Other Parts Discussed in Thread: C2000WARE
求助TI支持团队,
最近在用TMS320F28069F做一个电源,CLA部分进行AD采集计算、运行3个PI控制器、输出PWM这3个操作。
调试发现奇怪现象:
1. 连接仿真器下载程序后,CLA代码能正常运行;
2. 断开仿真器重新上电后,CLA部分PI控制代码不能正常运行,输出结果不正确,只是部分代码不正常运行,因为AD采集量是正常刷新的;
3. 手动按下复位按钮进行复位后,CLA代码又能正常运行了,输出结果也是正常的;
4. 上电前就按住复位按钮,上电后再松开,CLA部分PI控制代码不能正常运行,再按下复位按钮,CLA代码又可以运行。
总结一下就是,初始上电CLA部分代码不运行,手动复位后又可以正常运行;而且不是全部CLA代码不运行,只是那一小段,因为数据采集是正常刷新的。
CLA由PWM2触发,中断触发周期是10us,测量了CLA代码执行时间约5.6us,代码是能够执行的完的。
CLA程序是仿照例程修改的,不过我的程序是下载到flash的,而例程都是下载到内存中,不知道是不是这里出现了问题。
这个问题困扰我几天了,想了各种办法也没有解决。
大家有没有遇到类似情况的,应该怎么解决?
或者我应该检查哪个部分,有什么检查思路或者参考例程吗?
以下是部分相关代码:
CLA初始化部分(没用CLA执行完中断,所以屏蔽掉了PIE部分)
void ClaInit(void)
{
#ifdef FLASH
//Copy over the CLA code(if running in standalone mode from FLASH)
memcpy(&Cla1funcsRunStart, &Cla1funcsLoadStart, (Uint32)&Cla1funcsLoadSize);
//Copy over the CLA math tables(if running in standalone mode from FLASH and using the CLAMath Library)
memcpy(&Cla1mathTablesRunStart, &Cla1mathTablesLoadStart, (Uint32)&Cla1mathTablesLoadSize);
#endif //FLASH
EALLOW;
// Assign user defined ISR to the PIE vector table
PieVectTable.CLA1_INT1 = &cla1_task1_isr;
PieVectTable.CLA1_INT2 = &cla1_task2_isr;
PieVectTable.CLA1_INT3 = &cla1_task3_isr;
PieVectTable.CLA1_INT4 = &cla1_task4_isr;
PieVectTable.CLA1_INT5 = &cla1_task5_isr;
PieVectTable.CLA1_INT6 = &cla1_task6_isr;
PieVectTable.CLA1_INT7 = &cla1_task7_isr;
PieVectTable.CLA1_INT8 = &cla1_task8_isr;
// Compute all CLA task vectors
Cla1Regs.MVECT1 = (Uint16)((Uint32)&Cla1Task1 -(Uint32)&Cla1Prog_Start);
Cla1Regs.MVECT2 = (Uint16)((Uint32)&Cla1Task2 -(Uint32)&Cla1Prog_Start);
Cla1Regs.MVECT3 = (Uint16)((Uint32)&Cla1Task3 -(Uint32)&Cla1Prog_Start);
Cla1Regs.MVECT4 = (Uint16)((Uint32)&Cla1Task4 -(Uint32)&Cla1Prog_Start);
Cla1Regs.MVECT5 = (Uint16)((Uint32)&Cla1Task5 -(Uint32)&Cla1Prog_Start);
Cla1Regs.MVECT6 = (Uint16)((Uint32)&Cla1Task6 -(Uint32)&Cla1Prog_Start);
Cla1Regs.MVECT7 = (Uint16)((Uint32)&Cla1Task7 -(Uint32)&Cla1Prog_Start);
Cla1Regs.MVECT8 = (Uint16)((Uint32)&Cla1Task8 -(Uint32)&Cla1Prog_Start);
// Mapping CLA tasks
Cla1Regs.MPISRCSEL1.bit.PERINT1SEL = CLA_INT1_NONE;
Cla1Regs.MPISRCSEL1.bit.PERINT2SEL = CLA_INT2_EPWM2INT;//CLA_INT2_NONE;
Cla1Regs.MPISRCSEL1.bit.PERINT3SEL = CLA_INT3_NONE;
Cla1Regs.MPISRCSEL1.bit.PERINT4SEL = CLA_INT4_NONE;
Cla1Regs.MPISRCSEL1.bit.PERINT5SEL = CLA_INT5_NONE;
Cla1Regs.MPISRCSEL1.bit.PERINT6SEL = CLA_INT6_NONE;
Cla1Regs.MPISRCSEL1.bit.PERINT7SEL = CLA_INT7_NONE;
Cla1Regs.MPISRCSEL1.bit.PERINT8SEL = CLA_INT8_NONE;
Cla1Regs.MIER.bit.INT1 = CLA_INT_ENABLE;
Cla1Regs.MIER.bit.INT2 = CLA_INT_ENABLE;
Cla1Regs.MCTL.bit.IACKE = CLA_IACK_ENABLE;
// Switch the CLA program space to the CLA and enable software forcing
// Also switch over CLA data ram 0,1 and 2
// CAUTION: The RAMxCPUE bits can only be enabled by writing to the register
// and not the individual bit field. Furthermore, the status of these bitfields
// is not reflected in either the watch or register views - they always read as
// zeros. This is a known bug and the user is advised to test CPU accessibilty
// first before proceeding
Cla1Regs.MMEMCFG.all = CLA_PROG_ENABLE|CLARAM0_ENABLE|CLARAM1_ENABLE|CLARAM2_ENABLE|CLA_RAM1CPUE;
// Enable CLA interrupts at the group and subgroup levels
// PieCtrlRegs.PIEIER11.bit.INTx2 = 1;
// IER |= (M_INT11 );
EDIS;
}
shared_data.c
//Task 2 (C) Variables #pragma DATA_SECTION(xInput,"CpuToCla1MsgRAM"); long xInput; #pragma DATA_SECTION(xResult,"Cla1ToCpuMsgRAM"); long xResult; #pragma DATA_SECTION(DutyBuck_CLA,"CpuToCla1MsgRAM") volatile float32 DutyBuck_CLA; #pragma DATA_SECTION(DutyBoost_CLA,"Cla1DataRam1") volatile float32 DutyBoost_CLA; #pragma DATA_SECTION(DutyBoost_CLA2CPU,"Cla1ToCpuMsgRAM"); volatile float32 DutyBoost_CLA2CPU; #pragma DATA_SECTION(Ipv_Read_CLA,"Cla1DataRam1") #pragma DATA_SECTION(Vpv_Read_CLA,"Cla1DataRam1") #pragma DATA_SECTION(Iout_Read_CLA,"Cla1DataRam1") #pragma DATA_SECTION(Vout_Read_CLA,"Cla1DataRam1") volatile float32 Ipv_Read_CLA,Vpv_Read_CLA,Iout_Read_CLA,Vout_Read_CLA; #pragma DATA_SECTION(Vpv_Ref_CLA,"CpuToCla1MsgRAM") volatile float32 Vpv_Ref_CLA; #pragma DATA_SECTION(Vout_Ref_CLA,"CpuToCla1MsgRAM") volatile float32 Vout_Ref_CLA; #pragma DATA_SECTION(Iout_Ref_DC_CLA,"Cla1DataRam1") #pragma DATA_SECTION(Iout_Ref_CL_CLA,"Cla1DataRam1") #pragma DATA_SECTION(Iout_Ref_MPPT_CLA,"Cla1DataRam1") volatile float32 Iout_Ref_DC_CLA,Iout_Ref_CL_CLA,Iout_Ref_MPPT_CLA; #pragma DATA_SECTION(MATH_EMAVG_CLA_Ipv, "Cla1ToCpuMsgRAM") MATH_EMAVG_CLA MATH_EMAVG_CLA_Ipv; #pragma DATA_SECTION(MATH_EMAVG_CLA_Vpv, "Cla1ToCpuMsgRAM") MATH_EMAVG_CLA MATH_EMAVG_CLA_Vpv; #pragma DATA_SECTION(MATH_EMAVG_CLA_Iout, "Cla1ToCpuMsgRAM") MATH_EMAVG_CLA MATH_EMAVG_CLA_Iout; #pragma DATA_SECTION(MATH_EMAVG_CLA_Vout, "Cla1ToCpuMsgRAM") MATH_EMAVG_CLA MATH_EMAVG_CLA_Vout; #pragma DATA_SECTION(CNTL_PI_CLA_Vpv, "Cla1DataRam1") volatile CNTL_PI_CLA CNTL_PI_CLA_Vpv; #pragma DATA_SECTION(CNTL_PI_CLA_Vout, "Cla1DataRam1") volatile CNTL_PI_CLA CNTL_PI_CLA_Vout; #pragma DATA_SECTION(CNTL_PI_CLA_Iout, "Cla1DataRam1") volatile CNTL_PI_CLA CNTL_PI_CLA_Iout; #pragma DATA_SECTION(Vout_Ref_CLA2CPU,"Cla1ToCpuMsgRAM"); volatile float32 Vout_Ref_CLA2CPU; #pragma DATA_SECTION(Vout_Read_CLA2CPU,"Cla1ToCpuMsgRAM"); volatile float32 Vout_Read_CLA2CPU; #pragma DATA_SECTION(Iout_Ref_DC_CLA2CPU,"Cla1ToCpuMsgRAM"); volatile float32 Iout_Ref_DC_CLA2CPU;
shared.h
//Task 2 (C) Variables extern Uint16 G_WorkStatNow; extern long xInput; extern long xResult; extern volatile float32 DutyBuck_CLA; extern volatile float32 DutyBoost_CLA; extern volatile float32 DutyBoost_CLA2CPU; extern volatile float32 Ipv_Read_CLA,Vpv_Read_CLA,Iout_Read_CLA,Vout_Read_CLA; extern volatile float32 Vpv_Ref_CLA; extern volatile float32 Vout_Ref_CLA; extern volatile float32 Iout_Ref_DC_CLA,Iout_Ref_CL_CLA,Iout_Ref_MPPT_CLA; extern MATH_EMAVG_CLA MATH_EMAVG_CLA_Ipv; extern MATH_EMAVG_CLA MATH_EMAVG_CLA_Vpv; extern MATH_EMAVG_CLA MATH_EMAVG_CLA_Iout; extern MATH_EMAVG_CLA MATH_EMAVG_CLA_Vout; extern volatile CNTL_PI_CLA CNTL_PI_CLA_Vpv; extern volatile CNTL_PI_CLA CNTL_PI_CLA_Vout; extern volatile CNTL_PI_CLA CNTL_PI_CLA_Iout; extern volatile float32 Vout_Ref_CLA2CPU; extern volatile float32 Vout_Read_CLA2CPU; extern volatile float32 Iout_Ref_DC_CLA2CPU;
cla.cla 感觉运行不正常的是CNTL_PI_CLA_MACRO()函数
__interrupt void Cla1Task2 ( void ) { Uint32 M_PeriodBuck,M_PeriodBoost; // xResult=xInput; Ipv_Read_CLA = (1-0.0384615)*Ipv_Read_CLA + 0.0384615*(Ipv_FB2)*0.000244140625; Iout_Read_CLA = (1-0.3858695)*Iout_Read_CLA + 0.3858695*(Iout_FB2)*0.000244140625;//10kHz Low Pass Vout_Read_CLA = (1-0.3858695)*Vout_Read_CLA + 0.3858695*(Vout_FB2)*0.000244140625;//10kHz Low Pass Vpv_Read_CLA = (1-0.0384615)*Vpv_Read_CLA + 0.0384615*(Vpv_FB2)*0.000244140625; if(Iout_Read_CLA<0){Iout_Read_CLA=0;} if (Iout_Read_CLA<0.025) {EPwm2Regs.DBCTL.bit.OUT_MODE = DBA_ENABLE;}//Disable PWM out of EPWM2B,EPwm2Regs.DBCTL.bit.IN_MODE = DBA_RED_DBB_FED; else if (Iout_Read_CLA>0.05) {EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;}//Enable PWM out of EPWM2B,EPwm2Regs.DBCTL.bit.IN_MODE = DBA_ALL; //输入电压环PI CNTL_PI_CLA_Vpv.Ref = Vpv_Ref_CLA; CNTL_PI_CLA_Vpv.Fbk = Vpv_Read_CLA; CNTL_PI_CLA_MACRO(CNTL_PI_CLA_Vpv); Iout_Ref_MPPT_CLA = CNTL_PI_CLA_Vpv.Out; //输出电压环PI CNTL_PI_CLA_Vout.Ref = Vout_Ref_CLA; CNTL_PI_CLA_Vout.Fbk = Vout_Read_CLA; CNTL_PI_CLA_MACRO(CNTL_PI_CLA_Vout); Iout_Ref_DC_CLA = CNTL_PI_CLA_Vout.Out; Iout_Ref_CL_CLA = (Iout_Ref_MPPT_CLA<Iout_Ref_DC_CLA)?Iout_Ref_MPPT_CLA:Iout_Ref_DC_CLA; //输出电流环PI CNTL_PI_CLA_Iout.Ref = Iout_Ref_CL_CLA;// CNTL_PI_CLA_Iout.Fbk = Iout_Read_CLA; CNTL_PI_CLA_MACRO(CNTL_PI_CLA_Iout); if((G_WorkStatNow==StartUpStat))//||) { DutyBoost_CLA = 0;// } else if((G_WorkStatNow==OnStat)) { DutyBoost_CLA = CNTL_PI_CLA_Iout.Out;// } else{DutyBoost_CLA=0;} M_PeriodBuck = EPwm1Regs.TBPRD * DutyBuck_CLA; EPwm1Regs.CMPA.half.CMPA = M_PeriodBuck; M_PeriodBoost = EPwm2Regs.TBPRD * DutyBoost_CLA; EPwm2Regs.CMPA.half.CMPA = M_PeriodBoost; xResult=G_WorkStatNow; DutyBoost_CLA2CPU = DutyBoost_CLA; Vout_Ref_CLA2CPU = CNTL_PI_CLA_Vout.Ref; Vout_Read_CLA2CPU = CNTL_PI_CLA_Vout.Fbk; Iout_Ref_DC_CLA2CPU = CNTL_PI_CLA_Vout.Out; MATH_EMAVG_CLA_Ipv.In = (Ipv_Read_CLA); MATH_EMAVG_CLA_MACRO(MATH_EMAVG_CLA_Ipv); MATH_EMAVG_CLA_Vpv.In = (Vpv_Read_CLA); MATH_EMAVG_CLA_MACRO(MATH_EMAVG_CLA_Vpv); MATH_EMAVG_CLA_Iout.In = (Iout_Read_CLA); MATH_EMAVG_CLA_MACRO(MATH_EMAVG_CLA_Iout); MATH_EMAVG_CLA_Vout.In = (Vout_Read_CLA); MATH_EMAVG_CLA_MACRO(MATH_EMAVG_CLA_Vout); }
.cmd
_Cla1Prog_Start = _Cla1funcsRunStart; -heap 0x400 -stack 0x400 // Define a size for the CLA scratchpad area that will be used // by the CLA compiler for local symbols and temps // Also force references to the special symbols that mark the // scratchpad are. CLA_SCRATCHPAD_SIZE = 0x100; --undef_sym=__cla_scratchpad_end --undef_sym=__cla_scratchpad_start MEMORY { PAGE 0 : /* Program Memory */ /* Memory (RAM/FLASH/OTP) blocks can be moved to PAGE1 for data allocation */ //RAML0 : origin = 0x008000, length = 0x000800 /* on-chip RAM block L0 */ //RAML1 : origin = 0x008800, length = 0x000400 /* on-chip RAM block L1 */ RAMM0 : origin = 0x000050, length = 0x0003B0 RAMM1 : origin = 0x000400, length = 0x000400 /* on-chip RAM block M1 */ RAML3 : origin = 0x009000, length = 0x001000 /* on-chip RAM block L3 */ OTP : origin = 0x3D7800, length = 0x000400 /* on-chip OTP */ FLASHH : origin = 0x3D8000, length = 0x004000 /* on-chip FLASH */ FLASHG : origin = 0x3DC000, length = 0x004000 /* on-chip FLASH */ FLASHF : origin = 0x3E0000, length = 0x004000 /* on-chip FLASH */ FLASHE : origin = 0x3E4000, length = 0x004000 /* on-chip FLASH */ FLASHD : origin = 0x3E8000, length = 0x004000 /* on-chip FLASH */ FLASHC : origin = 0x3EC000, length = 0x004000 /* on-chip FLASH */ FLASHA : origin = 0x3F4000, length = 0x003F80 /* on-chip FLASH */ CSM_RSVD : origin = 0x3F7F80, length = 0x000076 /* Part of FLASHA. Program with all 0x0000 when CSM is in use. */ BEGIN : origin = 0x3F7FF6, length = 0x000002 /* Part of FLASHA. Used for "boot to Flash" bootloader mode. */ CSM_PWL_P0 : origin = 0x3F7FF8, length = 0x000008 /* Part of FLASHA. CSM password locations in FLASHA */ FPUTABLES : origin = 0x3FD860, length = 0x0006A0 /* FPU Tables in Boot ROM */ IQTABLES : origin = 0x3FDF00, length = 0x000B50 /* IQ Math Tables in Boot ROM */ IQTABLES2 : origin = 0x3FEA50, length = 0x00008C /* IQ Math Tables in Boot ROM */ IQTABLES3 : origin = 0x3FEADC, length = 0x0000AA /* IQ Math Tables in Boot ROM */ ROM : origin = 0x3FF3B0, length = 0x000C10 /* Boot ROM */ RESET : origin = 0x3FFFC0, length = 0x000002 /* part of boot ROM */ VECTORS : origin = 0x3FFFC2, length = 0x00003E /* part of boot ROM */ PAGE 1 : /* Data Memory */ /* Memory (RAM/FLASH/OTP) blocks can be moved to PAGE0 for program allocation */ /* Registers remain on PAGE1 */ BOOT_RSVD : origin = 0x000000, length = 0x000050 /* Part of M0, BOOT rom will use this for stack */ CLARAM0 : origin = 0x008800, length = 0x000400 CLARAM1 : origin = 0x008C00, length = 0x000400 CLARAM2 : origin = 0x008000, length = 0x000800 RAML4 : origin = 0x00A000, length = 0x002000 /* on-chip RAM block L4 */ RAML5_L8 : origin = 0x00C000, length = 0x008000 USB_RAM : origin = 0x040000, length = 0x000800 /* USB RAM */ FLASHB : origin = 0x3F0000, length = 0x004000 /* on-chip FLASH */ CLA_CPU_MSGRAM : origin = 0x001480, length = 0x000080 /* CLA-R/W, CPU-R message RAM */ CPU_CLA_MSGRAM : origin = 0x001500, length = 0x000080 /* CPU-R/W, CLA-R message RAM */ } SECTIONS { /* Allocate program areas: */ .cinit : > FLASHA, PAGE = 0 .pinit : > FLASHA, PAGE = 0 .text : > FLASHA, PAGE = 0 codestart : > BEGIN, PAGE = 0 ramfuncs : LOAD = FLASHD, RUN = RAMM0 | RAMM1, LOAD_START(_RamfuncsLoadStart), LOAD_END(_RamfuncsLoadEnd), RUN_START(_RamfuncsRunStart), LOAD_SIZE(_RamfuncsLoadSize), PAGE = 0 { --library=SFRA_F_Lib.lib<SFRA_F_INJECT.obj> --library=SFRA_F_Lib.lib<SFRA_F_COLLECT.obj> } SFRA_F_Data : > RAML5_L8, ALIGN = 64, PAGE = 1//Add @190305 for SFRA support csmpasswds : > CSM_PWL_P0, PAGE = 0 csm_rsvd : > CSM_RSVD, PAGE = 0 /* Allocate uninitalized data sections: */ .stack : > RAML4, PAGE = 1 .ebss : > RAML4, PAGE = 1 .esysmem : > RAML4, PAGE = 1 /* Initalized sections to go in Flash */ /* For SDFlash to program these, they must be allocated to page 0 */ .econst : > FLASHA, PAGE = 0 .switch : > FLASHA, PAGE = 0 .scratchpad : > CLARAM0, PAGE = 1 .bss_cla : > CLARAM0, PAGE = 1 .const_cla : > CLARAM0, PAGE = 1 /* Allocate IQ math areas: */ IQmath : > FLASHA, PAGE = 0 /* Math Code */ IQmathTables : > IQTABLES, PAGE = 0, TYPE = NOLOAD /* Allocate FPU math areas: */ FPUmathTables : > FPUTABLES, PAGE = 0, TYPE = NOLOAD /*CLA specifi sections */ Cla1Prog : LOAD = FLASHD, RUN = RAML3, LOAD_START(_Cla1funcsLoadStart), LOAD_SIZE(_Cla1funcsLoadSize), LOAD_END(_Cla1funcsLoadEnd), RUN_START(_Cla1funcsRunStart), RUN_SIZE(_Cla1funcsRunSize), RUN_END(_Cla1funcsRunEnd), PAGE = 0, ALIGN(4) Cla1ToCpuMsgRAM : > CLA_CPU_MSGRAM, PAGE = 1 CpuToCla1MsgRAM : > CPU_CLA_MSGRAM, PAGE = 1 Cla1DataRam0 : > CLARAM0, PAGE = 1 Cla1DataRam1 : > CLARAM1, PAGE = 1 Cla1DataRam2 : > CLARAM2, PAGE = 1 CLA1mathTables : > CLARAM1, LOAD_START(_Cla1mathTablesLoadStart), LOAD_END(_Cla1mathTablesLoadEnd), LOAD_SIZE(_Cla1mathTablesLoadSize), RUN_START(_Cla1mathTablesRunStart), PAGE = 1 // Must be allocated to memory the CLA has write access to CLAscratch : { *.obj(CLAscratch) . += CLA_SCRATCHPAD_SIZE; *.obj(CLAscratch_end) } > CLARAM0,//RAML3,// PAGE = 1 /* .reset is a standard section used by the compiler. It contains the */ /* the address of the start of _c_int00 for C Code. /* /* When using the boot ROM this section and the CPU vector */ /* table is not needed. Thus the default type is set here to */ /* DSECT */ .reset : > RESET, PAGE = 0, TYPE = DSECT vectors : > VECTORS, PAGE = 0, TYPE = DSECT DLOG : > RAML5_L8, PAGE = 1//Add @190305 SINTBL : > FLASHB, PAGE = 1//Add @190305 }