TxMsg.dataw2 = 1; // Message identifier // // Send message to the queue // Since C28x and CM does not share the same address space for shared RAM, // ADDRESS_CORRECTION is enabled // IPC_sendMessageToQueue(IPC_CPU1_L_CM_R, &messageQueue, IPC_ADDR_CORRECTION_ENABLE, &TxMsg, IPC_BLOCKING_CALL); // // Read message from the queue // Return message from CM does not use the address field, hence // ADDRESS_COREECTION feature is not used // IPC_readMessageFromQueue(IPC_CPU1_L_CM_R, &messageQueue, IPC_ADDR_CORRECTION_DISABLE, &RxMsg, IPC_BLOCKING_CALL); if((RxMsg.command == IPC_CMD_RESP) && (RxMsg.dataw1 == TEST_PASS) && (RxMsg.dataw2 == 1)) pass = 1; else pass = 0; // // End of example. Loop forever // while(1); } // // End of File // 但是,CPU1不能进入接收中断,CM4则运行正常。请问这是什么原因呢? 在另外一个例程中,CPU1与CPU2 IPC通讯,我改了CPU1的代码则可以正常进入接收中断,代码如下: // // Included Files // #include "driverlib.h" #include "device.h" // // Defines // #define IPC_CMD_READ_MEM 0x1001 #define IPC_CMD_RESP 0x2001 #define TEST_PASS 0x5555 #define TEST_FAIL 0xAAAA #pragma DATA_SECTION(readData, "MSGRAM_CPU1_TO_CPU2") uint32_t readData[10]; uint32_t pass; IPC_MessageQueue_t messageQueue; IPC_Message_t TxMsg, RxMsg; // // IPC ISR for Flag 1 // C28x core sends data with message queue using Flag 0 // __interrupt void IPC_ISR1() { int i; // IPC_Message_t TxMsg, RxMsg; bool status = false; // // Read the message from the message queue // IPC_readMessageFromQueue(IPC_CPU1_L_CPU2_R, &messageQueue, IPC_ADDR_CORRECTION_ENABLE, &RxMsg, IPC_NONBLOCKING_CALL); if(RxMsg.command == IPC_CMD_READ_MEM) { status = true; // // Read and compare data // for(i=0; i<RxMsg.dataw1; i++) { if((*(uint32_t *)RxMsg.address + i) != i) status = false; } } // // Acknowledge the flag // IPC_ackFlagRtoL(IPC_CPU1_L_CPU2_R, IPC_FLAG1); // // Acknowledge the PIE interrupt. // Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP1); } // // Main // void main(void) { int i; // // Initialize device clock and peripherals // Device_init(); // // Boot CPU2 core // #ifdef _FLASH Device_bootCPU2(BOOTMODE_BOOT_TO_FLASH_SECTOR0); #else Device_bootCPU2(BOOTMODE_BOOT_TO_M0RAM); #endif // // Initialize PIE and clear PIE registers. Disables CPU interrupts. // Interrupt_initModule(); // // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // Interrupt_initVectorTable(); // // // // Clear any IPC flags if set already // // // IPC_clearFlagLtoR(IPC_CPU1_L_CPU2_R, IPC_FLAG_ALL); // // // // // Initialize message queue // // // IPC_initMessageQueue(IPC_CPU1_L_CPU2_R, &messageQueue, IPC_INT1, IPC_INT1); // Clear any IPC flags if set already // IPC_clearFlagLtoR(IPC_CPU1_L_CPU2_R, IPC_FLAG_ALL); // // Enable IPC interrupts // IPC_registerInterrupt(IPC_CPU1_L_CPU2_R, IPC_INT1, IPC_ISR1); // // Initialize message queue // IPC_initMessageQueue(IPC_CPU1_L_CPU2_R, &messageQueue, IPC_INT1, IPC_INT1); // // Synchronize both the cores // // // Enable Global Interrupt (INTM) and realtime interrupt (DBGM) // EINT; ERTM; IPC_sync(IPC_CPU1_L_CPU2_R, IPC_FLAG31); // // Fill in the data to be sent // for(i=0; i<10; i++) { readData[i] = i; } // // Update the message // TxMsg.command = IPC_CMD_READ_MEM; TxMsg.address = (uint32_t)readData; TxMsg.dataw1 = 10; // Using dataw1 as data length TxMsg.dataw2 = 1; // Message identifier // // Send message to the queue // // IPC_sendMessageToQueue(IPC_CPU1_L_CPU2_R, &messageQueue, IPC_ADDR_CORRECTION_ENABLE, // &TxMsg, IPC_BLOCKING_CALL); // // Read message from the queue // // IPC_readMessageFromQueue(IPC_CPU1_L_CPU2_R, &messageQueue, IPC_ADDR_CORRECTION_DISABLE, // &RxMsg, IPC_BLOCKING_CALL); // // if((RxMsg.command == IPC_CMD_RESP) && (RxMsg.dataw1 == TEST_PASS) && (RxMsg.dataw2 == 1)) // pass = 1; // else // pass = 0; // // End of example. Loop forever // while(1) { DEVICE_DELAY_US(100000); IPC_sendMessageToQueue(IPC_CPU1_L_CPU2_R, &messageQueue, IPC_ADDR_CORRECTION_ENABLE, &TxMsg, IPC_NONBLOCKING_CALL); DEVICE_DELAY_US(100000); } } // // End of File //