根据数据手册的描述 ADC为24位,但是提供的demo程序接收转换结果是16位的,而且查看ADC的数据寄存器也是16位的
This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

您是可以使用24bit的,但是由于没有24bit的数据,所以您需要使用 32bit的long
请参考下面的代码
/* --COPYRIGHT--,BSD_EX
* Copyright (c) 2013, Texas Instruments Incorporated
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************
*
* MSP430 CODE EXAMPLE DISCLAIMER
*
* MSP430 code examples are self-contained low-level programs that typically
* demonstrate a single peripheral function or device feature in a highly
* concise manner. For this the code may rely on the device's power-on default
* register values and settings such as the clock configuration and care must
* be taken when combining code from several examples to avoid potential side
* effects. Also see www.ti.com/grace for a GUI- and www.ti.com/msp430ware
* for an API functional library-approach to peripheral configuration.
*
* --/COPYRIGHT--*/
//******************************************************************************
// MSP430i20xx Demo - SD24, Continuous Conversion on a Single Channel
//
// Description: This program uses the SD24 module to perform continuous
// conversions on a single channel. A SD24 interrupt occurs when a conversion
// has completed.
//
// Test by applying voltages to the input channel and setting a breakpoint
// at the indicated line. Run program until it reaches the breakpoint, then use
// the debugger's watch window to view the conversion results.
//
// Results (upper 16 bits only) are stored in the array "results"
//
// ACLK = 32kHz, MCLK = SMCLK = Calibrated DCO = 16.384MHz, SD_CLK = 1.024MHz
// * Ensure low_level_init.c is included when building/running this example *
//
// Notes: For minimum Vcc required for SD24 module - see datasheet
// 100nF cap btw Vref and AVss is recommended when using 1.2V ref
//
// MSP430i20xx
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// Vin1+ -->|A0.0+ VREF |---+
// Vin1- -->|A0.0- | |
// | | -+- 100nF
// | | -+-
// | | |
// | AVss |---+
//
// T. Witt
// Texas Instruments, Inc
// September 2013
// Built with Code Composer Studio v5.5
//******************************************************************************
#include "msp430.h"
/* Array to store SD24 conversion results */
volatile int j, index = 0;
volatile unsigned long sum = 0;
unsigned long results[100]; // Final results from running average
/* Defines */
#define SW_OVER_SAMPLING_FACTOR 16
/* Main Function */
void main(void) {
WDTCTL = WDTPW | WDTHOLD; // Stop WDT
SD24CTL = SD24REFS; // Internal ref
SD24INCTL0 = SD24GAIN_1; // Set gain on Channel 0
SD24CCTL0 |= SD24IE; // Enable interrupt, OSR = 256 (default)
__delay_cycles(3200); // Delay ~200us for 1.2V ref to settle
SD24CCTL0 |= SD24SC; // Set bit to start conversion
__bis_SR_register(GIE); // Enable interrupts
while(1) { // Loop endlessly, SET BREAKPOINT or PAUSE HERE
}
}
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=SD24_VECTOR
__interrupt void SD24_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(SD24_VECTOR))) SD24_ISR (void)
#else
#error Compiler not supported!
#endif
{
long temp = 0;
switch (__even_in_range(SD24IV,SD24IV_SD24MEM3)) {
case SD24IV_NONE: break;
case SD24IV_SD24OVIFG: break;
case SD24IV_SD24MEM0:
// Capture ADC data
SD24CCTL0 &= ~SD24LSBACC; // Clear LSBACC bit
temp = SD24MEM0; // Read upper 16 bits of SD24MEM0
SD24CCTL0 |= SD24LSBACC; // Set LSBACC bit
temp = temp*256 + (SD24MEM0&0xff); // Read lower 16 bits of SD24MEM0, combine with upper bits
// Perform software oversampling
sum+= temp; // Add result to running sum
j++;
if(j >= SW_OVER_SAMPLING_FACTOR) { // Calculate and store average
results[index++] = sum/SW_OVER_SAMPLING_FACTOR;
sum = 0;
j = 0;
}
if(index >=100) {
index=0;
}
break;
case SD24IV_SD24MEM1: break;
case SD24IV_SD24MEM2: break;
case SD24IV_SD24MEM3: break;
default: break;
}
}