If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
/* --COPYRIGHT--,BSD_EX * Copyright (c) 2012, Texas Instruments Incorporated * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of Texas Instruments Incorporated nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************* * * MSP430 CODE EXAMPLE DISCLAIMER * * MSP430 code examples are self-contained low-level programs that typically * demonstrate a single peripheral function or device feature in a highly * concise manner. For this the code may rely on the device's power-on default * register values and settings such as the clock configuration and care must * be taken when combining code from several examples to avoid potential side * effects. Also see www.ti.com/grace for a GUI- and www.ti.com/msp430ware * for an API functional library-approach to peripheral configuration. * * --/COPYRIGHT--*/ //****************************************************************************** // MSP430F552x Demo - Software Toggle P1.1 with 12MHz DCO // // Description: Toggle P1.1 by xor'ing P1.1 inside of a software loop. // ACLK is rought out on pin P1.0, SMCLK is brought out on P2.2, and MCLK // is brought out on pin P7.7. // ACLK = REFO = 32kHz, MCLK = SMCLK = 12MHz // // MSP430F552x // ----------------- // /|\| | // | | P1.0|-->ACLK // --|RST P7.7|-->MCLK // | P2.2|-->SMCLK // | | // | P1.1|-->Port Pin // // Bhargavi Nisarga // Texas Instruments Inc. // April 2009 // Built with CCSv4 and IAR Embedded Workbench Version: 4.21 //****************************************************************************** #include <msp430.h>
P1DIR |= BIT0; // ACLK set out to pins P1SEL |= BIT0; P2DIR |= BIT2; // SMCLK set out to pins P2SEL |= BIT2; P7DIR |= BIT7; // MCLK set out to pins P7SEL |= BIT7;
UCSCTL3 |= SELREF_2; // Set DCO FLL reference = REFO UCSCTL4 |= SELA_2; // Set ACLK = REFO
__bis_SR_register(SCG0); // Disable the FLL control loop UCSCTL0 = 0x0000; // Set lowest possible DCOx, MODx UCSCTL1 = DCORSEL_5; // Select DCO range 24MHz operation UCSCTL2 = FLLD_1 + 374; // Set DCO Multiplier for 12MHz // (N + 1) * FLLRef = Fdco // (374 + 1) * 32768 = 12MHz // Set FLL Div = fDCOCLK/2 __bic_SR_register(SCG0); // Enable the FLL control loop
// Worst-case settling time for the DCO when the DCO range bits have been // changed is n x 32 x 32 x f_MCLK / f_FLL_reference. See UCS chapter in 5xx // UG for optimization. // 32 x 32 x 12 MHz / 32,768 Hz = 375000 = MCLK cycles for DCO to settle __delay_cycles(375000);
// Loop until XT1,XT2 & DCO fault flag is cleared do { UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + DCOFFG); // Clear XT2,XT1,DCO fault flags SFRIFG1 &= ~OFIFG; // Clear fault flags }while (SFRIFG1&OFIFG); // Test oscillator fault flag