This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

【活动结束】找方案,秀出来!LED参考设计工具等你拿!

Other Parts Discussed in Thread: UCC25710, TPS62150, TPS92310, TLC555, TLC5917, TPS60230, TPS61062, TPS61042, TPS62260, MSP430F2131, TPS62290, TPS92551, UCC28810, TL103W, TPS61165, LM3466, LM3402, LM3402HV, LM340, TPS61160, TPS75105, TPS61195, UCC28810EVM-003, TPS63000, TPS61500, TPS40211, TPS61200, MSP430F2011, TPS5430, LM2596, TL494, LM2577, UCC28060, TLC5941, TPS92210, TPS60231, TINA-TI, TPS61310, TPS92210EVM-613, UCC28811, TPS92020

新的分享活动又开始啦!快行动,先到先得!把业内好LED技术方案挖出来、秀出来1031- 1114轻松分享,轻松获得TI LED参考设计!

灯具+LED裸板电源+1G U

 
分享内容:

 LED技术方案推荐及分享 

分享方式:

-   全部以跟贴形式分享技术方案 
-  无需原创;但内容不涉及TI竞争公司的产品
技术方案推荐方式
             - 必须在贴子中全部贴出LED技术方案的文章内容(如从别的媒体转载,请注明出处或其作者)
 
注意事项:
-       仅提供文章链接或仅贴出部分内容并发链接将不具备获奖资格。
-  如果内容不是技术方案,即便和LED相关,也不具备获奖资格。
-  技术方案如果重复分享,将以第一个分享人为准,之后的分享者不具备获奖资格。
-       TI拥有获奖的最终解释权。
  • 如何调节您的 WLED 背光驱动器

    (How to dim your WLED backlight driver)

    作者:Jeff Falin,德州仪器 (TI) 现场应用工程师

    相比荧光灯,白色发光二极管 (WLED) 具有许多优势。这些优势包括其为一种固态器件和定向光源。它们的工作电压更低,且拥有更宽的亮度调节范围。另外,在进行亮度调节时,它们还具有更为线性的亮度变化。

    许多显示器的电子器件现在都使用 WLED 型背光。如果没有正确理解每一种方法的实施原理,以及每一种方法的好处和局限性,要选择正确的 LED 调节方法具有一定的挑战性。在简要回顾 LED 供电原理以后,本文将从利弊两方面概述两种 LED 亮度调节方法。通过我们的叙述,您可以轻松地为具体应用选择正确的亮度调节方法和 LED 驱动器 IC。

    配置一种为 WLED 供电的稳压转换器

    WLED 的亮度随流过它的电流线性变化。假设每串的 WLED 电流精度最佳且 WLED 亮度一致,则 LED 驱动器应对 LED 的电流而非电压进行调节。图 1 显示了如何轻松地将任何一种可调输出稳压 DC/DC 转换器,重新配置为一个驱动多个串联 WLED 的恒流源,条件是其输出大于 LED 正向电压 (VLED) 压降之和。

    图 1-可调输出 DC/DC 转换器为一个或多个 WLED 串提供恒定电流

    通过调节电流检测电阻器 (RSENSE) 的电压 VSENSE,而非输出电压 (VO),驱动器实质为一个恒定电流源。这样使 VO 可以自由地自我调节,以适应 SVLED 的变化。WLED 具有 3.0V 到 4.0V 的压降范围。压降与 LED 电流成正比例变化,而与温度成反比例变化。最近,一些低功耗驱动器使用一个或多个电流阱(实质为 FET),来代替外部检测电阻器,如图 2 所示

    图 2-集成电流阱的 LED 驱动器

    驱动器具有两种功能。它对电流阱 FET 的驱动电压进行调节,以达到相对于偏置电流合适的吸收器 FET 电流。同时,它还对集成 DC/DC 转换器(一般为增压转换器)的输出功率进行调节,以便 FET 具有该电流需要的最小漏-源电压。TPS61195 便是这种具有一个集成增压转换器和八个集成电流阱的驱动器例子。

    脉宽调制亮度调节

    为了提高视觉体验和优化不同环境光水平的 LED 驱动器效率,更新型的 LED电子背光以拥有较宽的亮度调节范围为傲。LED 调节方法共有两种:脉宽调制 (PWM) 调节和模拟调节。图 3 显示了 LED 电流及其亮度在使用模拟和 PWM 调节方法时的变化情况

    图 3-使用模拟和 PWM 调节时的灯管或 LED 电流情况

    要实现 PWM 调节,一个数字信号处理器 (DSP) 或者微控制器需在不同占空比 (D) 条件下发送一个 PWM 信号,开启和关闭图 1 所示驱动器的 WLED 驱动器转换器,或者图 2 所示驱动器的电流阱。因此,WLED 串的平均电流为占空比乘以最大电流,即 ILEDavg = D X ILEDmax。

    由于 LED 的最大电流相同,因此 PWM 调节结果是一种非常线性的亮度变化。另外,由于 LED 的发射光谱随其压降变化,而压降又随 ILED(始终保持最大值)变化,因此使用 PWM 调节方法时 LED 背光的色度(其色彩度及色调,即其实际“白”程度)极好。

    PWM 调节的主要缺点是可听噪声。如果 PWM 信号用于开启和关闭转换器,则驱动器的最大调节比受限于转换器启动,对输出电容充电,然后稳定达到其各自最大电流所花费的时间。尽管 WLED 驱动器可能会有一些 1MHz+ 开关频率下工作的转换器,但转换器的控制环路响应时间和/或启动时间范围为数百微秒到几毫秒。因此,为了适应驱动器稳定达到其最大电流的时间,PWM 调节频率可以仅为数百赫兹。

    陶瓷输出电容器的压电特性,使电容器在可听范围(20Hz–20kHz)的 PWM 信号频率下充放电。它会振动,人耳可以听到电容器和印制电路板的运行,其听起来像振铃或者蜂鸣声。这种振动与电压变化幅度和陶瓷电容器封装尺寸成正比例关系。缩小电容器封装尺寸,可以减少这种振铃。

    图 2 所示驱动器通过开关电流阱,实现 PWM 调节。另一种方案是,如 TPS61093 等驱动器具有一个与 LED 串联的 FET。FET 被快速地开启和关闭,从而将 LED 从驱动器输出移除。两种方案中,第二电压反馈环路都提供了过电压保护,并在LED关闭时保持输出电容器的电压。由于输出电容器的电压变化得到了最小化,其振动和振铃也减少了。

    模拟调节

    术语模拟调节意思是 LED 本身的 DC 电流相对于占空比 D 变化。为了实现图 1 所示驱动器的模拟调节,DSP 或者微控制器必须提供一个高于转换器调节电压的外部 DC 电压(或低通滤波 PWM 信号)。

    一些具有电流阱的驱动器使用输入 PWM 信号,对其进行滤波,然后使用电平转换型信号驱动电流阱。其它驱动器系列(例如:TPS6116x 系列等),使用输入 PWM 信号将占空比 D 应用于带隙基准电压,因此 VREF = D * VREF(MAX)。由于 ILED DC 电平电流变化较慢,因此输出电容器电压没有纹波。所以,电容器不会像 PWM 调节时那样振动。

    模拟调节相对于PWM 调节的另一个好处是更高的功效和电光转换效率。特别是,ILED 降低,增压转换器输出电压=SVLEDs也随之降低。因此,相对于 PWM调节,使用模拟调节时转换器的输出功率略低。

    由于增压转换器需要提供更低的输出电压,其输入功率要求降低,而其效率增加。图 4 对比了相同输入电压和相同LED条件下,使用混合模式和 PWM 调节时的驱动器效率。在混合模式调节中,驱动器执行模拟调节,占空比 D=6.25%,之后转换为 PWM 调节,以获得更好的亮度线性。

    图 4-混合模式与 PWM 调节的效率对比

    另外,驱动器具有更高的光电转换效率,其意味着相同功耗条件下更多的流明。但是,由于反馈调节电压或者电流阱电压变得太小以至于无法精确控制,因此在进行深度调节时模拟调节存在一些电流精确度问题。出现这种问题的原因是误差放大器的补偿电压。亮度线性和色度不如 PWM 调节那么好,在进行深度调节时更是如此。图 5 对比了使用模拟调节和 PWM 调节时一串调光 LED 的亮度。

    图 5-PWM 和模拟调节时的 LED

  • 反相降压—升压拓扑可调节 LED 电流2011-07-14

    15:49 作者:John Betten,德州仪器 (TI) 应用工程师

    LED 亮度控制要求有一个能够提供恒定、稳压电流的驱动器。要想达到这一目标,驱动器拓扑必须能够产生足够大的输出电压来正向偏置 LED。因此,如果输入和输出电压范围重叠时,我们又该做何选择呢?转换器有时可能需要逐渐降低输入电压,而有时可能需要升高输出电压。这种情况通常出现在那些具有大范围“脏”输入电源的应用中,例如:车载系统。这种降压/升压操作中有几种拓扑的效果较好,例如:SEPIC 或 4 开关降压—升压拓扑。这些拓扑一般都需要大量的组件,这便增加了设计的材料成本。然而,由于它们可提供正输出电压,因此人们通常也将其看作可接受的选择。但是,我们也不应忽略负输出电压转换器,它可以提供一种替代解决方案。

     图 1 显示了在恒定电流结构中驱动 3 个 LED 的反相降压—升压电路的原理图。该电路拥有诸多优点。首先,它使用了一个标准降压控制器,从而最小化了成本,并有助于尽可能的系统级的重复使用。如果需要的话,可以轻松地对该电路进行改造,以使用一个集成 FET 降压控制器,或使用一个同步降压拓扑,从而获得更高的效率。这种拓扑使用的功率级组件数目与一个简易降压转换器相同,由此实现开关调节器的最低组件数,以及相对于其他拓扑的最低总体成本。由于 LED 本身的输出为光线,因此其可能与 LED 负(而非正电压)电压偏置的系统级关系不大,这就使其成为一种值得考虑的电路设计。

    图 1 利用负输出电压,降压—升压拓扑调节恒定 LED 电流 通过感应检测电阻器 R1 两端的电压并将其用作控制电路的反馈,从而对 LED 电流进行调节。控制器接地引脚必须为负输出电压的参考电压,以使该直接反馈能够正确工作。如果控制器为系统接地的参考电压,则需要一个电平转换电路。这种“负接地”对电路构成了一些限制。功率 MOSFET、二极管和控制器的额定电压必须高于输入与输出电压的和。 其次,外部连接控制器(例如:开启操作等)均要求对从系统接地到控制器接地的信号进行电平转换,从而需要更多的组件。单就这个原因而言,最好的办法是去除或者最少化不必要的外部控制。 最后,相比 4 开关降压—升压拓扑,施加到反相降压—升压拓扑中功率器件上的电压和电流应力更大,从而降低了相关效率,但该效率与 SEPIC 相当。即便如此,这种电路还是能够达到 89% 的效率。通过完全同步该电路,我们还可以将效率再提高 2%~3%。

    通过短路软启动电容器 C5 快速地开/关转换器,是 LED 亮度调节的一种简单方法。 2 显示了 PWM 输入信号和实际的 LED 电流。这种 PWM 亮度调节方法较为有效,因为转换器关闭,其在 SS 引脚短路时仅消耗极少的功率。但是,这种方法也相对较慢,这是因为转换器每次开启时都必须以一种可控方式来渐渐升高输出电流,这就在输出电流上升以前产生一个非线性、有限的时滞。同时,其还将最小开启时间占空比降低至 10%-20%。在一些不要求高速和 100% PWM 调节的 LED 应用中,这种方法或许就足够了。

     

    这种反相降压—升压电路为工程师提供了另一种 LED 驱动方法。低成本降压转换器的使用以及较少的组件数量使其成为一种替代高复杂度拓扑的理想方法。

    2 PWM驱动(顶部)高效地控制了 LED 电流(底部)

    参考文献

     

    如欲下载相关的产品说明书或应用手册,敬请访问: http://focus.ti.com/docs/prod/folders/print/tps40200.html

     

  • 来自:百度文库 贡献者:无语的风 http://wenku.baidu.com/view/b0780618650e52ea5518983a.html

    TI 公司的UCC28810和UCC28811是中小功率通用led照明电源控制器,具有功率因素修正(PFC)和EMC兼容特性.设计用于工作在临界导通模式的反激,降压或升压转换器. UCC28810/1集成了用于反馈误差处理的跨导电压放大器,用来产生正比于输入电压的电流指令的电流基准发生器,电流检测(PWM)比较器,PWM逻辑和用来驱动外接FET的图腾柱驱动器.此外,控制器还提供峰值电流限制,重起定时器,过压保护(OVP)以及使能等. UCC28810和UCC28811广泛用在交流输入HB LED照明,工业,商业和住宅区照明以及户外照明如路灯,停车场,建筑物和装饰性LED照明等.本文介绍了UCC28810和UCC28811的主要特性,方框图, 简化应用电路图, 25W PFC反激转换器参考设计以及PR788 100W AC/DC LED电流驱动器参考设计和元件列表.

    The UCC28810 and UCC28811 are general lighting power controllers for low to medium power lumens applications requiring power factor correction and EMC compliance. It is designed for controlling a flyback, buck or boost converter operating in critical conduction mode. It features a transconductance voltage amplifier for feedback error processing, a simple current reference generator for generating a current command proportional to the input voltage, a current-sense (PWM) comparator, PWM logic and a totem-pole driver for driving an external FET.

    In the critical conduction mode operation, the PWM circuit is sELf-oscillating with the turn-on being governed by a transformer zero energy detector (TZE pin) and the turn-off being governed by the current sense comparator. Additionally, the controller provides features such as peak current limit, restart timer, overvoltage protection (OVP), and enable.

    The efficient system performance is attained by incorporation of zero power detect function which allows the controller output to shut down at light load conditions without running into overvoltage. The device also features an innovative slew rate enhancement circuit which improves the large signal transient performance of the voltage error amplifier. The low start-up and operating currents of the device result in low power consumption and ease of start-up. The highly-accurate internal bandgap reference leads to tight regulation of the output voltage in normal and OVP conditions, resulting in higher system reliability. The enable comparator ensures that the controller is off if the feedback sense path is broken or if the input voltage is very low.

    There are two key parametric differences between UCC28810 and UCC28811, the UVLO turn-on threshold and the gM amplifier source current. The UVLO turn-on threshold of the UCC28810 is 15.8 V and for the UCC28811 it is 12.5 V. The gM amplifier source current for UCC28810 is typically 1.3 mA, and for the UCC28811 it is 300µA. The higher UVLO turn-on threshold of the UCC28810 allows quicker and easier start-up with a smaller VDD capacitance while the lower UVLO turn-on threshold of UCC28811 allows operation of the critical conduction mode controller to be easily controlled by the downstream PWM controller in two-stage power converters. The UCC28810 gM amplifier also provides a full 1.3-mA typical source current for faster start-up and improved transient response when the output is low either at start-up or during transient conditions. The UCC28811 is suitable for applications such as street lights and larger area luminaires where a two-stage power conversion is needed. The UCC28810 is suitable for applications such as commercial or residential retrofit luminaires where there is no down-stream PWM conversion and the advantages of smaller VDD capacitor and improved transient response can be realized.

    Devices are available in the industrial temperature range of –40℃ to 105℃. Package offering is an 8-pin SOIC (D) package.

    UCC28810/1主要特性:

    Transition Mode Controller for Low Implementation Cost of AC Input LED Lighting Applications 

    Implements Single Stage Power Factor Corrected LED Driver 

    Enhanced Transient Response With Slew-Rate Comparator 

    Interfaces with Traditional Wall Dimmers 

    Accurate Internal VREF for Tight Output Regulation 

    Two UVLO Options 

    Overvoltage Protection (OVP), Open-Feedback Protection and Enable Circuits 

    ±750-mA Peak Gate Drive Current 

    Low Start-Up and Operating Currents 

    Lead (Pb)-Free Packages 

    UCC28810/1应用:

    AC Input General Lighting Applications Using HB LEDs

    Industrial, Commercial and Residential Lighting Fixtures 

    Outdoor Lighting: Street, Roadway, Parking, Construction and Ornamental LED Lighting Fixtures



    图1.UCC28810方框图



    图2.UCC28810简化应用电路图



    图3.25W PFC反激转换器参考设计

    The PR788 is a 100-W offline AC-to-DC LED current driver with power factor correction.

    This design is a two stage converter design with a universal input boost follower PFC stage providing a 240-V to 400-V DC output and a low-side buck stage providing the current source to power the LEDs. This converter was designed to support up to 30 high-brightness LEDs in series with up to 900-mA average current. The design incorporates an interface for microprocessor control to allow for shutdown into a low power mode (< 0.5 W) and PWM dimming of the LEDs.



    图4.PR788 100W AC/DC LED电流驱动器参考设计



    图5.工作在CCM的低边降压转换器电路图

    100W LED照明应用电路

    A 0.9-A Constant Current Supply with PFC for 100-W LED Lighting Applications

    The UCC28810EVM-002 is a constant current non-isolated power supply for LED lighting applications. It will convert universal mains (90 VRMS to 264 VRMS) to a 0.9-A constant current into a 100-W load. This evaluation module will allow the customer evaluate the UCC28810/11 in a typical LED lighting application.

    The evaluation module uses a two stage approach to controlling the output current.

    The first stage is a transition mode PFC circuit. This ensures the design meets the harmonic current or power factor requirements set out by various standards, such as EN61000-3-2. The PFC circuit converts the AC input to a regulated DC voltage. This DC voltage can be configured in one of two ways. The default configuration of the module is that of a boost follower type PFC. The boost follower PFC is where the PFC regulated output DC voltage tracks the AC input peak voltage. The second configuration requires removing some components and changing a resistor value see below for more details. This second

    configuration removes the tracking element of the PFC circuit. The PFC DC output voltage will then be regulated to a fixed value in the region of 396 VDC.

    The second stage also uses transition mode but is configured as a buck converter. It converts the PFC output voltage to a fixed constant current. This circuit is capable of supplying 0.9 A into a 100-W load. It also accepts PWM dimming inputs. Alternatively the user can use the PWM circuit on the module to see the dimming function.

    This module will work with most high brightness LED’s (HB-LED) that operate with 0.9 A and a total string voltage drop of between 55 V and 110 V.

    主要特性:

    90 VRMS to 264 VRMS operation

    Boost Follower or Fixed Output PFC Stage

    PFC Disable

    Output Current Disable

    External or Internal PWM Dimming

    典型应用:

    AC Input General Lighting Applications Using HB-LED’s

    Industrial, Commercial and Residential Lighting Fixtures

    Outdoor Lighting: Street, Roadway, Parking, Construction and Ornamental LED Lighting Fixtures



    图6. 100W LED照明应用电路图(1)



    图7. 100W LED照明应用电路图(2)

    材料列表:






    TI_UCC28810中小功率LED照明应用方案.docx
  • 白光 LED 电源设计技术

    2011-07-14 16:47

    作者:Oliver Nachbaur,德州仪器 (TI) 便携式电源系统工程师  www.ti.com.cn

     摘要

    随着彩色显示屏在便携市场(如手机、PDA 以及超小型 PC)中的广泛采用,对于一个单色 LCD 照明而言,就需要一个白色背光或侧光。与常用的 CCFL(冷阴极荧光灯)背光相比,由于 LED 需要更低的功耗和更小的空间,所以其看起来是背光应用不错的选择。白光 LED 的典型正向电压介于 3V~5V 之间。由于为白光 LED 供电的最佳选择是选用一个恒流电源,且锂离子电池的输入电压范围低于或等于 LED 正向电压,因此就需要一款新型电源解决方案。

     主要的电源要求包括高效率、小型的解决方案尺寸以及调节 LED 亮度的可能性。对于具有无线功能的便携式系统而言,可接受的 EMI 性能成为我们关注的另一个焦点。当高效率为我们选择电源最为关心的标准时,升压转换器就是一款颇具吸引力的解决方案,而其他常见的解决方案是采用充电泵转换器。在本文中,我们分别对用于驱动白光 LED 的两款解决方案作了讨论,并探讨了他们与主要电源要求的关系。另外一个很重要的设计考虑因素是调节 LED 亮度的控制方法,其亮度不但会影响整个转换器的效率,而且还有可能会出现白光 LED 的色度变换。下面将介绍一款使用一个 PWM 信号来控制其亮度的简单的解决方案。与其他标准解决方案相比,该解决方案的另外一个优势就是其更高的效率。

     任务

     一旦为白光 LED 选定了电源以后,对于一个便携式系统来说,其主要的要求就是效率、整体解决方案尺寸、解决方案成本以及最后一项但非常重要的 EMI(电磁干扰)性能。根据便携式系统的不同,对这些要求的强调程度也不尽相同。效率通常是关键的设计参数中最重要或次重要的考虑因素,因此在选择电源时,要认真考虑这一因素。图 1 示显示了白光 LED 电源的基本电路。

     

    图 1 一个优异的效率需要一个可变转换增益 M

     

    该锂离子电池具有一个介于 2.7V~4.2V 的电压范围。该电源的主要任务是为白光 LED 提供一个恒定的电流和一个典型的 3.5V 正向电压。

     与充电泵解决方案相比,升压转换器可实现更高的效率

     一般来说,用于驱动白光 LED 的电源拓扑结构有两种:即充电泵或开关电容解决方案和升压转换器。这两款解决方案均可提供较高的输出和输入电压。二者主要的不同之处在于转换增益 M=Vout/Vin,该增益将直接影响效率;而通常来说,充电泵解决方案的转换增益是固定不变的。一款固定转换增益为 2 的简单充电泵解决方案通常会产生比 LED 正向电压高很多的电压,如方程式 (1) 所示。

    其将带来仅为 47% 的效率,如方程式 (2) 所示。

                   


    式中 Vchrgpump 为充电泵 IC 内部产生的电压,VBat 为锂离子电池的典型电池电压。充电泵需要提供一个恒定的电流以及相当于 LED 3.5V 典型正向电压的输出电压。通常,固定转换增益为 2 的充电泵会在内部产生一个更高的电压 (1),该电压将会导致一个降低整体系统效率的内部压降 (2)。更为高级的充电泵解决方案通过在 1.5 和 1 转换增益之间进行转换克服了这一缺点。这样就可以在电池电压稍微高于 LED 电压时实现在 90%~95% 效率级别之间运行,从而充许使用增益值为 1 的转换增益。方程式 (3) 和方程式 (4) 显示了这一性能改进。

                   

    当电池电压进一步降低时,充电泵需要转换到 1.5 增益,从而导致效率下降至60%~70%,如示例 (5) 和 (6) 所示。

                     

    图 2 显示了充电泵解决方案在不同转换增益 M 条件下理论与实际效率曲线图。

     

    图 2 充电泵解决方案的效率变化

     

    转换增益为 2 的真正的倍压充电泵具有非常低的效率(低至 40%),且对便携式设备没有太大的吸引力;而具有组合转换增益(增益为 1.0 和 1.5)的充电泵则显示出了更好的效果。这样一款充电泵接下来的问题就是从增益 M=1.0 向 M=1.5的转换点转换,这是因为发生增益转换后效率将下降至 60% 的范围。当电池可在大部分时间内正常运行的地方发生效率下降(转换)时,整体效率会降低。因此,在接近 3.5V 的低电池电压处发生转换时就可以实现高效率。但是,该转换点取决于 LED 正向电压、LED 电流、充电泵 I2R 损耗以及电流感应电路所需的压降。这些参数将把转换点移至更高的电池电压。因此,在具体的系统中必须要对这样一款充电泵进行精心评估,以实现高效率数值。

     

    计算得出的效率数值显示了充电泵解决方案最佳的理论值。在现实生活中,根据电流控制方法的不同会发生更多的损耗,其对效率有非常大的影响。除了 I2R 损耗以外,该器件中的开关损耗和静态损耗也将进一步降低该充电泵解决方案的效率。

     通过使用一款感应升压转换器可以克服这些不足之处,该升压转换器具有一个可变转换增益 M,如方程式 (7) 和图 3 所示。 


    该升压转换器占空比 D 可在 0% 和实际的 85% 左右之间发生变化,如图 3 所示。

     

    图 3 升压转换器的可变转换增益 M

    可变转换增益可实现一个刚好与 LED 正向电压相匹配的电压,从而避免了内部压降,并实现了高达 85% 的效率。

     可驱动 4白光 LED 的标准升压转换器

     图 4 中的升压转换器被配置为一个可驱动 4白光 LED 的电流源。该器件将检测电阻器 Rs两端的电压调节至 1.233V,从而得到一个定义的 LED 电流。

     

    图 4 配置为电流源的升压转换器

     本结构中使用的升压转换器在 1.233V 电流检测电阻器两端将有一个压降,而检测电阻器的功耗会降低该解决方案的效率。因此,必须降低检测和调节该 LED 电流的压降。除此之外,对于许多应用来说,调节 LED 电流和 LED 亮度的可能性也是必须的。图 5 中的电路实现了这两个要求。

     

    图 5 通过降低电流感应电压来提高效率

     在图 5 中,一个可选齐纳二极管被添加到了电路中,用钳位控制输出电压,以防止一个LED 断开连接或出现高阻抗。一个具有 3.3V 振幅的 PWM 信号被施加到该转换器的反馈电路上,同时使用了一个低通滤波器 Rf 和 Cf,以过滤PWM 信号的 DC 部分并在 R2 处建立一个模拟电压 (Vadj)。通过改变所施加 PWM 信号的占空比,使该模拟电压上升或下降,从而调节该转换器的反馈电压,此举会增加或降低转换器的 LED 电流。通过在 R2 处施加一个高于转换器反馈电压 (1.233V) 的模拟电压,可以在检测电阻器两端实现一个更低的感应电压。对于一个 20mA LED 电流而言,感应电压从 1.233V 下降到了 0.98V(对于10mA LED 电流而言,甚至会降至 0.49V)。

     当使用一个具有 3.3V 振幅的 PWM 信号时,必须要将控制 LED 亮度的占空比范围从50% 调整到 100%,以得到一个通常会高于 1.233V 反馈电压的模拟电压。在 50% 占空比时,模拟电压将为 1.65V,从而产生一个 20mA、0.98V 的感应电压。将占空比范围限制在 70%~100% 之间会进一步降低感应电压。由此得出的效率曲线如图 6 所示。

     

    图 6 通过降低电流感应电压实现更高的效率

    效率还取决于所选电感。在此应用中,一个尺寸为 1210 的小型电感可以实现高达 83%的效率,从而使总体解决方案尺寸可与一个需要两个尺寸为 0603 的飞跨电容充电泵解决方案相媲美。

     图 7 显示了 LED 电流作为控制 LED 亮度的 PWM 占空比的一个线性函数

     

    图 7 通过施加 PWM 信号实现简单的 LED 电流控制

     上述解决方案显示了用于驱动白光 LED 的标准升压转换器的结构以及通过限制 PWM 占空比范围并选择一个不同的电流控制反馈网络来提高效率的可能性。

  • LLC LED 驱动器简化设计

    摘要:LED 负载随亮度调节变化时,PWM LED 亮度调节如何使 dc/dc 传输函数保持恒定

    作者:MICHAEL O’LOUGHLIN,德州仪器 (TI) 高级应用工程师

    TI 网站:www.ti.com

    相比过去使用的老式、笨重的阴极射线管 (CRT) 显示器,现在的平板数字电视和显示器要薄得多。这些新型薄平板电视对消费者非常有吸引力,因为它们占用的空间更小。

    为了帮助满足消费者需求并使这类数字设备变得更薄,一些厂商转向使用 LLC 谐振半桥转换器来为这些设备的发光二极管 (LED) 背光提供驱动。这是因为,利用这种拓扑结构所实现的零电压软开关 (ZVS) 可带来更高效的高功率密度设计,并且要求的散热部件比硬开关拓扑更少。

    这类拓扑设计存在的一个问题是 LLC dc/dc 传输函数会随负载变化而出现明显变化。但是,这样会使在 LED 驱动器中建立 LLC 控制器和补偿电流环路变得更加复杂。为了简化这一设计过程,本文将讨论一种被称作脉宽调制 (PWM) LED 亮度调节的设计方法,其允许 LED 负载随亮度调节变化的同时让 dc/dc 传输函数保持恒定。

    研究传输函数 (M(f)) 的 LLC 谐振半桥 dc/dc

    LLC 谐振半桥控制器 dc/dc(请参见图 1)是一种脉冲频率调制 (PFM) 控制拓扑。半桥 FET(QA 和 QB)异相驱动 180,并利用一个电压控制振荡器 (VCO) 调节/控制频率。这反过来又能调节谐振电感 (Lr) 形成的分压器阻抗、变压器磁电感 (LM)、反射等效阻抗 (RE) 和谐振电容器 (Cr) 进行调节。仅有 LM 中形成的电压通过变压器匝数比 (a1) 反射至次级线圈。

    图 1 LLC 谐振半桥/控制器

    等效反射阻抗:

    (方程式 1)

    变压器匝数比:

    (方程式 2)

    (方程式 3)

    我们可以标准化和简化一次谐波近似法 [1] 传输函数 M(f) 的使用。M(f) 的方程式 4 中,标准化的频率 (fn) 被定义为开关频率除以谐振频率 (fO)。尽管只是一种近似值方法,但在理解 M(f) 如何随输入电压、负载和开关频率变化而变化时,该简化方程式还是非常有用的。

    标准化 LLC 半桥增益:

    (方程式 4)

    调节 dc 电流,以调节 LED 亮度

    LLC 谐振 LED 驱动器中实现 LED 亮度调节的一种方法是调节通过 LED 的dc 电流。这样做存在一个问题:DC 电流变化后,LLC 的输出阻抗也随之改变。如果考虑不周,则这种变化会带来 M(f) 变化,从而使 LED 驱动器设计变得更加复杂。

    负载变化带来的问题

    设计一个半桥转换器并不是一件容易的事情。设计人员要根据 ZVS 要求选择磁化电感 (LM)。他们还要调节 a1、Cr 和 Lr,以获得理想的 M(f) 和频率工作范围。但是,M(f) 会随 Q 变化而改变,而 Q 又会随着输出负载 (RL) 变化而变化。详情请参见图 2。

    谐振 LLC 半桥 LED 的 M(f) 变化会使电压环路补偿和变压器选择变得更加困难、复杂和混乱,因为在设计过程中需要考虑的各种变化实在太多了。

    图 2 M(f) 随负载而变化。

    不断变化的 LLC 增益曲线 (M(f)) 会在反馈环路中引起电压控制振荡器 (VCO) 的控制问题。VCO 一般由一个反馈误差放大器控制(EA(参见图 1))。开关频率随 EA 输出升高而降低以提高 LLC 增益,并在 EA 输出下降时增高。理想情况下,在一个 LLC 半桥设计中,M(f) 增益需在其最大开关频率下以最小值开始,同时 M(f) 随频率降低而上升。

    正常工作时的理想 M(f) 范围为虚线右侧部分(请参见图 2)。我们把这一区域称作电感区,这时 LLC 工作在 ZVS 下。虚线左边为电容区,在该区域内主级开关节点上没有 ZVS。在大信号瞬态期间,EA 会驱动 VCO,要求更低的开关频率,以提高增益。结果是,M(f) 增益工作在虚线左边区域,可能达不到理想增益,无法满足控制环路需求。

    这时,ZVS 丢失,并且反馈环路会让 LLC 控制器一直锁闭在该区域内。现在,反馈误差放大器尝试要求更低的开关频率,以提高功率级无法达到的增益,因为转换器可能工作在图 2 中虚线的右边区域。ZVS 丢失时,FET QA 和 QB 消耗更多功率,FET 会因过热而损坏。为了避免设计中出现这种问题,需要对所有 M(f) 曲线进行分析,然后适当地限制最小开关频率 (f),以防止转换器 (M(f)) 工作在图 2 中虚线的左侧区域。

    PWM 亮度调节简化设计过程

    对于要求亮度调节的 LLC 谐振半桥 LED 驱动器而言,简化设计过程的一种方法是使用一种被称为 PWM 亮度调节的技术。图 3 显示了一个 LLC 转换器的功能原理图,它的 LLC 控制器便使用了这种 PWM 亮度调节技术。在我们的例子中,我们使用了 UCC25710。

    图 3 使用 PWM 亮度调节技术的 LLC 半桥 LED 驱动器。

    这种技术利用一个控制 FET QC 的固定低频信号 (DIM),它以逻辑方式添加至QA 和 QB FET 驱动。DIM 信号为高电平时,LED 背光灯串被控制在某个固定峰值电流 (VRS/RS)。一旦 DIM 变为低电平,QA、QB 和 QC 立即关闭。QA、QB 和 QC 关闭后,LED 二极管便停止导电,同时输出电容器 (COUT)存储能量,以备准时开始下一个 DIM 周期。更多详情,请参见图 4 所示波形。

    图 4 PWM 亮度调节波形

    通过调节 DIM 信号的占空比 (D) 实现对平均二极管电流 (ID) 的调节,从而控制 LED 的亮度。

  • LLC LED 驱动器简化设计
    转自TI网站

    摘要:LED 负载随亮度调节变化时,PWM LED 亮度调节如何使 dc/dc 传输函数保持恒定
    作者:MICHAEL O’LOUGHLIN,德州仪器 (TI) 高级应用工程师
    TI 网站:www.ti.com
    相比过去使用的老式、笨重的阴极射线管 (CRT) 显示器,现在的平板数字电视和显示器要薄得多。这些新型薄平板电视对消费者非常有吸引力,因为它们占用的空间更小。
    为了帮助满足消费者需求并使这类数字设备变得更薄,一些厂商转向使用 LLC 谐振半桥转换器来为这些设备的发光二极管 (LED) 背光提供驱动。这是因为,利用这种拓扑结构所实现的零电压软开关 (ZVS) 可带来更高效的高功率密度设计,并且要求的散热部件比硬开关拓扑更少。
    这类拓扑设计存在的一个问题是 LLC dc/dc 传输函数会随负载变化而出现明显变化。但是,这样会使在 LED 驱动器中建立 LLC 控制器和补偿电流环路变得更加复杂。为了简化这一设计过程,本文将讨论一种被称作脉宽调制 (PWM) LED 亮度调节的设计方法,其允许 LED 负载随亮度调节变化的同时让 dc/dc 传输函数保持恒定。
    研究传输函数 (M(f)) 的 LLC 谐振半桥 dc/dc
    LLC 谐振半桥控制器 dc/dc(请参见图 1)是一种脉冲频率调制 (PFM) 控制拓扑。半桥 FET(QA 和 QB)异相驱动 180,并利用一个电压控制振荡器 (VCO) 调节/控制频率。这反过来又能调节谐振电感 (Lr) 形成的分压器阻抗、变压器磁电感 (LM)、反射等效阻抗 (RE) 和谐振电容器 (Cr) 进行调节。仅有 LM 中形成的电压通过变压器匝数比 (a1) 反射至次级线圈。

    图 1 LLC 谐振半桥/控制器
    等效反射阻抗:


    (方程式 1)
    变压器匝数比:


    (方程式 2)

    (方程式 3)
    我们可以标准化和简化一次谐波近似法 [1] 传输函数 M(f) 的使用。M(f) 的方程式 4 中,标准化的频率 (fn) 被定义为开关频率除以谐振频率 (fO)。尽管只是一种近似值方法,但在理解 M(f) 如何随输入电压、负载和开关频率变化而变化时,该简化方程式还是非常有用的。

    标准化 LLC 半桥增益:


    (方程式 4)
    调节 dc 电流,以调节 LED 亮度
    LLC 谐振 LED 驱动器中实现 LED 亮度调节的一种方法是调节通过 LED 的dc 电流。这样做存在一个问题:DC 电流变化后,LLC 的输出阻抗也随之改变。如果考虑不周,则这种变化会带来 M(f) 变化,从而使 LED 驱动器设计变得更加复杂。
    负载变化带来的问题
    设计一个半桥转换器并不是一件容易的事情。设计人员要根据 ZVS 要求选择磁化电感 (LM)。他们还要调节 a1、Cr 和 Lr,以获得理想的 M(f) 和频率工作范围。但是,M(f) 会随 Q 变化而改变,而 Q 又会随着输出负载 (RL) 变化而变化。详情请参见图 2。
    谐振 LLC 半桥 LED 的 M(f) 变化会使电压环路补偿和变压器选择变得更加困难、复杂和混乱,因为在设计过程中需要考虑的各种变化实在太多了。


    图 2 M(f) 随负载而变化。
    不断变化的 LLC 增益曲线 (M(f)) 会在反馈环路中引起电压控制振荡器 (VCO) 的控制问题。VCO 一般由一个反馈误差放大器控制(EA(参见图 1))。开关频率随 EA 输出升高而降低以提高 LLC 增益,并在 EA 输出下降时增高。理想情况下,在一个 LLC 半桥设计中,M(f) 增益需在其最大开关频率下以最小值开始,同时 M(f) 随频率降低而上升。
    正常工作时的理想 M(f) 范围为虚线右侧部分(请参见图 2)。我们把这一区域称作电感区,这时 LLC 工作在 ZVS 下。虚线左边为电容区,在该区域内主级开关节点上没有 ZVS。在大信号瞬态期间,EA 会驱动 VCO,要求更低的开关频率,以提高增益。结果是,M(f) 增益工作在虚线左边区域,可能达不到理想增益,无法满足控制环路需求。
    这时,ZVS 丢失,并且反馈环路会让 LLC 控制器一直锁闭在该区域内。现在,反馈误差放大器尝试要求更低的开关频率,以提高功率级无法达到的增益,因为转换器可能工作在图 2 中虚线的右边区域。ZVS 丢失时,FET QA 和 QB 消耗更多功率,FET 会因过热而损坏。为了避免设计中出现这种问题,需要对所有 M(f) 曲线进行分析,然后适当地限制最小开关频率 (f),以防止转换器 (M(f)) 工作在图 2 中虚线的左侧区域。
    PWM 亮度调节简化设计过程
    对于要求亮度调节的 LLC 谐振半桥 LED 驱动器而言,简化设计过程的一种方法是使用一种被称为 PWM 亮度调节的技术。图 3 显示了一个 LLC 转换器的功能原理图,它的 LLC 控制器便使用了这种 PWM 亮度调节技术。在我们的例子中,我们使用了 UCC25710。


    图 3 使用 PWM 亮度调节技术的 LLC 半桥 LED 驱动器。
    这种技术利用一个控制 FET QC 的固定低频信号 (DIM),它以逻辑方式添加至QA 和 QB FET 驱动。DIM 信号为高电平时,LED 背光灯串被控制在某个固定峰值电流 (VRS/RS)。一旦 DIM 变为低电平,QA、QB 和 QC 立即关闭。QA、QB 和 QC 关闭后,LED 二极管便停止导电,同时输出电容器 (COUT)存储能量,以备准时开始下一个 DIM 周期。更多详情,请参见图 4 所示波形。


    图 4 PWM 亮度调节波形

    通过调节 DIM 信号的占空比 (D) 实现对平均二极管电流 (ID) 的调节,从而控制 LED 的亮度。

  • 显示不出图片,详见附件.

     转自:http://ti.21dianyuan.com/news/show/145.htmlLLC LED 驱动器简化设计

    2012-03-15 14:19

    LLC LED 驱动器简化设计
    摘要:LED 负载随亮度调节变化时,PWM LED 亮度调节如何使 dc/dc 传输函数保持恒定
    作者:MICHAEL O’LOUGHLIN,德州仪器 (TI) 高级应用工程师
    TI 网站:www.ti.com
    相比过去使用的老式、笨重的阴极射线管 (CRT) 显示器,现在的平板数字电视和显示器要薄得多。这些新型薄平板电视对消费者非常有吸引力,因为它们占用的空间更小。
    为了帮助满足消费者需求并使这类数字设备变得更薄,一些厂商转向使用 LLC 谐振半桥转换器来为这些设备的发光二极管 (LED) 背光提供驱动。这是因为,利用这种拓扑结构所实现的零电压软开关 (ZVS) 可带来更高效的高功率密度设计,并且要求的散热部件比硬开关拓扑更少。
    这类拓扑设计存在的一个问题是 LLC dc/dc 传输函数会随负载变化而出现明显变化。但是,这样会使在 LED 驱动器中建立 LLC 控制器和补偿电流环路变得更加复杂。为了简化这一设计过程,本文将讨论一种被称作脉宽调制 (PWM) LED 亮度调节的设计方法,其允许 LED 负载随亮度调节变化的同时让 dc/dc 传输函数保持恒定。
    研究传输函数 (M(f)) 的 LLC 谐振半桥 dc/dc
    LLC 谐振半桥控制器 dc/dc(请参见图 1)是一种脉冲频率调制 (PFM) 控制拓扑。半桥 FET(QA 和 QB)异相驱动 180,并利用一个电压控制振荡器 (VCO) 调节/控制频率。这反过来又能调节谐振电感 (Lr) 形成的分压器阻抗、变压器磁电感 (LM)、反射等效阻抗 (RE) 和谐振电容器 (Cr) 进行调节。仅有 LM 中形成的电压通过变压器匝数比 (a1) 反射至次级线圈。

    图 1 LLC 谐振半桥/控制器
    等效反射阻抗:


    (方程式 1)
    变压器匝数比:


    (方程式 2)

    (方程式 3)
    我们可以标准化和简化一次谐波近似法 [1] 传输函数 M(f) 的使用。M(f) 的方程式 4 中,标准化的频率 (fn) 被定义为开关频率除以谐振频率 (fO)。尽管只是一种近似值方法,但在理解 M(f) 如何随输入电压、负载和开关频率变化而变化时,该简化方程式还是非常有用的。

    标准化 LLC 半桥增益:


    (方程式 4)
    调节 dc 电流,以调节 LED 亮度
    LLC 谐振 LED 驱动器中实现 LED 亮度调节的一种方法是调节通过 LED 的dc 电流。这样做存在一个问题:DC 电流变化后,LLC 的输出阻抗也随之改变。如果考虑不周,则这种变化会带来 M(f) 变化,从而使 LED 驱动器设计变得更加复杂。
    负载变化带来的问题
    设计一个半桥转换器并不是一件容易的事情。设计人员要根据 ZVS 要求选择磁化电感 (LM)。他们还要调节 a1、Cr 和 Lr,以获得理想的 M(f) 和频率工作范围。但是,M(f) 会随 Q 变化而改变,而 Q 又会随着输出负载 (RL) 变化而变化。详情请参见图 2。
    谐振 LLC 半桥 LED 的 M(f) 变化会使电压环路补偿和变压器选择变得更加困难、复杂和混乱,因为在设计过程中需要考虑的各种变化实在太多了。


    图 2 M(f) 随负载而变化。
    不断变化的 LLC 增益曲线 (M(f)) 会在反馈环路中引起电压控制振荡器 (VCO) 的控制问题。VCO 一般由一个反馈误差放大器控制(EA(参见图 1))。开关频率随 EA 输出升高而降低以提高 LLC 增益,并在 EA 输出下降时增高。理想情况下,在一个 LLC 半桥设计中,M(f) 增益需在其最大开关频率下以最小值开始,同时 M(f) 随频率降低而上升。
    正常工作时的理想 M(f) 范围为虚线右侧部分(请参见图 2)。我们把这一区域称作电感区,这时 LLC 工作在 ZVS 下。虚线左边为电容区,在该区域内主级开关节点上没有 ZVS。在大信号瞬态期间,EA 会驱动 VCO,要求更低的开关频率,以提高增益。结果是,M(f) 增益工作在虚线左边区域,可能达不到理想增益,无法满足控制环路需求。
    这时,ZVS 丢失,并且反馈环路会让 LLC 控制器一直锁闭在该区域内。现在,反馈误差放大器尝试要求更低的开关频率,以提高功率级无法达到的增益,因为转换器可能工作在图 2 中虚线的右边区域。ZVS 丢失时,FET QA 和 QB 消耗更多功率,FET 会因过热而损坏。为了避免设计中出现这种问题,需要对所有 M(f) 曲线进行分析,然后适当地限制最小开关频率 (f),以防止转换器 (M(f)) 工作在图 2 中虚线的左侧区域。
    PWM 亮度调节简化设计过程
    对于要求亮度调节的 LLC 谐振半桥 LED 驱动器而言,简化设计过程的一种方法是使用一种被称为 PWM 亮度调节的技术。图 3 显示了一个 LLC 转换器的功能原理图,它的 LLC 控制器便使用了这种 PWM 亮度调节技术。在我们的例子中,我们使用了 UCC25710。


    图 3 使用 PWM 亮度调节技术的 LLC 半桥 LED 驱动器。
    这种技术利用一个控制 FET QC 的固定低频信号 (DIM),它以逻辑方式添加至QA 和 QB FET 驱动。DIM 信号为高电平时,LED 背光灯串被控制在某个固定峰值电流 (VRS/RS)。一旦 DIM 变为低电平,QA、QB 和 QC 立即关闭。QA、QB 和 QC 关闭后,LED 二极管便停止导电,同时输出电容器 (COUT)存储能量,以备准时开始下一个 DIM 周期。更多详情,请参见图 4 所示波形。


    图 4 PWM 亮度调节波形

    通过调节 DIM 信号的占空比 (D) 实现对平均二极管电流 (ID) 的调节,从而控制 LED 的亮度。

    LLC LED 驱动器简化设计.doc
  • 反相降压—升压拓扑可调节 LED 电流

    ti.21dianyuan.com/.../26.html

    LED 亮度控制要求有一个能够提供恒定、稳压电流的驱动器。要想达到这一目标,驱动器拓扑必须能够产生足够大的输出电压来正向偏置 LED。因此,如果输入和输出电压范围重叠时,我们又该做何选择呢?转换器有时可能需要逐渐降低输入电压,而有时可能需要升高输出电压。这种情况通常出现在那些具有大范围“脏”输入电源的应用中,例如:车载系统。这种降压/升压操作中有几种拓扑的效果较好,例如:SEPIC 或 4 开关降压—升压拓扑。这些拓扑一般都需要大量的组件,这便增加了设计的材料成本。然而,由于它们可提供正输出电压,因此人们通常也将其看作可接受的选择。但是,我们也不应忽略负输出电压转换器,它可以提供一种替代解决方案。

    图 1 显示了在恒定电流结构中驱动 3 个 LED 的反相降压—升压电路的原理图。该电路拥有诸多优点。首先,它使用了一个标准降压控制器,从而最小化了成本,并有助于尽可能的系统级的重复使用。如果需要的话,可以轻松地对该电路进行改造,以使用一个集成 FET 降压控制器,或使用一个同步降压拓扑,从而获得更高的效率。这种拓扑使用的功率级组件数目与一个简易降压转换器相同,由此实现开关调节器的最低组件数,以及相对于其他拓扑的最低总体成本。由于 LED 本身的输出为光线,因此其可能与 LED 负(而非正电压)电压偏置的系统级关系不大,这就使其成为一种值得考虑的电路设计。

  • 反相降压—升压拓扑可调节 LED 电流

    ti.21dianyuan.com/.../26.html

    LED 亮度控制要求有一个能够提供恒定、稳压电流的驱动器。要想达到这一目标,驱动器拓扑必须能够产生足够大的输出电压来正向偏置 LED。因此,如果输入和输出电压范围重叠时,我们又该做何选择呢?转换器有时可能需要逐渐降低输入电压,而有时可能需要升高输出电压。这种情况通常出现在那些具有大范围“脏”输入电源的应用中,例如:车载系统。这种降压/升压操作中有几种拓扑的效果较好,例如:SEPIC 或 4 开关降压—升压拓扑。这些拓扑一般都需要大量的组件,这便增加了设计的材料成本。然而,由于它们可提供正输出电压,因此人们通常也将其看作可接受的选择。但是,我们也不应忽略负输出电压转换器,它可以提供一种替代解决方案。

    图 1 显示了在恒定电流结构中驱动 3 个 LED 的反相降压—升压电路的原理图。该电路拥有诸多优点。首先,它使用了一个标准降压控制器,从而最小化了成本,并有助于尽可能的系统级的重复使用。如果需要的话,可以轻松地对该电路进行改造,以使用一个集成 FET 降压控制器,或使用一个同步降压拓扑,从而获得更高的效率。这种拓扑使用的功率级组件数目与一个简易降压转换器相同,由此实现开关调节器的最低组件数,以及相对于其他拓扑的最低总体成本。由于 LED 本身的输出为光线,因此其可能与 LED 负(而非正电压)电压偏置的系统级关系不大,这就使其成为一种值得考虑的电路设计。

  • LED 亮度控制要求有一个能够提供恒定、稳压电流的驱动器。要想达到这一目标,驱动器拓扑必须能够产生足够大的输出电压来正向偏置 LED。因此,如果输入和输出电压范围重叠时,我们又该做何选择呢?转换器有时可能需要逐渐降低输入电压,而有时可能需要升高输出电压。这种情况通常出现在那些具有大范围“脏”输入电源的应用中,例如:车载系统。这种降压/升压操作中有几种拓扑的效果较好,例如:SEPIC 或 4 开关降压—升压拓扑。这些拓扑一般都需要大量的组件,这便增加了设计的材料成本。然而,由于它们可提供正输出电压,因此人们通常也将其看作可接受的选择。但是,我们也不应忽略输出电压转换器,它可以提供一种替代解决方案。

     

     显示了在恒定电流结构中驱动 3 个 LED 的反相降压—升压电路的原理图。该电路拥有诸多优点。首先,它使用了一个标准降压控制器,从而最小化了成本,并有助于尽可能的系统级的重复使用。如果需要的话,可以轻松地对该电路进行改造,以使用一个集成 FET 降压控制器,或使用一个同步降压拓扑,从而获得更高的效率。这种拓扑使用的功率级组件数目与一个简易降压转换器相同,由此实现开关调节器的最低组件数,以及相对于其他拓扑的最低总体成本。由于 LED 本身的输出为光线,因此其可能与 LED 负(而非正电压)电压偏置的系统级关系不大,这就使其成为一种值得考虑的电路设计。

     1 利用负输出电压,降压升压拓扑调节恒定 LED 电流

     

    通过感应检测电阻器 R1 两端的电压并将其用作控制电路的反馈,从而对 LED 电流进行调节。控制器接地引脚必须为负输出电压的参考电压,以使该直接反馈能够正确工作。如果控制器为系统接地的参考电压,则需要一个电平转换电路。这种“负接地”对电路构成了一些限制。功率 MOSFET、二极管和控制器的额定电压必须高于输入与输出电压的和。

     

    其次,外部连接控制器(例如:开启操作等)均要求对从系统接地到控制器接地的信号进行电平转换,从而需要更多的组件。单就这个原因而言,最好的办法是去除或者最少化不必要的外部控制。

     

    最后,相比 4 开关降压—升压拓扑,施加到反相降压—升压拓扑中功率器件上的电压和电流应力更大,从而降低了相关效率,但该效率与 SEPIC 相当。即便如此,这种电路还是能够达到 89% 的效率。通过完全同步该电路,我们还可以将效率再提高 2%~3%。

    通过短路软启动电容器 C5 快速地开/关转换器,是 LED 亮度调节的一种简单方法。 显示了 PWM 输入信号和实际的 LED 电流。这种 PWM 亮度调节方法较为有效,因为转换器关闭,其在 SS 引脚短路时仅消耗极少的功率。但是,这种方法也相对较慢,这是因为转换器每次开启时都必须以一种可控方式来渐渐升高输出电流,这就在输出电流上升以前产生一个非线性、有限的时滞。同时,其还将最小开启时间占空比降低至10%-20%。在一些不要求高速和 100% PWM 调节的 LED 应用中,这种方法或许就足够了。

     

    这种反相降压—升压电路为工程师提供了另一种 LED 驱动方法。低成本降压转换器的使用以及较少的组件数量使其成为一种替代高复杂度拓扑的理想方法。

     2 PWM驱动(顶部)高效地控制了 LED 电流(底部)

  • LED调光电路设计方案

    时间:2012-04-27 1867次阅读 【网友评论0条 我要评论】  收藏

    随着能源危机的到来,高效的照明技术得到人们广泛的关注。发光二极管LED(Light Emitting Ddiode)是利用半导体PN结或类似结构把电能转换成光能的器件,以其高效率、低功耗、低电压驱动、使用寿命长等优点,已在众多应用领域中得到普遍的应用,如各类消费电子产品——手机、PDA、液晶电视的背光光源等。高亮度LED是传统白炽灯的一种理想替代方案,因为前者的寿命和效率都比后者高得多,且不同于紧凑型荧光灯泡,这些LED能够在低温下工作。为提高LED照明电路的使用性能和适用范围,本文将介绍一种具成本优势的高亮度白光LED(HBLED)调光方法。

    对于HBLD而言,在高照度工作条件下导通电压高达3~5V,工作电流可达0.15~3A。LED的发光亮度与流过LED正向电流的大小基本上成正比关系,所以LED应用的关键技术之一是提供与其特性相适应的电源或驱动电路。高亮度LED有两种基本的调光方法。第一种是PWM(脉冲宽度调制)调光方法,即在大于200 Hz的某些频率下以0%~100%的不同占空比来导通和关断LED。导通期间LED满电流工作,而关断期间LED上没有电流流过,可以保证色彩的一致性。第二种方法是控制流经LED串的电流量,这可能导致LED串的电压下降,并造成轻微的色差。不过如果观察调光器打开情况下工作的白炽灯,也会看到明显的色彩变化。

    高亮度白光二极管一般采用恒流电源驱动。因为随着LED逐渐变热,其电压降将减小,而且若LED串由恒压电源供电的话,电源往往会持续提供过多的电流,使输出电压增大,直到电源达到电流限值或LED失效。脉宽调制方式是用较高的频率开关LED,开关频率超出人一般能够察觉的范围,给人一种LED总亮的假象,现在普遍采用脉宽调制方式调节LED的亮度,在某些应用中,调光比可达5 000:1,常用的LED驱动有降压型(Buck)、升压型(Boost)、升降压型(Buck~Boost)等3种。LM3402是一款由可控电流源衍生的降压型稳压器,输入电压范围涵盖整个汽车应用领域,内置MOS管最多可以驱动5颗LED,性价比高,且接受领域较广、线路简洁实用,是众多LED驱动IC中间的佼佼者。

    1 系统结构

    1.1 总体结构

    由于单个HBLED的发光效率不能完全满足亮度要求,因此,需要用多个LED组成阵列,1个LM3402对5个高亮度发光二极管组成的串(HBLE-Ds)进行恒流驱动,接受1个微处理器P89LPC932的PWM脉宽调节控制,可实现无级调节,流过每个HBLEDs的电流约为120~350 mA。

    1.2 人机界面

    操作面板上有3个按钮(关闭、调亮和调暗按钮)和4个普通发光二极管指示灯。按下关闭按钮,将熄灭高亮度发光二极管串HBLEDs,再次按下此按钮,则可以回到原亮度显示状态,掉电或重启也可回到设定亮度状态;调亮和调暗按钮用于改变HBLEDs的亮度,对应4个指示灯,其中每个指示灯有亮暗2级指示,这样可以指示8挡亮度。

    1.3 驱动电路

    驱动电路是整个LED调光电路的核心,主要由1个微处理器P89LPC932和LM2402恒流稳压电路组成。LM3402是一款由可控电流源衍生的降压型稳压器,可驱动串联的大功率、高亮度发光二极管串,可以接受范围在*2V的输入电压。当使用引脚兼容的LM3402HV时,输入电压的上限可达到75V。按照需要对转换器的输出电压进行调节,以维持通过LED阵列的恒定电流水平。只要HBLEDs的组合前馈电压不超过Vo(MAX),则电路能保持任意数量的LED中的调节电流不变。图1为LM3402的典型应用电路示意图,其中RSNS为电流设定电阻,平均电流IF≈0.2/RSNS,RON取值与发光二极管串中的LED数量有关,5个以上LED时可取值300KΩ,经检测,恒流标称值为250mA时(RSNS=0.8 Ω),电流波动在±10mA以内。

    将OFF端口接地,从而将LM3402置于一个低功率关机状态(典型值为90μA)。在正常工作期间,该端口应始终保持在开路状态。

    P89LPC932是由飞利浦生产的低功耗单片微处理器,电源电压3.3V,可低功耗运行,适合于许多要求高集成度、低成本的场合。可以满足多方面的性能要求。P89LPC932采用了高性能的处理器结构,指令执行时间只需2~4个时钟周期,6倍于标准80C51器件。P89LPC932集成了许多系统级的功能,这样可大大减少元件的数目、电路板的面积以及系统的成本,其内部有2个定时器,可作为一个具有256个定时器时钟周期的PWM发生器使用。LED调光电路电气原理图如图2所示。

    2 程序设计

    2.1 程序结构

    控制器程序根据3个按钮的输入状态,实现开关或亮度调节,并将亮度状态在4个指示灯上显示出来。利用微处理器自身集成的EEPROM单元,可随时保存亮度状态n(PWM占空比)。主程序流程框图如图3所示。

    2.2 PWM发生

    高亮度白光二极管串HBLEDs的电流主要通过对LM3402的DIM端口进行PWM调节,实际电流占设定电流值的比例取决于PWM的占空比duty cycle。如果PWM信号的频率正好落在200Hz~20kHz之间,白光LED驱动器周围的电感和输出电容就会产生人耳听得见的噪声,所以设计时要避免使用20kHz以下低频段。

    将OFF端口接地,从而将LM3402置于一个低功率关机状态(典型值为90μA)。在正常工作期间,该端口应始终保持在开路状态。

    P89LPC932是由飞利浦生产的低功耗单片微处理器,电源电压3.3V,可低功耗运行,适合于许多要求高集成度、低成本的场合。可以满足多方面的性能要求。P89LPC932采用了高性能的处理器结构,指令执行时间只需2~4个时钟周期,6倍于标准80C51器件。P89LPC932集成了许多系统级的功能,这样可大大减少元件的数目、电路板的面积以及系统的成本,其内部有2个定时器,可作为一个具有256个定时器时钟周期的PWM发生器使用。LED调光电路电气原理图如图2所示。

    2 程序设计

    2.1 程序结构

    控制器程序根据3个按钮的输入状态,实现开关或亮度调节,并将亮度状态在4个指示灯上显示出来。利用微处理器自身集成的EEPROM单元,可随时保存亮度状态n(PWM占空比)。主程序流程框图如图3所示。

    2.2 PWM发生

    高亮度白光二极管串HBLEDs的电流主要通过对LM3402的DIM端口进行PWM调节,实际电流占设定电流值的比例取决于PWM的占空比duty cycle。如果PWM信号的频率正好落在200Hz~20kHz之间,白光LED驱动器周围的电感和输出电容就会产生人耳听得见的噪声,所以设计时要避免使用20kHz以下低频段。

    微处理器P89LPC932内部定时器TO/T1的PWM输出与计数输入和定时器触发输出占用相同的管脚,发生定时器溢出时自动触发端口输出。此功能通过AUXR1寄存器中的控制位ENT0和ENT1分别使能定时器0和1。该模式打开时,在首次定时器溢出前端口的输出为逻辑1。为了使该模式生效,必须清零C/T位以选择PCLK作为定时器的时钟源。定时器初始化设置参考程序如下:

    其中占空比duty cycle=256-TH1,定时器1的溢出将使P1.2或P0.7端口发生翻转,因此输出频率为定时器1溢出速率的1/2。

    2.3 节能模式

    经检测,在同等照度要求的情况下,采用LED调光控制系统的功耗较白炽灯降低90%以上,当然为进一步降低能耗,节能方法的探究仍然具有十分重要的意义。在多数时间,HBLEDs可能处于熄灭状态,若控制系统处于待机状态或掉电状态,可将功耗降低到最低;或将OFF端口接地,也可将LM3402置于一个极低的低功率关机状态。将微处理器P89LPC932的电源控制寄存器PCONA设置为0xFF时,外部功能模块掉电;将电源控制寄存器PCON设置为03H时,可将微处理器处于完全掉电状态,只有在中断触发的时候,才能唤醒,随即给外部功能模块上电,微处理器开始工作。微处理器主要通过键盘中断唤醒,键盘中断参考程序如下:

    3 结论

    本文介绍了一种基于恒流驱动电路LM3402的LED调光控制系统,该系统由微处理器P89LPC932 PWM控制输出电压,用户可通过按钮设定亮度。由于采用了低功耗微处理器,并应用多种节能方法,使得该调光系统的功耗极低,能够适用于多数LED照明节能改造场合,正好符合低碳经济的发展需求。随着LED发光效率的不断提高,封装技术的改进,使用寿命的不断增加,以及生产成本的降低,再加上驱动电路性能的改善,HBLED在照明市场上的推广前景十分广阔。目前该技术已投入批量生产,取得良好的社会效益。

    微处理器P89LPC932内部定时器TO/T1的PWM输出与计数输入和定时器触发输出占用相同的管脚,发生定时器溢出时自动触发端口输出。此功能通过AUXR1寄存器中的控制位ENT0和ENT1分别使能定时器0和1。该模式打开时,在首次定时器溢出前端口的输出为逻辑1。为了使该模式生效,必须清零C/T位以选择PCLK作为定时器的时钟源。定时器初始化设置参考程序如下:

    其中占空比duty cycle=256-TH1,定时器1的溢出将使P1.2或P0.7端口发生翻转,因此输出频率为定时器1溢出速率的1/2。

    2.3 节能模式

    经检测,在同等照度要求的情况下,采用LED调光控制系统的功耗较白炽灯降低90%以上,当然为进一步降低能耗,节能方法的探究仍然具有十分重要的意义。在多数时间,HBLEDs可能处于熄灭状态,若控制系统处于待机状态或掉电状态,可将功耗降低到最低;或将OFF端口接地,也可将LM3402置于一个极低的低功率关机状态。将微处理器P89LPC932的电源控制寄存器PCONA设置为0xFF时,外部功能模块掉电;将电源控制寄存器PCON设置为03H时,可将微处理器处于完全掉电状态,只有在中断触发的时候,才能唤醒,随即给外部功能模块上电,微处理器开始工作。微处理器主要通过键盘中断唤醒,键盘中断参考程序如下:

    3 结论

    本文介绍了一种基于恒流驱动电路LM3402的LED调光控制系统,该系统由微处理器P89LPC932 PWM控制输出电压,用户可通过按钮设定亮度。由于采用了低功耗微处理器,并应用多种节能方法,使得该调光系统的功耗极低,能够适用于多数LED照明节能改造场合,正好符合低碳经济的发展需求。随着LED发光效率的不断提高,封装技术的改进,使用寿命的不断增加,以及生产成本的降低,再加上驱动电路性能的改善,HBLED在照明市场上的推广前景十分广阔。目前该技术已投入批量生产,取得良好的社会效益。

    DIM1的逻辑是直接的,因此当DIM1端口为高电平时,LM3402会输出稳定的电流;当DIM1处为低电平时,禁止任何电流输出。所以对LM3402的DIM1端口输入PWM信号,可对LED阵列进行调光,PWM信号的最大逻辑低电平应为0.8V,最小逻辑高电平为2.2V。将DIM1端口悬浮或者接至逻辑高电平,一旦输入达到6V,LM3402就开始运作。

  • 整理了哈手上的LED设计资料,包括相关器件选型,设计方案等!赶快收藏吧!

    LED设计资料集总.rar
  • 三种高亮度 LED 照明的驱动设计

    时间:2012-10-22 842次阅读 【网友评论0条 我要评论】  收藏

    高亮度 LED 在照明应用中的使用越来越广泛。我们在这里将介绍一种简单的“气氛照明灯”,其仅使用了少量的组件。所有这三 种 LED 均由使用开关调节器的恒定电流来供电,同时亮度控制由能够产生三种 PWM 信号的 MSP430 微控制器来完成。可以用磨 砂玻璃外壳将印刷电路板安装到台灯中,或者也可以和 LED 聚光灯一起使用来进行间接照明。无论其功耗有多大,现在的 LED 通常都使用一个恒定电流源来驱动。这是因为以流明 (lm) 为单位的光输出量和电流量成正比例 关系。因此,所有的 LED 厂商都规定了诸如光输出(有时称为光学效率)、可视角度和波长等参数,作为正向电流 IF 的函数,而非像人 们所期望的那样作为正向电压 VF 的函数。所以,我们在电路中使用了适当的恒定电流调节器。用于高亮度 LED 的恒定电流市场上大多数开关调节器都被配置为恒定电压源,而非恒定电流源。将恒定电压调节器转换为恒定电流运行必须要对电路进行 简单、稍微的改动。我们使用了一个压降被调节了的电流感应电阻器,而非通常用于设定输出电压的分压器。图 1 显示了该电路的 简化图。

    图 1 一个开关调节器既可以被配置为一个电压源也可被配置为一个电流源LED 亮度调节

    LED 亮度调节的方法主要有两种。第一种也是最为简单的一种方法便是利用模拟控制直接控制流经 LED 的电流:通过降低流经 LED 的电流带来降低其亮度。然而不幸的是,这种方法存在两个严重的缺点。首先,LED 的亮度并非严格地和电流成正比例关系, 其次,当电流的变化超过 LED 额定值时发光的波长(以及由此带来的颜色变化)可能会随着电流变化而发生变化。这两种现象通常 是我们不希望看到的。稍微复杂一点的控制方法是使用能够提供 LED 额定工作电流的恒定电流源。这样,附加电路就可以利用给定脉冲间隔比 (mark -space ratio) 快速地将 LED 开启和关闭,从而平均发出更少的光,感觉就像是光的强度降低了。通过脉冲间隔比,我们可以较轻松地 对 LED 的感知亮度进行调节。这种方法被称为脉宽调制(或 PWM)。

    利用 PWM 进行调光作为一个示例,我们将会看到一些使用 TPS62260 实施 PWM 控制的方法。TPS62260 是一款同步降压转换器,其具有集成的开关 元件,典型的时钟频率为 2.25MHz。在图 2 的电路中,我们以黑色显示了将 PWM 信号直接连接至 EN(使能)引脚的可能性。整个开 关调节器电路和 PWM 信号一起开启和关闭。在我们实验中的试验表明,在这种配置中,我们可以使用一个高达 100Hz 的 PWM 频 率。这种排列的优点是其简易性:不需要额外的组件。另外,它还是最为高效能的实施方法,因为该开关调节器在关闭时仅产生非 常少的静态电流。其缺点是,LED 对使能引脚上高电平的反应被延迟。这是因为开关调节器具有一种“软启动”功能:当器件被开启时 ,输出电流逐渐上升,直到其达到额定的 LED 电流。在一些应用中,这种上升斜坡可能会存在一些问题,因为 LED 发光的波长随电 流从其最小值到正常工作电平的逐渐增强而变化。例如,在一个 DLP 投影仪或 LCD 电视面板的 LED 背光灯中,这种变化可能是我 们无法接受的。但是,就这个示范项目而言,肉眼无法看到这种影响。在第二个变量中(图 2 中红色所示部分),PWM 信号通过一个小信号二极管被耦合至 TPS62260 的误差放大器输入端。在本电路 中,一个施加于控制输入端的超过 600mV 的正电压会使误差放大器输入驱动过度,并由此关闭 LED。由于这个电路没有使用使能 输入,因此它不具有与调节器软启动功能相关的启动延迟,且 LED 被极为快速地开启和关闭。因此,上述电流斜坡所带来的输出波长变化在本结构中小到可以被忽略不计。另外,我们在实验室里发现,PWM 频率可以上升 到 5kHz。图 2 中蓝色部分显示了第三种可能性。这里的 PWM 信号被用于控制线连至 LED 的 MOSFET。MOSFET 使 LED 短路,并允许其 被更加快速地开启和关闭。该调节器运行在恒定电流模式中,而且电流将会流经 LED 或者 MOSFET。这种方法的一些缺点包括 MOSFET 带来的额外成本以及低效能:在 2Ω 电流感应电阻器中会有高达 180mW 的功率被不断耗散掉。其优点是较高的开关频率: 在一些实验中,我们看到 TPS62260 可以成功运行在 50kHz PWM 频率的状态下。

    图 2 实施调光功能的三种方法

    图 3 使用 JTAG 连接 (JP1)、eZ430 连接器 (JP2) 和旋转编码器 (R1) 基于 MSP430 微控制器的这种电路的控制部分

    图 4 由三个配置为恒定电流源的开关调节器和一个使用分立组件构建的 3.3V 稳定电源组成的电路部分实际电路

    该电路的核心(请参见图 3和图 4)为一个 MSP430F2131 微控制器。对它进行编程,以使其起到一个三重 PWM 生成器的作用,并 从旋转编码器 (R1) 读取数值。编码器值用于对一个包含所有红色、绿色和蓝色 LED 脉冲间隔比值的查寻表编索引。然后,相应的 PWM 信号就会出现在接近 122Hz 频率时的输出引脚 TA0、TA1 和 TA2 上。该信号的强度足以确保 LED 不会出现闪烁,因为眼睛将 单个光脉冲平滑成了一个平均可感知强度值。就实际实施而言,我们选择了图 2 中红色部分所示的 PWM 控制方法,其在电路复杂性和性能之间给出了一个较好的平衡值。 每一个 LED、红色(D14)、绿色(D24)和蓝色(D34)均由一个来自单个 TPS62260 DC/DC 转换器的恒定电流供电。2Ω 电阻器将流经 LED 的额定电流设定在 300mA。使用 TPS62260 的“大哥”级产品 TPS62290 可以获得更强的电流(高达 1A),其采用相同的方式进行 封装。使用小信号二极管(D13、D23 和 D33)耦合 PWM 信号。当 PWM 信号较高时,其会超过相应开关调节器的正常误差信号输入,其 具有一个 600 mV 的极限电压电平。这就是说,PWM 信号的高电平会迫使 LED 熄灭。当 PWM 信号最终降低时,该调节器再次启动 ,同时 LED 亮起。整个电路均由一个经过调节的 5V 1 A DC 电源适配器供电。使用一个电阻和一个齐纳二极管构建的简单稳压器将 5V 电平降低至 3.3V,以用于 MSP430 微控制器。该电路可以构建在如图 5 所示的印刷电路板上。有三种版本的电路板,它们之间的区别仅在于占地面积和 LED 连接排列的不同 。这就允许使用不同类型的 LED,在部件列表中列举出了一些可供选择的 LED。

    散热图在高功耗 LED 的性能中,工作温度是一个重要的参数,其会给工作寿命、正向电压、输出波长甚至是设备的亮度带来很大影 响。LED 的工作温度越高,其预期寿命就越短。考虑到这一因素,我们选择的实验印刷电路板尺寸,要能够允许将 SK477100 型散热 片(由 Fischer Elektronik 制造)安装到使用双面粘合热传输材料的电路板背面。在满功率下运行时,这可以将 LED 的温度从 61 °C(无 散热片)降低至 54 °C(有散热片)。该散热片还有助于加速印刷电路板区域上的热量耗散。为了制作一幅示例散热图,我们将电路板和 Cree 公司的 LED 组装在一起。图 6 生动地显示了结果,从而描述出了无散热片(图 左侧)和有散热片(图右侧)时 LED 的温度情况。

    软件本应用中 MSP430 软件的源代码可以从 Elektor 网站上下载。该代码以包括“MSP430F21x2.h”报头文件作为开始,该文件包含了所 有控制寄存器名称以及 MSP430 中可用控制比特的定义。接下来,颜色表的长度就被定义了出来。这里需要注意的是, “LED_TabLength”的值实际上被设定为四倍表长度。然后,按照颜色表本身,为每一个单独的 LED 使用一个单独的阵列。指示器 “LEDptr”被用于从单个颜色表阵列中读取所有三个输出的相应 PWM 脉冲间隔比设置:也可以参见文本框“颜色表”。微控制器在函数“main()”的开始便被初始化。看门狗定时器被关闭,可调系统时钟的校准值被加载,定时器 A 模块得到配置,同 时多元输入和输出均被适当地初始化。主环路由两个“while”块组成。在第一个“while”块中,颜色表指示器 LEDptr 增加,其将导致 PWM 脉冲间隔不断变化,并由此生成不同的颜色。使用两个嵌套的“for”环路来对这些颜色变化的总时间进行控制。第一个“while”环 路运行到旋转编码报告其输出中出现变化为止。然后,第二个被写成一个无限环路的“while”块接过控制权:它根据旋转编码被转换 的方向来增强或衰减颜色表指示器。

    光明的未来印刷电路板允许实施更多的功能,例如:专门针对 TI eZ430-RF2500 射频模块的芯片 (socket)。eZ430-RF2500 套件由两个射频模块 供电。(通过在射频模块的微控制器上使用测试引脚),其中的一个模块可以适用于旋转编码器,从而创建一个到 LED 电路板的无 线链路。这里所说的电路板主要用于实验和评估。由于可以获得 MSP430 源代码,因此我们可以对其进行修改以用于其他项目。我们还 可以在其他一些应用中运用开关调节器:希望您能乐在其中!

    图 5 用于构建图 3 和图 4 中电路的印制电路板。有三个不同版本供您下载,以支持不同类型的 LED。

    图 6 和 Cree 公司的 LED 一起组装的电路板散热图。左侧:无散热片;右侧:有散热片。

  •  高亮度 LED 灯在照明方面的运用范围愈来愈广。本文说明简单的「情境照明灯」,这种照明设备仅采用几种组件。三个 LED 灯均采用切换式稳压器来供应恒定电流,并以 MSP430 微控制器所产生三组 PWM 讯号来调控亮度。印刷电路板可装设于雾面玻璃台灯内,亦可用于间接照明的 LED 聚光灯。

           不论LED 灯的功率为何,现在通常都以恒定电流为电源,原因在于LED 灯以流明 (lm) 为单位的光输出功率会与电流呈正比。

           因此,所有 LED 制造商均指定灯光输出(有时称为光效率)、视角和波长等参数,作为顺向电流 IF 的函数,而非所谓顺向电压 VF 的函数。于是,我们也在电路中采用适合的恒定电流稳压器。

    高亮度 LED 灯的恒定电流

           市面上多数切换式稳压器均设计为恒定电压来源,而非恒定电流来源。只须以简单易懂的方式将电路略为修改,即可将恒定电压稳压器改为恒定电流的运作方式。我们并未采用常见的电压分配器来设定输出电压,而是以电流侦测电阻调节电压降幅。图 1 概略说明了这个电路。

    图 1 切换式稳压器可设定为电压来源或电流来源。

    调暗 LED 灯光

           基本上有两种方式可调暗 LED 灯光。第一种方式最简单,就是运用模拟控制,直接控制流经 LED 灯的电流,减少电流即可降低亮度。可惜这种方式有两项重大缺点:首先,LED 灯的亮度与电流大小并非完全呈正比关系;其次,灯光的波长(即颜色)会随着电流变化而改变,以致于不符该 LED 灯的额定值;这两种现象都是业者极力要避免的问题。

           较复杂的控制方式是采用恒定电流来源,这种电源已经过设定,可以为LED供应额定的运作电流。新增一个电路后,即可运用指定的标记间隔率(mark- space ratio)迅速开关 LED 灯,减少平均散发的亮光,因而呈现较低亮度。调整标记间隔率便可轻松调整 LED 灯的亮度,这种方式称为脉冲宽度调节(Pulse Width Modulation, PWM)。

    运用 PWM 调暗灯光

           以 TPS62260 为例,说明 PWM 控制的多种建置方式。TPS62260 是一款具整合式切换组件的同步步降转换器,以2.25MHz的一般性频率频率运作。在图 2 的电路中,我们以黑色标示出将 PWM 讯号直接连接到 EN(启用)接脚的可行方式。整个切换式稳压器的电路都是根据 PWM 讯号而开关。我们的实验结果显示,在这种设定中,可使用的 PWM 频率最高可达 100Hz。这种方法的优点在于简单:不需要使用其它组件,而在切换式稳压器停用时,泄露的静态电流也极低,因此这也是最节能的方式。但缺点是 LED 灯对于启用接脚的高层级响应会延迟,这是因为切换式稳压器具有「软启动」功能:装置启动时,输出电流会逐渐上升,直到达到额定 LED 电流为止。在某些应用中,这种上升现象可能会造成问题,因为在电流从最低值升至正常运作层级时,LED 灯的发光波长也随之变化。例如,在 DLP 投影机或 LCD 电视面板的 LED 背光中,便不容许出现前述变化,但在本次示范中,一般肉眼并不能察觉这个现象。

           第二种方式(图 2 中以红色表示),是将 PWM 讯号透过小讯号二极管而与 TPS62260 的误差放大器输入结合。在这个电路中,施加于控制输入的600mV 以上正极电压会过度驱动误差放大器而将 LED 关闭。由于这个电路未采用启动输入,因此不受稳压器软启动功能的启动延迟所影响,LED 因而能迅速地开关。

           在图 2 中第三种可行方式以蓝色标示。这种方法运用 PWM 讯号控制 LED 灯上的 MOSFET。MOSFET 可造成 LED 灯短路,使 LED 灯更迅速开关。稳压器是以恒定电流模式运作,该电流会经过 LED 灯或 MOSFET。这种方式的缺点包括增加了 MOSFET 的成本以及能源效率不佳:最多可能有 180mW 的电力消耗于 2Ω 电流侦测电阻中。其优点则是高切换频率:实验结果发现,TPS62260 以这种设定运作时,PWM 频率可高达 50kH。

    图 2 运用调光器功能的三种方式

    散热情况

           运作温度是高功耗 LED 灯效能的重要参数,会明显影响使用寿命、顺向电压、输出波长,甚至是照明装置的亮度。LED 灯的运作温度愈高,预期使用寿命愈短,因此,我们用于实验的印刷电路板尺寸,必须可在背面以双面贴附式热传导材质来固定 SK477100 型散热片(由 Fischer Elektronik 制造),以便在 LED 灯以全功耗运作时,将温度从 61 °C(未使用散热片)降至 54 °C(使用散热片)。散热片也有助于将热能分散到印刷电路板的各部分。

    光明的未来

           这个印刷电路板可用来执作更多功能,例如,电路板上有个插槽可用于安装德州仪器的 Z430-RF2500 无线电模块。eZ430-RF2500 套件包含两个无线电模块,其中一个套件可安装旋转编码器(使用无线电模块中微控制器的测试接脚),以建立连接到 LED 灯电路板的无线电连结。

  • 本文描述的单电池供电的LED 照明系统以TI MSP430F2011 和TI TPS61200 为主芯片。MSP430 系列单片机CPU 采用16 位精简指令集,集成了16 个通用寄存器以及常数发生器,极大的提高了代码的执行效率。提供了五种低功耗模式,可最大限度的延长手持设备的电池寿命。其数字控制振荡器(DCO)可在1us 内由低功耗模式切换到活动模式。MSP430F2011 是MSP430 系列单片机中的低引脚数单片机,其中集成了带捕获/比较功能的16 位定时器,10 个GPIO 口和一个多用途的比较器 [1]。TPS61200 是业界最低输入电压的DC/DC 升压转换器,其可在低至0.3V 的输入电压下高效工作;芯片内部集成的1.5A 开关大大简化了外部电路设计;在升压转换模式下工作效率可达90%,非常适合在便携式产品中应用。 单电池供电的LED 照明系统框图如图1 所示。为达到点亮LED 所需的导通电压,采用TPS61200 实现单节电池电压0.6~1.5V 到3.6V 的升压变换,并用以进行LED 的恒流驱动。由于MSP430 的工作电压为1.8-3.6V,所以单节干电池电压不能用于MSP430 的直接供电,若再增加一升压电路专为MSP430 供电,这将大大增加系统成本。根据系统特点以及成本考虑,可以采用MSP430 的供电电压取自TPS61200 的输出。另外,由于TPS61200 的静态电流典型值为50uA,为满足整个系统待机功耗小于1uA 的技术要求,TPS61200 在系统待机时也不能工作(即不能为MSP430 供电),否则很难达到系统的静态功耗要求。这样,系统待机时MSP430 处于断电状态。因此,如何实现MSP430F2011 供电,并使其实现整个系统控制,包括用比较器实现按键、按键开机自锁、关机状态记忆以及LED的开关控制以及节电控制等等,也是系统的设计要点。 图 1. 单电池供电的LED 照明系统框图 3 硬件电路设计 3.1 LED 驱动电路设计 对于单节电池供电的LED 照明设备,首先要选用升压芯片为LED 提供电源以保证LED 的正常导通。这里我们选用了TPS61200,其工作电压为0.3~5.5V,工作电流最大可承受1800mA,并且在升压转换中可达到90%的转化效率,完全能够满足该方案的设计要求。该照明设备选用白光LED,其导通压降典型值为3.2~3.5V,所以升压电路的升压输出值设计为3.6V。另外由于LED 的温度特性,为保证LED 的发光稳定性,必须实现LED 的恒流驱动且流过LED 的电流变化范围小于5mA,即需要设计Iled = 48mA±2mA。 图 2. TPS61200 典型应用电路 如图 2 所示的TPS61200 典型应用电路[2],其是一种输出电压可设定的电路。输出电压VOUT 与外接电阻分压器R1 和R2 有关,如下式所示: 式中,VFB=500mV,R2 可设定为51Kohm,则可根据该公式计算出R1 值。根据我们的设计要求,LED 驱动电压VOUT=3.6V,通过上式计算可求出R1=316Kohm。但这种算法是基于实现恒压输出的。 为实现 LED 恒流驱动,即实现亮度恒定的设计要求,我们需设计电流反馈实现恒流控制。如图3 所示的电路图。参考文献3 的LED 恒流控制计算公式,[3] 电流反馈电阻RF 的取值为1.5ohm。在设定RF=1.5ohm和R2=51Kohm的条件下,计算出反馈电阻R1=373Kohm;通过实测验证及调节并按标称电阻取值,R1=374Kohm。 图 3. 白光LED 恒流驱动控制 在图 3 中,EN 端是芯片TPS61200 的使能端,用以控制TPS61200。在本设计中,EN 端接按键和MSP430 的GPIO 使能端,用以控制升压电路的开通或关闭。系统的进一步功耗控制,也是基于单片机MSP430F2011 通过对TPS61200 的使能控制来实现的。 另外,PS 端、UVLO 端接VIN,PS 端高电平表示在重负载条件下工作(此时振荡器按固定频率工作);UVLO 接VIN,表示在VIN<250 mV 时,使电源关闭,VOUT=0V,并锁存;VAUX 接0.1uF 接地,此电容器在启动时向其充电到一定值后开关管才导通,这样它对开关管起缓冲;即软启动的作用,能够减小内置开关的开关应力以提高可靠性。 3.2 基于比较器实现按键以及电池电压检测 前面提到MSP430 由TPS61200 的输出供电,但由于系统功耗要求,TPS61200 在待机模式下不能工作。如何通过长按按键开启系统,并能够在释放按键后系统也能正常工作?同时,该按键在系统正常工作时也能够实现LED照明状态和灯光闪烁示警信号状态切换等满足照明设备的多种应用要求。如图4 所示基于比较器实现按键以及电池电压检测原理图。系统在待机状态(关机)时,当按键被长按。Button Enable 信号端产生等同于电池输入电压的高电平信号,该信号端连接TPS61200 的使能端引脚6(可参考图3)。这样TPS61200 进入工作状态,VOUT 引脚输出3.6V,并给MSP430F2011 供电。从而使MSP430F2011 进入工作状态,程序开始运行并使P1.7 置高通过GPIOEnable 信号驱动TPS61200 的使能端并保持其一直处于工作状态。这样,按键即使被释放后,也能保证系统一直处于工作状态。 在单片机控制系统中,大部分设计是采用GPIO 实现按键。但在本文设计中由于单片机在待机状态下没有供电即单片机不能正常工作,所以按键的判断很难通过GPIO 的方式实现。这里,采用MSP430F2011 的片上的比较器来实现的。MSP430 单片机的片上比较器内部可以产生用于比较的模拟电压参考VCC、1/2VCC、1/4VCC、固定电压0.55V 等。因此本设计采用内部提供0.55V 的基准电压来实现按键的检测,根据系统工作电压的特点,当按键被按时,其最低0.6V 的输入大于内部0.55V 的基准电压,从而在比较器输出端产生高电平,实现按键的检测。特别要注意的是,这个内部基准电压会随着供电电压变化和温度变化有小范围的变化,所以软件的滤波对于按键的判断还是非常有必要的,尤其是在最低电池电压条件下。 图 4. 基于比较器实现按键以及电池电压检测原理图 对于电池供电类应用,一般需具有电池电压检测功能。如图4 所示,当检测到电池输入电压低于设定的低电压报警阈值时,单片机MSP430F2011 通过GPIO Enable 信号输出低电平至TPS61200 的EN 引脚,以关断TPS61200。考虑到MSP430F2011 的片上资源,电池电压检测电路也采用单片机片上比较器,其和按键分时复用一个比较器。 4 系统控制流程及软件设计 4.1 记忆功能实现 本文设计的照明设备有两种工作状态,LED 照明状态和灯光闪烁示警状态,通过按键短按可在两种状态之间切换。对于每个状态,MSP430 能够记录当前状态以便下次开机时进入上一次的工作状态。

  • 驱动高功率 LED 相机闪光灯2011-07-18 11:36

    作者:Christophe Vaucourt,德州仪器 (TI) 便携式电源系统工程师

    引言

    拍照手机的质量正不断提高,其中包括更高的分辨率、更佳的焦距、功能增强的图像处理软件以及防抖动等特性。然而比较落后的一方面是在低光照环境中拍摄照片时的闪光灯电能。许多手机由于提供了一个低电流 LED 拍照闪光或快闪,因而性能大打折扣,就低光照条件下获得可接受图像质量的照片而言,这样的光能是远远不够的。

    要想成为一种实用的快闪技术,光源就必须能够在一定的目标范围内提供足够的亮度(例如:>50lux @ 1m)。业界一流的高功率、高亮度白光 LED 技术可实现这一目标—— 每个芯片的驱动电流高达 1500mA。

    功能整合的手机设备将越来越受市场的推崇,因此呈现出了对小型化、通用灵活性、外形尺寸以及上市时间的不断需求。为了满足这些需求,TI 推出了一系列易于设计、且优化的高功率 LED 闪光灯驱动器 (TPS61050/2/4)。这些器件具有不到 25mm2 的解决方案尺寸,并且能够为 LED 提供高达 5W 的电能。

    在采用单体锂离子 (Li-Ion) 电池的便携式应用中,白光 LED 两端压降与电流调节器两端净空电压 (headroom voltage) 的和可以低于或高于电池电压。这就是说 LED 驱动器拓扑应该能够处理降压和升压运行模式。

    实施降压转换最简单的方法是利用一个线性低侧电流调节器。这种方法的优势在于成本低且高效率,因为 LED 正向电压通常会稍微低于额定的电池电压。

    本文将解决 LED 相机闪光灯应用及相关的难题,其中包括:高功率 LED 驱动器架构、电池电流以及压降。

    LED 相机闪光灯驱动器拓扑

    不管厂商、型号、尺寸或功率如何,所有的 LED 都是在恒流驱动时性能最佳。以流明为单位的光输出与电流成正比,因此 LED 厂商规定了其器件在规定正向电流 IF 时的诸多特性(例如:光度、色温等)。高功率 LED 会呈现出一个陡峭的 I-V 曲线,因此以恒定电压驱动 LED 可导致明显且几乎无法预计的正向电流变化。

    TPS6105x 产品采用一个 2-MHz 恒定频率、电流模式脉宽调制 (PWM) 转换器生成驱动高功率 LED 所需的输出电压。该器件集成了一个基于 NMOS 开关的功率级和一个同步 NMOS 整流器。此外,该器件还实施了一个线性低侧电流调节器,以在电池电压高于二极管正向电压时控制 LED 电流。

    出于简化和减少芯片面积占用的目的,我们使用了低侧电流检测电路,该电流检测电路基于一个设计旨在饱和区域运行的有源电流镜。该器件根据电流阱两端的压降将自动在线性降压模式和具有最低 250mV 检测电压的电感升压模式之间转换。

    这种架构的优势在于在所有的 LED 电流和电池电压条件下其效率都非常高,因为可以将输入电压升压至 LED 正向电压与电流阱净空电压之和。

    电流检测的挑战在于精确和高效率,这是两个相互冲突的方面。电流检测/调节电路两端的净空电压越低,节约的电能就越多,但是这是以噪声灵敏度为代价的。

    由于拍照手机应用中 LED 闪光功能使用的不那么频繁,这样一来我们就有了使用电感功率级来实现其他功能的想法。TPS6105x 器件不仅可以起到稳压电流源的作用,而且还可起到标准升压稳压器的作用。电压模式运行既可通过软件命令完成,也可通过硬件信号 (ENVM) 完成。

    当为系统中其他高功率器件供电时(如 LED 驱动器、免提音频功率放大器或其他任何需要电源电压高于电池电压的组件),为了适当同步转换器该增加的运行模式可能会非常有用。

    图 4 白光 LED 闪光灯驱动器和辅助照明区电源

    为了支持 LED 电流调节或输出电压调节,TPS6105x 器件实施了一种全新的多功能调节方案(请参见图 2),该方案实现了在两个控制环路间的无缝即时转换。

    LED 电源、电池电流以及电压下降

    在效率计算中将要用到的输出功率关系为 PLED = VF x IF。LED 驱动效率(即电气 LED 功率与电池功率的比)等于:

    就一个给定的 LED 电流而言,正向电压会随着过程和温度的不同而不同。这就是说从电池功率到光输出的转换效率会发生变化而亮度却依然保持不变,这是因为亮度只取决于电流。

    因此,效率并不是评估功耗的一个充分的参数指数 (figure of merit)。我们必须要考虑的是电池电流与 LED 亮度的关系,即 LED 电流。就一个给定的 LED 亮度而言,输出功率才是电池输出能量多少的真正标尺。

    向电池施加一个大负载时,开路电池电压就会被压降扭曲,该压降是由于电池组内部阻抗引起的。电池阻抗很大程度上取决于下列参数:

    · 内部电池阻抗。崭新的锂离子电池的阻抗为 c.a. 50~70mW。各个电池的阻抗是不尽相同的,根据生产批次的不同阻抗变化大约为 15%。

    · 松弛效应。应用/去除脉冲负载后电池压始终在不停地变化。

    · 温度。电池阻抗与温度有着密切的关系,温度每下降 10°C 阻抗就会增加 50%。

    · 充电状态。内部阻抗取决于充电状态 (SoC),并在放电结束时内部阻抗增加。

    · 保护电路。锂离子电池组具有与电池串联的背对背保护 MOSFET,其电阻范围为 c.a. 50~70mW。

    · 连接器。通常电池组通过一对弹簧连接器(每个连接器都有 25mW 的 DC 电阻)与系统相连接。

    从电气角度来说,电池通常只是一个电压源,或者是一个与代表电池内部阻抗的电阻器串联的电压源。为了正确表述电池瞬态行为,我们应该使用一个等效电路,而非只是电阻。.

    当电池完成充电或放电后,其开路电压就会发生变化。因此,从电气角度来看其可以被看作是一个具有可变电容值 (CO) 的电容器。

    图 6 中,RA 和 RC 为相应阴极和阳极的总扩散、传导和电荷转移电阻。CA 和 CC 为表面电容。RSER 为包括电解物、电流集电器以及金属丝电阻在内的串联电阻。

    每个级都与其时间常数相关联,这会导致复杂的电气行为。

  • 为了保证照明级白光LED不仅能得到良好的应用,而且能获得较高的使用效率,首先是需要使其满足一定的应用条件,其次是需要采用相适应的驱动电路来满足LED工作的参数配合要求。

      一、应用要求

      1、驱动电路是一种专为LED供电的特种电源,要具有简单的电路结构、较小的占用体积,以及较高的转换效率。

      2、驱动电路的输出电参数(电流、电压)要与被驱动的LED的技术参数相匹配,满足LED的要求,并具有较高精度的恒流控制、合适的限压功能。多路输出时,每一路的输出都要能够单独控制。

      3、具有线性度较好的调光功能,以满足不同应用场合对LED发光亮度调节的要求。

      4、在异常状态(LED开路、短路、驱动电路故障)时,电路能够对电路本身、LED和使用者都有相应的保护作用。

      5、驱动电路工作时,对其他电路的正常工作干扰少,满足相关的电磁相容性要求。

      二、线性驱动应用

      线性驱动应用是一种最为简单和最为直接的驱动应用方式。在照明级白光LED应用中,虽然存在着效率低、调节性差等问题,但是由于其电路简单、体积小巧,能满足一般要求,因此在一些特定的场合应用较多。

      1、稳压电源Vdd+镇流电阻R方式图1为稳压电源+镇流电阻的驱动方式,电路的优点是结构简单、成本低。于与LED串联的电阻上的附加损耗较大,并且线性稳压电源Vdd自身的功耗也较大,因此两者叠加在一起所得到总体的效率很低(<50%),并且LED电流的控制精度低、亮度不可调节,所以一般只应用于较小功率、短时间照明的场合,如LED手电筒、应急照明灯。

      2、稳流电源Vdd+镇流电阻R+电子开关S方式:图2示出的驱动方式是图3驱动方式的改进方式,其优点不仅提高了LED电流的控制精度,而且LED的亮度也可以通过改变电子开关S的通断比来调节。然而,由于串联电阻和线性稳流电源的附加损耗均较高,因此所得到的总体效率仍然很低,具体的应用范围受到较大的限制。

      三、开关型驱动应用

      利用开关型驱动可以获得良好的电流控制精度和较高的总体效率,开关型驱动。

      应用方式主要分为降压式和升压式两大类:

      1、降压式开关驱动方式:降压式开关驱动是针对电源电压高于LED的端电压或者是多个LED采用并联驱动情况下的应用。

      电路的主要原理是利用按照要求通断的电子开关S所得到的斩波电流,来得到满足LED工作时要求的电流lf值,通过电流的负反馈作用(由R0进行电流取样)使得流经LED的电流If稳定在一定的范围内,同时可以兼有一定的调光功能。图中的电感L的作用是起到S开通时储能和S关断后的续流作用,以减少流过LED电流If的波动。

      2、升压式开关驱动升压式开关驱动是针对电源电压低于LED的端电压或者是多个LED采用串联驱动情况下的应用。

      电路的工作原理是利用按照要求通断的电子开关S的通断作用。在S开通时电源Vdd给电感L储能,S关断后L上的电压极性反转与电源电压Vf相叠加来得到满足LED工作时要求的电流值If和电压值Vr,通过电流负反馈作用(由R0进行电流取样),使得流过LED的电流If稳定在一定的范围内,同时可以兼有一定范围的调光功能。

      四、调光应用方式

      照明级白光LED不适合采用线性手过改变段来调节其发光的亮度,应该采用电流If的幅值不变(LED的工作电流),只改变If,单位时间内电流脉j中宽度的方式来调光,因为这样不会改变其发光的光谱而造成白光的偏色。常用的调光应用主要采用以下几种方式:

      1、脉宽调制方式:脉宽调制是一种常见的调节LED亮度的方式。通过改变加在LED上的矩形脉冲电流的宽度大,使LED上得到的平均电流在较大的范围内改变,可以获得较大范围的调光效果。

      2、频率调制方式:频率调制是另一种调节LED亮度的方式。保持加在LED上的矩形脉冲电流(幅值不变)的宽度不变,通过改变单位时间加在LED上的矩形脉;中电流的个数多少,使LED上得到的平均电流在较大的范围内发生变化,使得LED亮度具有较大范围的调节。

      3、位元角调制方式:位元角调制是采用一串含有二进制序列脉冲,并且序列脉冲的每一位宽度都按照其位值的比例来延展。通过改变单位时间加在LED上的矩形脉;中电流占有位值所延展的宽度,使LED上得到的平均电流在较大的范围内发生变化,以调节LED的亮度。

      总之,照明级白光LED是一种可用于替代普通照明的大功率固体发光器件,虽然受制于目前的价格,在一定程度上制约了应用的速度,但是由于其具有的优良性能所使然,随着研发技术的不断进步,可以预言照明级白光LED一定具有良好的应用前景。

  • 主题:基于LM3445的带隔离的高PF LED方案

    产品特性
     工作电压范围:80V 至270V (交流电) 导通角检测器/译码器可实现较宽范围的(100:1)调光。
     内置300Ω泄流电阻确保TRIAC 信号译码无误。可将输出电流调节至1A 甚至更高。
     主/从系统的控制方式,确保多通道照明系统的亮度均匀。
    相关应用
     目前已连接TRIAC 入墙式调光器的照明系统的更换工程:住宅照明系统,建筑物内外照明系统,工商业专用的照明系统。

    方案原理图:

    产品实物:

    主要特点:

      1,:带隔离

      2:PF>0.95

      3:调光能力'40:1

    参考:http://wenku.baidu.com/view/7853cf05b52acfc789ebc99f.html

  • TI UCC28810 110W离线LED照明解决方案

    来源:中电网   时间:2011-11-30   【字体:大 中 小】

    TI公司的UCC28810和UCC28811是通用照明电源控制器,能以临界导通模式控制反激,降压或升压转换器,集成了用于反馈误差处理的跨导电压放大器,参考电流发生器,电流检测(PWM)比较器,PWM逻辑和用来驱动外接FET的图腾柱驱动器.主要用在HB LED照明,工业,商业和住宅区照明以及室外照明.本文介绍了UCC28810/1主要特性, 方框图, 简化应用电路图以及110W离线AC/DC LED驱动器UCC28810EVM-003主要特性,电路图,材料清单和PCB布局图.

    The UCC28810 and UCC28811 are general lighting power controllers for low to medium power lumens applications requiring power factor correction and EMC compliance. It is designed for controlling a flyback, buck or boost converter operating in critical conduction mode. It features a transconductance voltage amplifier for feedback error processing, a simple current reference generator for generating a current command proportional to the input voltage, a current-sense (PWM) comparator, PWM logic and a totem-pole driver for driving an external FET.

    In the critical conduction mode operation, the PWM circuit is sELf-oscillating with the turn-on being governed by a transformer zero energy detector (TZE pin) and the turn-off being governed by the current sense comparator.

    UCC28810/1主要特性:

    Transition Mode Controller for Low Implementation Cost of AC Input LED Lighting Applications

    Implements Single Stage Power Factor Corrected LED Driver

    Enhanced Transient Response With Slew-Rate Comparator

    Interfaces with Traditional Wall Dimmers

    Accurate Internal VREF for Tight Output Regulation

    Two UVLO Options

    Overvoltage Protection (OVP), Open-Feedback Protection and Enable Circuits

    ±750-mA Peak Gate Drive Current

    Low Start-Up and Operating Currents

    Lead (Pb)-Free Packages

    UCC28810/1应用:

    AC Input General Lighting Applications Using HB LEDs

    Industrial, Commercial and Residential Lighting Fixtures

    Outdoor Lighting: Street, Roadway, Parking, Construction and Ornamental LED Lighting Fixtures

    图1. UCC28810/1方框图

    图2. UCC28810/1简化应用电路图

    110W离线AC/DC LED驱动器UCC28810EVM-003

    The UCC28810EVM-003 is an 110-W offline AC-to-DC LED current driver with power factor correction. This design utilizes a three stage approach with a universal input boost PFC stage, a low-side buck stage providing a controlled current source and a half-bridge DC transformer stage to provide isolation to four LED strings.

    This converter was designed to support up to four strings of 15 high brightness LED’s in series (58.5 V max per string). The converter will provide 500-mA average current to each string. The design incorporates an interface for microprocessor control to allow for shutdown into a low power mode (<0.5 W) and PWM dimming of the LED’s.

    The boost, buck and DC half bridge multi-transformer stages are included on a UCC28810EVM-003 single board assembly.

    UCC28810EVM-003主要特性:

    90-VRMS to 265-VRMS Operation

    Boost Follower or Fixed Output PFC Stage

    PFC Disable

    Output Current Disable

    External or Internal PWM Dimming

    Output Isolated from Line Input

    Open Circuit Protection (If one LED string fails open the remaining strings stay on.)

    UCC28810EVM-003典型应用:

    • AC Input General Lighting Applications Using HB LEDs

    • Industrial, Commercial and Residential Lighting Fixtures

    • Outdoor Lighting: Street, Roadway, Parking, Construction and Ornamental LED Lighting Fixtures

    • LCD TV LED Backlighting

    图3.UCC28810EVM-003外形图

    图4.UCC28810EVM-003单板装配图

    UCC28810EVM-003电性能指标:

    图5.UCC28810EVM-003 PFC级电路图

    图6.UCC28810EVM-003降压级电路图

    图7.UCC28810EVM-003 DC变压器电路图

    UCC28810EVM-003材料清单:

    图8.UCC28810EVM-003 PCB布局图(上:顶层元件布局,中:顶层铜布线,下:底层铜布线)

  • TI(NS )公司的LM3549是输出电流高达700mA的高效大功率RGB LED驱动器,它有三个恒流LED驱动器和一个降压升压开关电源(SMPS),用来高效地驱动RGB LED.LM3459具有过流和超温保护,I2C兼容接口以及欠压锁住, 降压升压转换器的峰值效率95%,主要用在手持视频投映仪和大功率LED驱动.本文介绍了LM3549主要特性和指标,方块图,典型应用电路以及评估板电路图和材料清单.

    The LM3549 is a high power LED driver with up to 700mA output current. It has three constant current LED drivers and a buck boost SMPS for driving RGB LEDs with high efficiency.

    LED drivers are designed for sequential drive so only one driver can be enabled at a time.

    LED driver output current settings can be stored to integrated non-volatile memory which allows stand-alone operation without I2C interface. Non-volatile memory is rewritable so current setting can be changed if needed.

    LM3549 has a fault detection feature that can detect several different fault conditions. In case of a fault error flags are set and FAULT output sends interrupt to control logic. Error flags can be read through I2C interface.

    Total brightness can be controlled with PWM input or with master fader register if I2C interface is used.

    LM3549主要指标:

    ■ Integrated buck-boost converter

    ■ Programmable LED drivers

    ■ 700 mA maximum drive current

    ■ ±6% Current accuracy over temperature

    ■ 24-pin LLP package

    LM3549主要特性:

    ■ Over-current protection

    ■ Over-temperature protection

    ■ I2C compatible interface

    ■ Under-voltage lockout

    ■ LED open and short protection and detection

    ■ 95% peak efficiency buck-boost converter

    ■ NVM memory for calibration data and standalone usage without I2C control

    ■ Soft start

    LM3549应用:

    ■ Portable video projectors

    ■ High power LED driving

    图1. LM3549方框图

    图2. LM3549典型应用电路图

    LM3549评估板

    The LM3549 is a high power LED driver with up to 700mA output current. It has three constant current LED drivers and a buck boost SMPS for driving RGB LEDs with high efficiency.

    LED drivers are designed for sequential drive so only one driver can be enabled at a time.LED driver output current settings can be stored to integrated non-volatile memory which allows stand-alone operation without I2C interface. Non-volatile memory is rewritable so current setting can be changed if needed.

    LM3549 has a fault detection feature that can detect several different fault conditions. In case of a fault error flags are set and FAULT output sends interrupt to control logic. Error flags can be read through I2C interface.

    Total brightness can be controlled with PWM input or with master fader register if I2C interface is used.

    LM3549 Evaluation board is designed to help getting familiarized with the LM3549. It can be used to measure key parameters of the LM3549 and to speed up design in of the device. The evaluation board has a microcontroller that acts as an USB to I2C interface. Microcontroller is also used to manipulate the digital control signals of the LM3549. LM3549 evaluation board can be powered from the USB interface or from external power supply. If evaluation board is used to measure the electrical parameters of the LM3549 or used with high output currents external power supply needs to be used.

    If evalution board is used to check the functionality of the LM3549 with small output currents or to support software development it can be powered directly from USB interface. This document describes how to get the LM3549 evaluation board up and running and how to use evaluation software.

    图3. LM3549评估板外形图

    图4. LM3549评估板电路图

    LM3549评估板材料清单:

  • http://www.songzhige.com/post/2674.html

    TI公司的LM3445带三端可控硅调光器的离线式LED驱动方案

    作者:毛兴武,王永斌,董飞 临沂电子研究所

    0 引言
        基于控制器IC的可调光LED驱动器通常采用的调光方式有两种,即数字PWM调光和模拟DC电压调光。基于相位控制的TRIAC传统白炽灯和卤素灯调光器若用于LED的调光控制,会产生100Hz或120Hz的闪烁,而且调光范围非常窄。最近美国国家半导体(NS)公司推出一种带有TRIAC调光译码器的离线式AC/DC降压(buck)恒流LED控制器LM3445,允许利用标准TRIAC调光器对LED进行宽范围的平稳无闪烁调光,打破了传统TRIAC调光器应用与LED节能照明的一个瓶颈。


    l LM3445的主要特点
        LM3445与先前的同类离线式AC/DC降压恒流LED驱动器IC比较,其主要特点是在芯片上设计了TRIAC调光译码器电路,能传感AC线路TRIAC调光波形,并将其转换成控制LED电流的调光信号,几乎能在从0%到100%的调光范围内实现无闪烁LED亮度调控。LM3445的其它特征主要有:
        (1)AC输入电压范围为80~270V,适用于国际通用AC线路;
        (2)能够控制大于1A的LED电流;
        (3)适合配置无源(被动式)功率因数校正(PFC)电路,满足能源之星固态照明(SSL)商业应用要求;
        (4)支持主/从控制功能的多芯片解决方案,使用一个TRIAC调光器和一个主LM3445,便能控制多个基于LM3445的从属降压变换器驱动的多串LED;
        (5)提供VCC欠锁定、门限是165℃的热关闭保护和电流限制;
        (6)固定关断时间可编程,开关频率可调节;
        (7)采用10引脚MSOP封装,结温范围为一40℃~+125℃。


    2 基于LM3445的TRIAC调光离线LED驱动电路
        1)基本电路
        LM3445的内部结构及由其组成的TRIAC调光离线式LED驱动电路如图l所示。这种AC—DC恒流LED驱动电路主要含有五个部分,即TRIAC调光器、桥式整流器BR1、整流线路电压检测及调光译码器电路、无源功率因数校正(PFC)电路和降压(buck)式DC/DC变换器电路,整个系统的核心是LM3445。
        2)电路工作原理
        (1)TRIAC调光器
        在图1中,串联在桥式整流器BR1输入端的TRIAC调光器采用传统基于相位控制的电路,如图2所示。R1、R2和C1值决定C1上电压达到双向触发二极管(DIAC)触发电压(约32V)之前的延迟时间。对于负载是白炽灯时,R1值减小,TRIAC的导通延迟缩短,导通角增加,灯亮度则增强;反之,若R1值增加,TRIAC导通角将减小,灯光则变暗

    在图1中,TRIAC调光器被串接在AC线路输入端,通过LM3445的调光译码器电路,可以控制LED串的电流,实现亮度调控。
        (2)TRIAC调光译码电路
        TRIAC调光译码电路由整流线路电压感测电路、TRIAC导通角检测电路和调光译码器电路三部分组成(见图1)。

    ①线路电压感测
        位于桥式整流器之后的R1、15V的齐纳二极管VD1和VT1组成一个串联通路整流器,将整流的线路电压转换为一个适当的电平被IC(LM3445)的引脚BLDR感测。由于VT1源极未连接电容器,当线路电压降至15V以下时,允许IC引脚BLDR上的电压随整流电压升高和降低。R5的作用有两个:一是用作泄放IC引脚BLDR节点寄生电容的电荷;二是在小电流输出上操作时,为调光器提供所需要的保持电流。
        二极管(肖特基型)VD2和电容C5的作用是,当IC引脚BLDR上的电压变低时,维持IC引脚VCC上的电压,使IC能够正常操作。
        ②角度检测和调光译码器
        TRIAC导通角检测电路利用一个门限为7.2V的比较器监视IC引脚BLDR来确定TRIAC是导通或者关断。比较器输出经4μs的延迟线控制一个泄放电路并驱动一个缓冲器。缓冲器输出(引脚ASNS)摆幅被限制在0~4V,经R1和C3组成的低通滤波器滤波,通过IC引脚FLTRl输入到斜坡比较器(反相端),与斜坡产生器产生的5.88kHz、l~3V的锯齿波相比较,斜坡比较器输出驱动引脚DIM和一个N沟道MOSFET。MOSFET漏极上的信号经内部370kΩ和IC引脚FLTR2上的电容C4组成的(第二个)低通滤波器滤波,输至内部PWM比较器。调光译码器输出一个幅度从0~750mV变化的DC电压,相应的调光器占空比是从25%到75%变化,TRIAC导通角范围从45℃到135℃,从而直接控制LED的峰值电流,获得几乎从0%到100%的调光范围。
        (3)无源PFC电路
        电容C7和C9以及二极管VD4、VD8、VD9组成部分滤波填谷式无源(即被动式)PFC电路。用其替代一个传统大容量滤波电容器,可以改善线路功率因数。电容C10(10nF)在C7和C9充电时,可以衰减电压纹波。无源PFC电路输出电压Ubuck,作为降压变换器的DC总线电压。
        在没有TRIAC调光器接入的情况下,当AC线路电压高于其峰值的1/2时,VD3和VD8导通,VD4和VD9截止,电容C7和C9以串联方式被充电,并且电流会流入负载。当AC线路电压低于其峰值的l/2时,VD3和VD8反向偏置,而VD4和VD9正向偏置,C7和C9以并联方式放电,电流流入负载。图3所示为不带TRIAC调光器时AC线路电压UAC、整流电压UBR1和PFC电路输出电压Ubuck波形。由图3可知,虽然Ubuck波形很不平滑,但在AC线路半周期内的电流导通角达120°(即从30°到150°),线路功率因数达0.9以上。而只用单个大容量电容滤波虽然能获得比较平滑的DC电压,但电流流动角仅约60°(即从60°到120°),线路功率因数不超过0.6。

    加入TRIAC调光器时的相关电压波形如图4所示,其中θ为TRIAC的导通角。
        (4)DC—DC降压变换器
        控制器LM3445、功率MOSFET(VT2)、电感器L2、二极管VD10、电阻R3和电容C12等,组成开关型DC—DC降压变换器,用来驱动LED串。
        当LM3445引脚GATE上的PWM信号驱动VT2导通时,通过L2和LED串的电流线性增加,并被R3感测。当R3上的电压等于在IC引脚FLTR2上的参考电压时,VT2则关断,L2释放储能,VD10导通,电流通过LED串和L2,并从其峰值线性减小。C12用作消除大部分电感L2的纹波电流,R4、C11和VT3为设置固定关断时间提供一个线性电流斜坡信号。

    3 主要参数与元件值的计算
        LM3445可以在80~270VAC的通用AC线路上工作,现设输入电压范围是90~135VAC,开关频率fsw=250kHz,变换器效率η≥80%,LED正向压降UF=3.6V,通过LED串的平均电流ILED=400mA,串联LED的数量n=7,LED串的总电压降则为ULED=nUF=7×3.6V=25.2V。因篇幅所限,在此我们仅重点介绍无源PFC电路和降压变换器中主要元件的选择。
        1)填谷式无源PFC电路元件的选择
        在没有TRIAC调光时,填谷式电路电压Ubuck波形如图5所示。对于60Hz的线路频率,半周期时间是8.33ms。AC电压在30°和150°上的值为峰值的1/2,保持时间tx为半周期的1/3,即8.33ms×(1/3)=2.78ms。在90VAC的低线路电压上,Ubuck最小值为

    VD3选用与VD4、VD8、VD9相同的二极管,C10选用10nF/250V的薄膜电容器。
        2)降压式变换器元件选择
        有些元件值的计算都与变换器关断时间tOFF有关。降压变换器在理想情况下的占空因数可表示为:

    式中:η=80%,ULED=25.2V,fSW=250kHz。在110VAC输入电压上,填谷式电路的电压根据式(4)可得:

    通过R4的电流ICOLL在50μA与100μA之间,选择ICOLL=70μA,R4=ULED/ICOLL=25.2V/70μA=360kΩ。R4选用365kΩ的标准电阻。
        根据公式i=C(dU/dt),通过R4和C11的电流为ULEd/R4,电流进入到C11产生一个线性充电特性,IC引脚COFF内部比较器(见图1)门限为1.276V,因此C11=(ULED/R4)(tOFF/1.276V)=(25.2V/365kΩ)(3μs/1.276V)=162pF
        C11选用120PF的标准电容值。
        电感器L2纹波电流△iL2按电感平均电流的30%来选取,△iL2则为ILED×30%=400mA。在关断期间,L2上的电压△UL2=ULED,△t=tOFF,根据公式△UL2=L2(△iL2/△t)得:
        L2=(ULED×tOFF)/△iL2=(25.2V×3μs)/120mA=630μH
        在非调光情况下和连续导电模式,iL2的峰值电流为
        iL2(PK)=IAVE+△iL2/2=ILED+120mA/2=460mA
        当电感电流达到峰值时,IC内控制MOSFET关断,此时R3上的峰值感测电压是750mV。因此,R3值为:
        R3=750mA/iL2(PK)=750mV/460mA=1.63Ω
        选择R3=1.8Ω。
        C12选择lμFl50V的电容,VD10选择50V、1A的二极管。
        在图1中,其他元件选择如下:
        BRl选用400V、0.8A的HD04-T,VD1选用15V的DZX84C15LT1G,VD2选用40V、120mA的BAS40H,VT1和VT2选用400V、4A的FQD7N30TF,VT3选用100V、170mA的PNP晶体管,R2=100kΩ,R5=1kΩ,C5=22μF/50V,C3=470nF/16V,C4=100nF/16V。


    4 结束语
        LM3445是含有TRIAC调光译码器的固定关断时间AC/DC降压恒流LED驱动器。基于LM3445的离线式LED照明电源,利用传统白炽灯TRIAC调光器,能够对LED串进行宽范围平稳无闪烁调光,实现100:1的调光比,从而解决了标准TRIAC调光器应用于LED调光的瓶颈。

    http://www.songzhige.com/post/2674.html

    作者:毛兴武,王永斌,董飞 临沂电子研究所

  •   简易电源电路设计参考

  • 转发--UCC28810的应用实例

    用切实可行的螺纹旋入式 LED 来替代白炽灯泡可能还需要数年的时间,而在建筑照明中 LED 的使用正在不断增长,其具有更高的可靠性和节能潜力。同大多数电子产品一样,其需要一款电源来将输入功率转换为 LED 可用的形式。在路灯应用中,一种可行的配置是创建 300V/0.35 安培负载的 80 个串联的 LED。在选择电源拓扑结构时,需要制定隔离和功率因数校正 (PFC) 相关要求。隔离需要大量的安全权衡研究,其中包括提供电击保护需求和复杂化电源设计之间的对比权衡。在这种应用中,LED 上存在高压,一般认为隔离是非必需的,而 PFC 才是必需的,因为在欧洲 25 瓦以上的照明均要求具有 PFC 功能,而这款产品正是针对欧洲市场推出的。

    就这种应用而言,有三种可选电源拓扑:降压拓扑、转移模式反向拓扑和转移模式 (TM) 单端初级电感转换器 (SEPIC) 拓扑。当 LED 电压大约为80 伏特时,降压拓扑可以非常有效地被用于满足谐波电流要求。在这种情况下,更高的负载电压将无法再继续使用降压拓扑。那么,此时较为折中的方法就是使用反向拓扑和 SEPIC 拓扑。SEPIC 具有的优点是,其可钳制功率半导体器件的开关波形,允许使用较低的电压,从而使器件更为高效。在该应用中,可以获得大约 2% 的效率提高。另外,SEPIC 中的振铃更少,从而使 EMI 滤波更容易。图 1 显示了这种电源的原理图。


    图1:转移模式 SEPIC 发挥了简单 LED 驱动器的作用。

    该电路使用了一个升压 TM PFC 控制器来控制输入电流波形。该电路以离线为 C6 充电作为开始。一旦开始工作,控制器的电源就由一个 SEPIC 电感上的辅助绕组来提供。一个相对较大的输出电容将 LED 纹波电流限定在 DC 电流的20%。补充说明一下,TM SEPIC中的 AC 电通量和电流非常高,需要漆包绞线和低损耗内层芯板来降低电感损耗。

    图 2 和图 3 显示了与图 1 中原理图相匹配的原型电路的实验结果。与欧洲线路范围相比,其效率非常之高,最高可达 92%。这一高效率是通过限制功率器件上的振铃实现的。另外,正如我们从电流波形中看到的一样,在 96% 效率以上时功率因数非常好。有趣的是,该波形并非纯粹的正弦曲线,而是在上升沿和下降沿呈现出一些斜度,这是电路没有测量输入电流而只对开关电流进行测量的缘故。但是,该波形还是足以通过欧洲谐波电流要求的。

    图2:TM SEPIC 具有良好的效率和高 PFC 效率。


    图2:线路电流轻松地通过 EN61000-3-2 Class C 标准。

    作者:John Betten

    Robert Kollman

    德州仪器

  • 我觉的很有用的LED资料,希望大家一起学习!

    高质量高效率LED电源设计  

       半导体照明这一新兴领域的出现,使同时专长于电力电子学、光学和热管理学(机械工程)这三个领域的工程师成为抢手人才。目前,在三个领域都富有经验的工程师并不很多,而这通常意味着系统工程师或者整体产品工程师的背景要和这三大领域相关,同时他们还需尽可能与其他领域的工程师协作。系统工程师常常会把自己在原有领域养成的习惯或积累的经验带入设计工作中,这和一个主要研究数字系统的电子工程师转去解决电源管理问题时所遇到的情况相似:他们可能依靠单纯的仿真,不在试验台上对电源做测试就直接在电路板上布线,因为他们没有认识到:开关稳压器需要仔细检查电路板布局;另外,如果没有经过试验台测试,实际的工作情况很难与仿真一致。

      在设计LED灯具的过程中,当系统架构工程师是位电子电力专家,或者电源设计被承包给一家工程公司时,一些标准电源设计中常见的习惯就会出现在LED驱动器设计中。一些习惯是很有用的,因为led驱动器在很多方面与传统的恒压源非常相似。这两类电路都工作在较宽的输入电压范围和较大的输出功率下,另外,这两类电路都面对连接到交流电源、直流稳压电源轨还是电池上等不同连接方式所带来的挑战。

      电力电子工程师习惯于总想确保输出电压或电流的高精确度,但这对LED驱动器设计而言并不是很好的习惯。诸如FPGA和DSP之类的数字负载需要更低的核心电压,而这又要求更严格的控制,以防止出现较高的误码率。因此,数字电源轨的公差通常会控制在±1%以内或比它们的标称值小,也可用其绝对数值表示,如0.99V至1.01V。在将传统电源的设计习惯引入LED驱动器设计领域时,通常带来的问题是:为了实现对输出电流公差的严格控制,将浪费更多的电力并使用更昂贵的器件,或者二者兼而有之。

      成本压力

      理想的电源是成本不高,效率能达到100%,并且不占用空间。电力电子工程师习惯了从客户那里听取意见,他们也会尽最大力量去满足那些要求,力图在最小的空间和预算范围内进行系统设计。在进行LED驱动器设计时也不例外,事实上它面对更大的预算压力,因为传统的照明技术已经完全实现了商品化,其价格已经非常低廉。所以,花好预算下的每一分钱都非常重要,这也是一些电力电子设计师工程师被老习惯"引入歧途"的地方。

       要将LED电流的精确度控制到与数字负载的供电电压的精度相同,则会既浪费电,又浪费成本。100mA到1A是当前大多数产品的电流范围,特别是目前350mA(或者更确切地说,光电半导体结的电流密度为350mA/mm2)是热管理和照明效率间常采纳的折衷方案。控制LED驱动器的集成电路是硅基的,所以在1.25 V的范围内有一个典型的带隙。要在1.25V处达到1%的容差,亦即需要±12.5mV的电压范围。这并不难实现,能达到这种容差或更好容差范围的低价电压参考电路或电源控制IC种类繁多,价格低廉。当控制输出电压时,可在极低功率下使用高精度电阻来反馈输出电压(如图1a所示)。为控制输出电流,需要对反馈方式做出一些调整,如图1b所示。这是目前控制输出电流的唯一且最简单的手段。

    图1a:电压反馈; 图1b:电流反馈

      深入研究之后,就会发现这种做法的一个主要缺点是:负载和反馈电路二者是完全相同的。参考电压被加在与LED串联的一个电阻上,这意味着参考电压或LED电流越高,电阻消耗的功率越大。所以,第一代专用LED驱动集成电路的参考电压要远低于现在的产品,这类似于电池充电器。电压更低意味着功耗更低,也意味着更小、更便宜、更低损耗的电流检测电阻。在图1b所示的简单的低端反馈环境下,200mV是常规的电压选择。但是,要在200mV参考电压下实现±1%的容差,则需要一个价格很高的集成电路,此时相对于标称参考电压的容差为±2mV。尽管这并不是不可能实现的,不过更高的精度需要更高的成本。±2mV的容差需要高精度电压参考所需的生产、测试和分档技术,此时,附加成本应花费在更智能的LED驱动器上。新的费用的价值是增加了一个反馈回路,借助该回路,可以利用光输出(而非电流输出)来控制如何驱动LED。

       测量光输出

      就像数字产品设计师在电源设计中遇到不确定问题时会采取仿真解决问题那样,电力电子工程师出身的系统架构师在进行LED灯具设计时会想到高精度的输出。LED制造商已经清楚的表明,光通量与前向电流成正比。利用相同的电流驱动所有LED,那么每个LED会产生相同的光通量。因此,电力电子工程师就会得出结论:高精确度的电流是必须的。这样一来,他们就忘记了光输出的流明和勒克斯值(而不是安培值)才是重点。测量电流是很容易的,而相对的,测量光则需要昂贵的大型设备,如图2所示的积分球,而大部分电子工程师对积分球都不太了解。

    图2:光学积分球截面图

       另外,即使容差为±0.1%的电流源(其价格会相当高)有巨大的市场价值,它对在实际光输出中产生严格的容差值上没有什么作用。通过观察LED光通量的分档可以确定这一点。表1给出了世界三大顶级电力光电半导体制造商的高端冷白光LED在350mA和25?C条件下的光通量分档结果。注意最后一列是各分档的容差平均值,而不是所有光通量分档范围内的容差。

    表1 世界三大顶级电力光电半导体制造商的高端冷白光LED在350 mA和25?C下的光通量分档结果。

      计算光输出精度

      了解到来自单个通量分档的LED光输出会有±3%到±10%的容差之后,系统工程师可能会因此得出结论:驱动电流容差值必须是越严格越好。然而从统计学角度来看,该观点并不正确。一个常见的但不正确的假设是:任何值的整体容差都等于最坏条件下各值的简单累加。为LED供电的电流源的容差和LED光通量的容差是互不相关的 - 它们在最初阶段就已相互独立。对于不相关的两个因子X和Y,整体容差Z并不是X和Y的容差之和,而是应该利用下述表达式进行计算:

       表2和图3给出了整体容差和假设电流源容差的对比情况,此时假设LED光输出在350mA的区域内随前向电流呈线性变化。

    表2 整体容差和假设电流源容差的对比情况。

    图3:整体容差和假设电流源容差的对比情况。

      根据方程(1)可以发现,最低容差因子的作用大于其他,而且实际的整体容差值要远优于各个因子在最坏情况下的容差和,尤其是当其中一个因子远好于其他因子时。由图3可知,电流源容差的最合理目标是将其控制在LED光输出的容差范围内。请记住:出于成本考虑,许多灯具会使用来自不同分档的LED。表3列出了相同LED所具有的最高两档、三档、四档光通量分档下的容差值。

    表3 相同LED所具有的最高两档、三档、四档光通量分档下的容差值

       调光控制

      LED制造商和他们的分销伙伴正努力地改进产品的光通量容差,在合理的成本范围内提供更细的分档。对于那些希望产品可使用5年或50,000个小时,并在使用期内保持整体光输出不变的设计师而言,即使想满足最密集的通量分档和设定0.1%的容差电流源也很难实现。因为热量和随着时间延长而产生的性能衰减等两个重要因素会降低LED的光通量,即使电流源容差和LED光通量容差都达到0.001%也无法解决该问题。考虑到这些损耗,高质量固态照明产品设计师必须找到具有额外反馈回路的电源,也即找到热量和光源。为此需要进行调光控制,那些可以对输出电流进行线性控制和PWM控制的集成电路便成为最佳选择。

       需要光控制的应用领域

      路灯是一个很好的光源示例,因为它有严格的法定标准限制。对于公路用路灯,欧盟国家规定了其最小和最大的光输出及照明模式。对于符合此规定并提供五年或更长使用寿命的LED路灯来说,设计时必须考虑到热量引起的即时光通量损失,以及更长时间下性能下降带来的通量损失。

      一种很自然的方法是使用光传感器,比如构成线性控制回路的光电二极管。在系统启用的第一天,就应该只使用整体可用驱动电流的一部分,这样做是考虑到随着时间推移,驱动电流将慢慢增至一个上限,籍此保证光输出恒定。可以将光电二极管偏置,并转换为一路脉宽调制信号,这将有助于在调光范围内维持更加恒定的相对色温,其线性控制回路更加简单,一般而言调光范围也比较小。根据不同的时间、运动传感器或其他节省功耗的措施,对光输出进行控制时,PWM控制将更加有用。图6给出了具有更长寿命、光输出恒定的LED灯的假定原理框图。

    图6:PWM(脉宽调制)用于日/夜控制,线性控制用于光输出.

      本文小结

      输出电流精度只是评价LED驱动器性能的一个方面,但是当LED本身的光通量容差保持在远高于±1%的水平时,即使对电流源容差和数字处理器中电压轨的容差要求一样严格,也几乎没有任何意义,平均LED电流容差应当几乎等于光通量容差。本文基于单个分档的误差探讨了一种理想情况,并给出了一些实际的例子,这些例子使用两个或更多分档的LED,其容差也可更轻松地达到±5%、±10%或更高。在额外的控制回路中,应该将成本开销用于1%的电流控制,并可将电力用在更高的检测电压方面。有些LED灯会更强调简单实用和低成本,此时即使采用线性调光也会显得过于复杂和昂贵,但如果想要设计出发挥LED全部性能的灯具,就需要使用线性控制或PWM方式或者二者协调使用,从而令产品性能和寿命达到最优。

    来源:电源系统设计网

    具体地址是www.cnledw.com/.../detail-24657.htm

  • 德州仪器推出一款具备40V、1.2A 集成开关的高亮度LED 驱动器,可驱动多达3 个串联1W的LED。新型TPS61165 器件具备优异的高性能特性以及3V~18V 的宽的输入电压范围,使设计人员能够采用单节电池供电的应用或9V/12V 总线负载点设计的多个高功率LED(图1),其典型应用电路如图2 所示。

    TPS61 165 通过数字单线接口或脉宽调制(PWM)信号来控制LED 的亮度。数字接口可对内部寄存器进行编程,以将LED 电流设置为32 个对数步长值之一。此外,该转换器还具有多种内置保护特性,如LED 开路保护、软启动、过流限制以及过热保护等。

    除了能够驱动照明LED 之外,TPS61165 还可驱动背光LED,支持宽度达9 英寸的多媒体显示屏,从而满足超级移动PC、LCD 电子相框、工业激光二极管或医疗以及工业照明等应用的需求。此外,德州仪器还同步推出了可支持3V~18V 输入电压的最新TPS61160 和TPS61161 转换器。两款器件都集成了0.6A 的电流开关,目标应用为有小型显示屏的便携式应用与电池供电型应用,如便携式游戏机、GPS 系统以及智能电话中的3 英寸或4 英寸小型LCD 显示屏背光技术。TPS61160 能驱动多达6 个LED,支持26V LED 开路保护,TPS61161 则能驱动多达10 个LED,支持38V LED 开路保护。与TPS61165 一样,LED 的亮度不仅可通过单线数字接口或PWM 信号进行调节,还能通过模拟调光来消除噪声。

    采用2mmx2mm QFN 超薄封装,德州仪器的TPS61165、TPS61161 与TPS61160 现已开始供货。

  • T I公司的TPS92551是恒流降压LED驱动微型模块,最大驱动电流450mA,功率23W,能驱动多达16个LED/串.器件集成了包括电源指示器的所有功率元件,电源效率高达95%,输入电压4.5V-60V,LED电流从300mA到450mA可调整,开关频率800kHz,主要用在通用照明如台灯,装饰灯,街灯,建筑照明如水下照明,壁龛照明和聚光灯等.

    LED 驱动器微型模块,其可消除 LED 驱动器设计中常见的外部组件及复杂布局安放问题。该 450 mA TPS92550 及 TPS92551 DC/DC LED 驱动器模块是业界率先采用统一 IC 封装集成所有所需电源及无源电路系统的产品,可为 LED 实现高达 23 W 的功率。

    图1.TPS92551方框图

  • 普通照明用LED驱动电源一般采用的都是基于PWM控制器的反激式变换器电路拓扑。这种解决方案虽然结构简单,但一般不能利用传统白炽灯用三端双向晶闸管(TRIAC)调光器对LED进行调光,这是因为白炽灯是一种纯电阻性负载,而AC/DC电源系统与白炽灯的情况完全不同。用iW3610型AC/DC数字电源控制器构建反激式LED驱动器,可以与所有类型的调光器兼容操作,调光范围达2%~10%,并且无闪烁现象发生,在无调光器时的功率因数达0.9,系数效率达85%。

    1.iW3610的结构与特点

    iW3610采用8引脚SOIC封装,

    iW3610芯片集成了启动和输入电压检测电路、反馈信号调节电路、A/D转换器、D/A转换器、调光器检测与相位测量电路、恒流控制电路、过电流保护比较器、峰值电流限制比较器、斩波(chopping)电路MOSFFT栅极驱动器以上主电源中MOSFET栅极驱动器等

    iW3610各个引脚功能如下所述。

    引脚1(OUTPUT(TR)):斩波电路MOSFFT开关栅极驱动输出。

    引脚2(VSENSE):变压器辅助绕组感测信号输入,用于次级边电压反馈以对输出进行调节。

    引脚3(VIN):整流输出电压检测信号输入,用于调光器相位检测、输入欠电压/过电压保护,在启动期间为芯片提供电源电流。

    引脚4(VT):外部关闭控制端。如果关闭控制不用,应当连接一个电阻接地。

    引脚5(GND):地引脚。

    引脚6(TSENSE):初级电流感测输入,用于逐周期峰值电流控制。

    引脚7(OUTPUT):反激式变换器MOSFET开关栅极驱动输出。

    引脚8(VCC):控制器电源,启动阀值是12V,欠电压关闭门限电平为7.5V。

    iW3610采用数字控制技术,具有包括:斩波电路,其作用是提高功率因数,为调光器提供动态阻抗;隔离反激式电路拓扑,提供低成本解决方案,允许利用传统白炽灯调光器对LED进行调光。iW3610能够对墙上调光器类型进仃检测和对相位进行测量。iW3610在谷值模式开关,在无调光器时的效率可达85%。iW3610采用初级侧反馈恒流控制技术,获得容差±5%的LED电流调节。


    2.1 电路组成

    电路主要由以卜四个部分组成。

    一是输入EMI滤波器。L1、L2和C1组成EMI滤波器电路,R1和R2用来阻尼LC谐振振荡。

    二是桥式镇流器。BR1为全桥桥式整流器。

    三是斩波电路。VD1~VD3、C2和C4、L3、VT2、R6和R7组成斩波电路,用作为调光器提供动态阻抗。

    四是反激式变换器。U1、VT1、变换器T1等构成反激式转换器。T1初级绕组上的R8、C5和VD4,组成RCD型初级钳位电容。T1次级侧上的VD6和C7组成输出整流滤波电路,R14为预负载,T1辅助(或偏置)绕组、VD5和C6组成U1引脚VCC上的偏置电源。辅助绕组同时提供输出反馈,消除了次级侧上的感测与光电耦合反馈电路。

    调光器串接在AC线路输入相线L上。U1能够检测调光器类型(如前沿调光器、后沿调光器等),并检测调光器相位。当U1检测到调光器不存在时,电路照样可以操作,而且具有高功率因数。

    2.2 电路工作原理

    (1) 电路启动

    接通AC电源后,整流后的DC高压经电阻R3、R4和U1内部连接在引脚VIN和引脚VCC之间的二级管对电容C6充电。只要U1引脚VCC上的电压超过12V的阀值,U1中的控制逻辑使能,U1进入正常操作模式。在开始时的前3个AC半周期期间,U1引脚OUTPUT(TR)保持高电平,VT2导通。在调光器类型和AC线路周期被检测后,恒流电路使能,输出电压开始上升。当输出电压高于LED串上的总正向电压时,U1开始在恒流模式操作。

    在U1启动后,U1引脚VCC则由偏置电源供电。

    (2) 调光器检测与相位测量

    调光器检测与调光器相位测量通过电阻R3、R4和U1引脚VIN内部电路来实现。

    调光器检测分两步:第一步是确定调光器是否存存:第二步是在检测到调光器存在的情况下确定调光器的类型(是前沿调光器还是后沿调光器)。调光器检测发生在系统启动后的第三个周期。当U1引脚③上的电压VIN<0.1V的时间不超过600us时,U1则确定调光器未接入,U1将调光器类型设置在“无调光器”。如果VIN<0.1V的时间超过600us,U1则确定调光器的存在。如果调光器存在,U1将探测调光器类型。在调光器检测期间,U1引脚①输出高电平,斩波电路中的MOSFET(VT2)导通,从而为调光器产生一个纯电阻性负载。

    在发现调光器出现的第二个周期中检测VIN周期并锁定备用。当VIN超过0.1V并计数输入电压采样时,开始测量调光器相位。如果可控硅导通时间为ton,调光周期是t,调光器相位则为ton/t。调光器中可控硅的导通角越大,电源输出功率也就越大,LED则越亮;反之,调光器导通角越小,LED亮度也就越暗。

    (3) 斩波电路

    斩波电路的作用是为调光器提供动态阻抗,并为反激式转换器建立能量。VD2在电路C4上的电压Vc4低于输入电压时为充电C4提供通路,当TRIAC的触发时可以减少浪涌电流。在斩波周期期间,当VT2导通时,L3导通时,L3存储能量;当VT2关断时,L3释放能量,使VD3导通。

    L3、VT2、VD3和C4等组成的电路与常规功率因数校正(PFC)升压变换器类似。在不接入调光器时,通过L3的平均电流与输入AC电压同相位,因此产生高于0.9的功率因数。

    斩波电路相关波形。

    (4) 初级侧反馈与恒定LED电流操作

    iW3610采用初级侧反馈,无需次级侧感测和光耦合器。T1辅助绕组(匝数为NAUX)上的电压VAUX是输出电压发射的结果。VD6上的正向压降仅约0.5V,若忽略这个正向压降,当T1次级绕组匝数为Ns时,辅助绕组上的电压则为VAUX=Uo×(NAUX/NS)。T1辅助绕组上的电压经R9和R10馈送到U1引脚VSENSE,经内部恒流控制电路将输出电流调节到一个恒定电平上,而不管输出电压与否。

    初级侧电流通过VT1源极电阻R13检测,以执行峰值电流限制(PCL)和过电流保护(OCP)。

    (5) 谷值模式开关

    在恒流输出操作期间,U1采用谷值模式开关,即VT1在漏一源极谐振电压最低点上开关,因此具有最小的开关损耗和EMI。

    (6) LED温度漂移补偿

    U1引脚VT外部连接一个NTC热敏电阻RNTC,为LED提供温度漂移补偿。RNTC能够感测到LED温度。当温度较高时,U1可使LED变暗。如果LED温度达到限制阀值,U1将关断。

    3 结束语

    iW3610是一种采用先进的数控技术的反激式电源控制器。基于iW3610的可调光LED驱动器,能够检测调光器的存在、调光器类型并测量调光器相位,无闪烁调光范围达2%~100%。iW3610采用初级侧感测技术,无需次级反馈电路和环路补偿元件,并通过脉冲接脉冲的波形分析来实现LED恒流调节。iW3610在准谐振模式的操作,在无调光器时提供85%的效率。iW3610结合一个配合调光的斩波电路,再无调光器时的功率因数达0.9。iW3610全范围的保护功能,使系统具有高可靠特性。

  • 为了保证照明级白光LED不仅能得到良好的应用,而且能获得较高的使用效率,首先是需要使其满足一定的应用条件,其次是需要采用相适应的驱动电路来满足LDE工作的参数配合要求。

    一、应用要求

    1、驱动电路是一种专为LED供电的特种电源,要具有简单的电路结构、较小的占用体积,以及较高的转换效率。

    2、驱动电路的输出电参数(电流、电压)要与被驱动的LED的技术参数相匹配,满足LED的要求,并具有较高精度的恒流控制、合适的限压功能。多路输出时,每一路的输出都要能够单独控制。

    3、具有线性度较好的调光功能,以满足不同应用场合对LED发光亮度调节的要求。

    4、在异常状态(LED开路、短路、驱动电路故障)时,电路能够对电路本身、LED和使用者都有相应的保护作用。

    5、驱动电路工作时,对其他电路的正常工作干扰少,满足相关的电磁兼容性要求。

    二、线性驱动应用

    线性驱动应用是一种最为简单和最为直接的驱动应用方式。在照明级白光LED应用中,虽然存在着效率低、调节性差等问题,但是由于其电路简单、体积小巧,能满足一般要求,因此在一些特定的场合应用较多。

    1、稳压电源Vdd+镇流电阻R方式图1为稳压电源+镇流电阻的驱动方式,电路的优点是结构简单、成本低。于与LED串联的电阻上的附加损耗较大,并且线性稳压电源Vdd自身的功耗也较大,因此两者叠加在一起所得到总体的效率很低(《50%),并且LED电流的控制精度低、亮度不可调节,所以一般只应用于较小功率、短时间照明的场合,如LED手电筒、应急照明灯。

    2、稳流电源Vdd+镇流电阻R+电子开关S方式:图2示出的驱动方式是图3驱动方式的改进方式,其优点不仅提高了LED电流的控制精度,而且LED的亮度也可以通过改变电子开关S的通断比来调节。然而,由于串联电阻和线性稳流电源的附加损耗均较高,因此所得到的总体效率仍然很低,具体的应用范围受到较大的限制。

    三、开关型驱动应用

    利用开关型驱动可以获得良好的电流控制精度和较高的总体效率,开关型驱动。

    应用方式主要分为降压式和升压式两大类。

    1、降压式开关驱动方式:降压式开关驱动是针对电源电压高于LED的端电压或者是多个LED采用并联驱动情况下的应用。

    电路的主要原理是利用按照要求通断的电子开关S所得到的斩波电流,来得到满足LED工作时要求的电流lf值,通过电流的负反馈作用(由R0进行电流取样)使得流经LED的电流If稳定在一定的范围内,同时可以兼有一定的调光功能。图中的电感L的作用是起到S开通时储能和S关断后的续流作用,以减少流过LED电流If的波动。 2、升压式开关驱动升压式开关驱动是针对电源电压低于LED的端电压或者是多个LED采用串联驱动情况下的应用。

    电路的工作原理是利用按照要求通断的电子开关S的通断作用。在S开通时电源Vdd给电感L储能,S关断后L上的电压极性反转与电源电压Vf相叠加来得到满足LED工作时要求的电流值If和电压值Vr,通过电流负反馈作用(由R0进行电流取样),使得流过LED的电流If稳定在一定的范围内,同时可以兼有一定范围的调光功能。

    四、调光应用方式

    照明级白光LED不适合采用线性手过改变段来调节其发光的亮度,应该采用电流If的幅值不变(LED的工作电流),只改变If,单位时间内电流脉j中宽度的方式来调光,因为这样不会改变其发光的光谱而造成白光的偏色。常用的调光应用主要采用以下几种方式:1、脉宽调制方式:脉宽调制是一种常见的调节LED亮度的方式。通过改变加在LED上的矩形脉冲电流的宽度大,使LED上得到的平均电流在较大的范围内改变,可以获得较大范围的调光效果。

    2、频率调制方式:频率调制是另一种调节LED亮度的方式。保持加在LED上的矩形脉冲电流(幅值不变)的宽度不变,通过改变单位时间加在LED上的矩形脉;中电流的个数多少,使LED上得到的平均电流在较大的范围内发生变化,使得LED亮度具有较大范围的调节。

    3、位角调制方式:位角调制是采用一串含有二进制序列脉冲,并且序列脉冲的每一位宽度都按照其位值的比例来延展。通过改变单位时间加在LED上的矩形脉;中电流占有位值所延展的宽度,使LED上得到的平均电流在较大的范围内发生变化,以调节LED的亮度。

    总之,照明级白光LED是一种可用于替代普通照明的大功率固体发光器件,虽然受制于目前的价格,在一定程度上制约了应用的速度,但是由于其具有的优良性能所使然,随着研发技术的不断进步,可以预言照明级白光LED一定具有良好的应用前景。

  • 一般来说,LED恒流驱动IC主要分为升压型,降压型和升降压型(SEPIC)。这些里面还可以分成很多不同的型号。选择这些不同类型芯片的原则如下:

    1. LED功率的大小

    在选用恒流驱动芯片时,首先要选择具有足够的输出功率的芯片,能够驱动所要求的LED功率。也就是驱动芯片的输出电压应当满足所串联的LED总电压,而其输出电流应当能够满足所驱动的LED的总电流。

    2. 输入电压的高低

    虽然输入电压也有一定的可选择性,一般来说,假如初级电源是太阳能,其电源电压通常都比较低,所以可以采用升压型,例如,SLM2841,SLM2846,SLM2842S.假如初级电源是从交直流变换器变换过来,就可以变换成比较高的电压,然后采用降压型恒流驱动,因为降压型通常具有较高的效率,例如,SLM2842J, SLM2861等。

    3. 输入电压的稳定度

    假如输入电压不是很稳定,而且可能在比较大的范围内变动,例如汽车电源,这时就应当采用升降压型,例如SLM2842SJ,或者选用可以耐很高电压(涵盖了其电压的变动范围)的降压型芯片,例如SLM2842J.

    4. LED负载情况

    LED的连接通常可以是串联或是串并联,串联的数目越多,所需的驱动芯片数目就越少。但是,串联的LED数目过多,也有一定的风险,就是只要损坏一颗LED整串LED就会都不亮。所以通常只串6颗LED,最多不要超过10颗。 所以驱动芯片的输出电压必须要达到40V,但更高的输出电压也就不必要了。假如一定要驱动10颗以上的串联LED就可以采用外置MOSFET管的SLM2842,不论是升压型,降压型还是升降压型都可以外置大功率MOSFET,以提高其输出电压和输出电流,从而加大其输出功率。现在龙茂公司有两种外加MOS管的升压型恒流驱动模组,一种可以驱动12个1W或3W串联LED,另一种可以驱动15个1W或3W串联的LED

    5. 多串LED时的恒流控制能力

    假如把几串LED并联在一起,而芯片只有一个输出,这时其恒流作用只是对这几串的总电流恒流,而不能保证每一串的电流都一样大,除非各串LED的性能完全一致。而且假如有一串LED中有一个LED坏了,这时候,这串的LED就不亮,但恒流的电流不变,所有的电流都灌到剩下的几串LED中去,假如原来只有2串LED,就会使剩下的那串LED的电流加倍,使得剩下的那串LED很容易就被烧毁。所以通常建议每串LED使用一个驱动芯片。也就是不要把几串LED并联起来,共用一个驱动芯片控制。除非每个LED都有并联斉纳二极管保护,在一个LED损坏时,就把这个LED短路,这串LED的剩下几颗LED仍然可以亮,也不至于影响其它串LED的工作。另外有一种恒流驱动芯片具有多路恒流的能力,这时候能够采用一个芯片来驱动几串LED,例如SLM2846,它可以驱动六串LED,而且能对每一串LED进行独立的恒流控制,个串之间互不干扰。

  • 目前,有关高亮度LED (发光二极管) 的市场分析统计数据存在着巨大的差异。尽管预测存在分歧,但有一个趋势是明确的,即:高亮度 (HB) LED市场将以一种惊人的速度迅猛成长。根据法国Yole Development公司所做的预测,所有LED的市场规模将在2012达到103亿美元。在这当中,高亮度和超高亮度LED总共将占到约44.5亿美元;几乎是2007年7.83亿美元市场规模的5.5倍 (基于封装式LED)。

    是什么支持了如此令人注目的成长潜力?首先,LED的发光效率是白炽灯泡的10倍,以及荧光灯的2倍,因此,当提供一个给定的光输出量 (单位:流明)时,它所需的电能以及产生的热量大幅度下降。随着LED的进一步发展,它从电能产生光通量的效率将继续升高。其次,当今世界非常重视环保,LED照明不需要操作、暴露和处置荧光灯泡中常见的有毒汞蒸汽。第三,白炽灯泡每1,000小时就需要更换,荧光灯泡的使用期限为10,000小时,而LED的寿命则长达100,000小时以上。在大多数应用中,这使得LED能够被永久地嵌入在最终产品或系统中,而无需采用某种固定物。具体实例包括汽车中的车身面板或HDTV中的LCD显示屏,因为它们在汽车或HDTV的使用期限内将永远不需要更换。此外,LED的面积和高度要比同类替代方案小几个数量级,而且可以制作成非常扁平的外形,因此能够永久性地嵌入在汽车的内部和外部装置以及扁平的消费类电子产品中。另外,通过采用一种红光、绿光和蓝光LED配置,还可以提供无限多种彩色光。LED的调光和接通/关断操作速度之快远远超过了人眼的分辨能力,因而在背面照明HDTV及其他类型的显示器中实现了巨大的改善。如果没有LED,高对比度比和高分辨率清晰型LCD HD TV将无法成为现实。

    然而,照明系统设计师所面临的最大挑战之一是:如何优化最新一代LED的所有优势?由于LED通常需要一个准确而高效的DC电流源以及一种调光方法,因此,必须设计LED驱动器IC,以在众多应用中满足这些要求。电源解决方案必须具备高效、功能坚固性、紧凑和成本效益性等特点。可以说,对于LED驱动而言,汽车应用和大型HDTV LCD显示器的背面照明应用是其所面临诸多极苛刻应用当中的两个。由于LED在汽车应用中所拥有的综合优势,它们已经被各种汽车照明形式全面采用,从车前灯到仪表盘/导航装置背面照明以及普通的车身内部/外部照明等一应俱全。传统上一直由CCFL (冷阴极荧光灯) 来提供的LCD HDTV背面照明应用正在逐渐地被规模较大、能够以单独的LED串来调光的高亮度LED阵列所取代,从而实现了非常精准的局部调光。与采用CCFL背光源的传统HDTV相比,这使得对比度比提高了一个数量级。如前文所述,由于具有局部调光能力和超快的响应时间,因此可以实现LED亮度的即时调节,从而消除了在CCFL背光照明HDTV固有的运动图像模糊这一长期存在的棘手问题。

    汽车LED照明

    诸如小外形尺寸、低功耗和快速接通时间等优势开创了高亮度LED被当今汽车所广泛采用的局面。LED在汽车中的初始应用是中央高架停车灯 (CHMSL);这些应用使用红光LED来提供一个非常扁薄的照明阵列,该照明阵列易于安装,而且永远不需要更换。

    传统上,白炽灯泡是最为经济的光源,而且仍然被许多汽车所采用。然而,随着可用照明空间的日益缩小以及对照明光源使用寿命要求的不断提高,在许多应用中,由LED所提供的灯光色彩和精简型设计方案正在迅速取代白炽灯泡。信息娱乐系统中的传统CCFL-LCD背面照明被白光LED阵列所取代的现象正变得越来越普遍,后者提供了更加精准且可调的背面照明以及将轻松超越汽车寿命的使用期限。更有甚者,人们还在利用一种电“可操纵”型高电流LED阵列来开发车前灯 (见图1),而该领域一直是被卤素/氙灯丝设计所把持的。几乎所有的汽车照明应用 (包括车身内部/外部照明和背光照明应用) 都将逐步过渡为采用LED。在该环境中使用LED的好处具有诸多积极的含意。首先,它永远不需要更换,因为其长达100,000小时以上的固态寿命 (服役年限:11年半) 比汽车的使用寿命还要长。这使得汽车制造商能够把它们永久性地嵌入“车舱内”的照明系统中,而无需像以往那样留有用于更换灯丝灯泡的入口。由于LED照明系统不需要白炽灯泡所要求的安装深度或面积,因此还可使汽车的造型发生引人注目的显著变化。

    图1示出了近期投产的Lexus LS600h LED车前灯。Audi (奥迪) 公司的R8和GM公司的Escalade拥有类似的选项。所有这些车辆的总体照明配置都是相似的。每个车前灯部件包含5种专为所有照明要求而优化的LED光束,这些光束包括:近光、远光、弯道光、昼间行驶灯和转向信号,它们全部都由LED来提供。标准光束一般将需要35W至50W的功率。听起来好像并不太多,但请不要忘记:LED提供的光通量是卤素灯的10倍,因此50W LED的光输出与500W卤素灯是相当的。远光所需的功率与标准光束相同或稍高,而弯道光、昼间行驶灯和转向信号将需要较少的功率。这些光束均可利用单个HB LED驱动器来驱动,这就是凌力尔特公司的LT3755。由于电能消耗有可能超过200W,可见采用发热量极少的高效率LED驱动器是何等的重要。

    图1:HB LED Lexus LS600h车前灯/转向信号/行驶灯。

    汽车LED照明的设计参数

    为了确保最佳的性能和长久的工作寿命,LED需要一个有效的驱动电路。这些驱动电路必须能够从相当苛刻的汽车电源总线获取工作电源,而且还应兼具成本和空间“效益性”。为了维持其长久的工作寿命,一定不得超过LED的电流和温度限值。

    大多数车前灯应用都需要大约50W的LED电流。凌力尔特的LT3755专为服务于此类应用而设计。它能够把汽车总线电压 (标称值为12V) 提升至高达60V,以驱动多达14个串联的1A LED,如图2所示。

    图3描绘了LT3755的效率 (可高达93%)。这一点极其重要,因为它免除了对任何功率元件进行散热的需要,从而实现了非常紧凑的占板面积。虽然图2中的电路是升压模式拓扑结构,但LT3755运用了独特的高压侧电流检测设计,因而使其还能够根据应用的特殊要求而被配置成升压、降压模式、降压-升压模式或反激式拓扑结构。

    图3:图2所示LT3755电路的效率曲线。

    LT3755从一个内部调节7V电源来驱动一个低压侧外部N沟道MOSFET。固定频率、电流模式架构在一个很宽的电源和输出电压范围内实现了稳定和精准的运作。LT3755提供了一个恒定电流源,LED驱动器IC要想在输入电压不稳定的情况下实现恒定的LED亮度,这是必不可少的。在汽车应用中,这一点特别重要,原因是输入电压会由于在诸如“冷车发动”和“负载突降”等过程中遇到的瞬变而发生巨大的摆动。LT3755的最大输入电压为40V,这令其即使在主汽车总线承受40V瞬态电压的情况下 (这在负载突降条件下是很常见的) 也能够调节LED电流和电压。

    一个参考于地电位的电压反馈引脚充当众多LED保护功能电路 (例如:开路LED保护) 的输入,并可使转换器起一个恒定电压源的作用。一个频率调节引脚允许用户在100kHz至1MHz的范围内进行频率设置,以优化效率和性能,同时最大限度地缩减外部元件尺寸。如果需要进行外部同步,则可使LT3755-1版本在其整个100kHz至1MHz的频率范围内同步至一个外部时钟。

    LT3755的True ColorTM PWM调光功能实现了高达3000:1的调光比,而发射光的色彩无变化 (见图4),从而使得能够利用PWM的占空比来对LED车前灯进行经常性的调节,以适应各种环境条件。由于凌力尔特的高电流LED驱动器是电流模式稳压器,因此它们并非直接调节电源开关的占空比,而是由反馈环路负责在每个周期中控制开关中的峰值电流。与电压模式控制相比,电流模式控制改善了环路动态特性,并提供了逐周期电流限制。

    图4:图2中的True Color PWM调光。

    HDTV背面照明

    虽然看似并无关联,但汽车中的信息娱乐和导航显示器的LED背面照明却刺激了具高调光比的HB LED背光源的应用,汽车内部各种各样的环境照明条件使得宽调光比范围成为必需,而在HDTV应用中,这也是产生彩色的最大动态范围所需要的。

    成长速度最快的消费类电子产品市场之一是平板HDTV。由于消费者需要屏幕较大的HDTV和较高的分辨率,因此这种需求迅速地从等离子体HDTV转移到了LED HDTV。根据DisplaySearch公司的预测,等离子体HDTV的销售额将在2008年达到顶峰 (240亿美元),而LCD HDTV在2008年将实现750亿美元的市场销售额,并在2010年以前增长至930亿美元。然而,LCD HDTV存在多种缺点,包括运动模糊和彩色再现性等等。也就是说,目前这一代LCD HDTV无法获得真正的“黑色”,而且提供了所有彩色的一个较低的动态范围。传统HDTV采用CCFL管作为背光源,而且仅能提供450~650cd/m2的对比度比。这些HDTV的主要问题是其不能完全关断CCFL背光源或对之进行局部调光。

    与此相反,当采用HB LED背光源时,一个能够以背面照明“LED串”来进行局部调光或关断操作的LED阵列 (对于46英寸显示器而言,LED的数目多达1600个) 提供了几乎比CCFL设计高出一个数量级的对比度比 (>4000cd/m2)。此外,通过调节背面照明LED串的亮度,还可以复制更多的中间色调,从而使得图像更加生动逼真。

    能够在局部位置将LED完全关断的另一个好处是可以减少运动模糊。通过在帧与帧之间将LED完全关断,由快速运动物体所引起的图像模糊实际上将被消除。在解决CCFL背面照明LCD TV所常见的这种快速运动模糊问题的过程中,LED的快速响应速率是至关重要的。

    要想使LED背面照明HDTV成为可行方案,关键因素之一便是LED驱动器IC。由于每块显示屏包含如此之多的LED,因此LED驱动器电路必须具有非常高的效率,否则显示器将产生严重的热问题,并需要采用体积庞大的散热器,这与消费者期盼平板HDTV外形更平、重量更轻的愿望是背道而驰的。此外,这些驱动器IC还必须能够提供非常宽的调光比 (高达5000:1),以实现所需的宽对比度比。最后,整个LED驱动器解决方案必须非常紧凑,以造就大多数HDTV消费者所要求非常扁薄的款式。

    LT3595降压模式LED驱动器具有16个单独的通道,每个通道能够从高达45V的输入来驱动由多达10个50mA LED所组成的LED串。每个通道可被用来驱动一串 (10个) LED,以提供局部调光。每个LT3595能驱动多达160个50mA白光LED。一台46英寸LCD TV将需要大约10个LT3595 (依据HDTV标准)。其16个通道均可进行独立控制,并且具有一个单独的PWM输入,该输入能够提供高达5000:1的PWM调光比。

    每个通道仅需要一个片式电感器和一个甚至更加小巧的陶瓷输出电容器。其他的必需元件仅为单个输入电容器和用于确定电流的设定电阻器 (图5)。具箝位二极管、电源开关以及具补偿功能的控制逻辑电路所有16个通道均被整合在LT3595较小的56引脚、5mm x 9mm QFN封装之中。

    图5:一个用于从45V输入来驱动160个白光LED的16通道LED驱动器。PWM调光比为5000:1。

    LT3595拥有92%的峰值效率 (在2MHz开关频率条件下),因而免除了增设外部散热装置的需要。

    图6:图5所示的160-LED驱动器的效率高于92%。

    LT3595的PWM调光能力高达5000:1。图7示出了5000:1 PWM调光波形和一个外观非常方的LED电流波形。即使在接通时间仅为2μs的情况下,一个20mA LED电流仍然与100Hz PWM信号同步地接通和关断。降低PWM频率可以实现较高的PWM调光比,但100Hz频率能够确保不出现可见闪烁。

    图7:图5所示电路的5000:1 PWM调光波形

    所有16个通道的满LED亮度均利用单个外部电阻器来设定。每个通道具有相同的编程LED电流 ─— 设定在10mA至50mA之间。各通道之间的LED电流准确度在8%以内。True Color PWM调光采用了一个减小的占空比,旨在提供准确的调光,而不使发射光的彩色发生任何偏移。固定频率、电流模式控制方案在一个很宽输入和输出电压以及电流范围内提供了稳定的操作。对流过用于每个通道的内部检测电阻器和内部开关的LED电流的直接控制,以及用于每个通道的控制电路提供了适合LED驱动的卓越恒定电流源调节性能。内部100mA电源开关和56引脚QFN封装的裸露散热衬垫提供了足以处理16个通道的功耗和发热量 (在50mA电流条件下) 的电源管理和热管理。

    结论

    由于LED照明应用在汽车和LCD HDTV中的普及速度空前提高,因此对高电流LED应用中的LED驱动器IC产生了许多非常特殊的性能要求。在汽车里,这些应用多种多样,从车前灯到内部照明等不一而足。在HDTV中,LED提供了一种精细得多的局部调光法,从而极大地改善了图像质量。此外,在汽车和HDTV市场以外的众多商业和工业环境中,LED的应用也非常普遍,它们同样具有大多数这些高性能要求。这些LED驱动器还必须能够提供恒定的电流 (以保持均匀的亮度,而不受输入电压或LED正向电压变化的影响)、必须实现高工作效率,并提供宽调光比。另外,这些应用还需要占板面积非常紧凑、且散热效率很高的解决方案。面对汽车、HDTV以及众多其他LED设计要求,凌力尔特公司迎难而上,开发出了一个高电流LED驱动器产品系列。如今,照明系统设计师拥有了一个适合其复杂照明设计的简易且现有的LED驱动器。

  • 近年来,LED显示屏应用迅速发展,推动LED驱动IC的进步。基于对LED的高可靠性以及亮度和色度一致性的考虑,通常要对LED进行恒流驱动。

    用于LED显示屏的恒流驱动电路主要存在三个设计要点:①驱动电流可通过单一外接电阻设定。②最大限度降低恒流工作电压。这里,恒流工作电压指使输出电流恒定时的内部电路压降,该压降小则电路功耗低。③恒流输出可由数字信号控制,响应速度要快,以满足采用PWM技术动态调光或高速扫描应用的需要。文中给出了一种使驱动MOS管在线性区实现恒流的控制方法,且不需要在源极串联反馈电阻,有效降低了恒流工作电压。在此基础上,给出了满足以上三方面要求的完整控制电路。

    2  恒流驱动电路设计

    恒流驱动模块是整个控制电路设计核心,决定整体电路的恒流特性。针对此模块给出三种方案。具体电路结构如图1所示。图中电流I_rset只受控于外接电阻Rset,当Rset不变时,此电流恒定。Vcc是电路的外接电压,用来为LED供电。

    图1  电路结构

    2.1  基于MOS管饱和区恒流特性的恒流模块

    这种结构采用简单的恒流方式,常应用于大功率LED照明电路,结构如图1(a)所示。电路利用M1实现恒流驱动。外接电压Vcc的增大使得M1进入饱和区,利用运放保证M1栅电压保持不变。工作于饱和区的M0与M1的共栅连接方式使得流经它们的电流满足线性比例关系且电流恒定,比例系数取决于两者的宽长比的比值。这种恒流模式完全依赖于MOS管的栅电压并且恒流工作电压(VDS1)至少要满足M1管饱和导通,因此结构对于LED显示电路来说功耗大。

    2.2  基于电流负反馈的恒流模块

    为减小电路功耗,采用负反馈结构实现恒流输出。电路结构如图1(b)。当电路由于某一原因导致M0的漏电流增加时,增加的电流通过R1作用反馈到运放的反相端,负反馈结构会使得M0的栅压降低,使M0上漏电流减小,从而实现动态平衡,保证M0的漏电流恒定不变,反之亦然。这样的恒流方式降低了恒流工作电压,电路功耗小。动态平衡方式很好的实现了恒流输出,恒流特性好。负反馈结构使得驱动电流Iout与I_rset之间满足线性比列关系,比例系数取决于R0与R1的阻值比。

    该结构存在一些不足:①R1不宜过大,否则R1上压降过高,产生较大功耗。②R1不宜过小,否则会导致反馈电压过小,反馈电压信噪比低,电路性能不稳定。R1设置在几个欧姆为宜,对于电阻的精确要求使得版图设计相对困难,对工艺的要求较高。③反馈电阻的存在就不可避免的在R1上产生一定的压降,造成集成电路内部功耗的增加。

    2.3  拟合工作区的恒流驱动模块

    为避免反馈电阻存在的问题,采用图1(c)结构,负反馈取样点在M1漏端。同时为最大限度的降低恒流工作电压需实现MOS管在线性区可以恒流输出。这种方式将线性区恒流输出曲线与饱和区恒流输出特性曲线拟合成一条曲线,得到驱动电流的恒流输出曲线恒流特性好,恒流工作电压低。

    当V DS < VGS - V THN时, MOS 管处于线性区:

    若某一原因导致运放同相端输入电压增大,会使得M0栅电压增加。而I_rset对于固定的外设电阻是恒定的,故M0的漏电压减小,从而M1的栅电压减小,漏电压增加,即运放的反相端电压也随之增加,反之亦然。这一结构保证运放的同相端和反相端输入电压始终保持相等,即保证M1和M2的漏电压相等。同时M1和M2的共栅连接方式使得两者的栅电压相等。由式(1)、(2)可以看出,只要保证M1和M2的栅、漏电压均相等,驱动电流Iout与I_rset就会满足一个线性的比例关系,比例系数依赖于M1和M2的宽长比的比值。而对于一个固定的外设电阻,I_rset是固定不变的,电路可以利用此关系在M2尚处于线性区时就可以恒流输出,显着的降低恒流输出的工作电压。这一结构要求电路中的运放的线性区的工作范围宽,即保证在M2处于线性区时,运放一直能够正常放大,保证M1和M2的漏源电压相等。当同相端的增加量使得运算放大器已经进入到饱和区时,尽管反馈结构不再起作用,但M2已经可以利用饱和区恒流特性实现恒流输出,I_reST不变使得饱和区的恒流值与线性区一致,两个工作区的曲线拟合在一起,形成最终的恒流输出曲线。

    三种结构的恒流工作电压和驱动电流最大误差如表1所示。三种结构的I_rset均是同一简单电流镜产生的1mA电流,驱动电流与I_rset的比例关系均设置为1:50,外接电压的工作范围均为0V~5V.

    表1  三种结构恒流工作电压及驱动电流最大误差比较

    可以看出,图1中(c)的结构可以实现显着降低恒流工作电压的目的。总体电路中的恒流驱动模块采用该结构。

    LED恒流驱动的总体电路如图2所示,图中控制电路部分用于控制是否有恒流输出。ctr信号是外接PWM数字信号,可以实现对LED的调光控制。

    整个控制模块利用施密特触发器实现电平的准确翻转,通过逻辑门作用于MC8、MC9.这两个MOS管在控制信号发生翻转时迅速将电平拉高或拉低,实现了对控制信号控制功能的加速作用,电路的响应速度快。当ctr信号为高时输出禁止,ctr信号为低时输出允许,从而实现利用外部的PWM信号实现调光功能。I_rset产生电路要实现通过外设电阻Rset对I_rest大小的控制,并且对与固定的Rset可以恒流输出。利用带隙电压源产生一个基准电压,利用运放实现基准电压到基准电流的转换。将运放的反相端连接到外设电阻Rset就实现了转换的电流大小受控于Rset.通过后续电路将电流适当放大,最终给出I_rset.总体电路利用确立好的恒流驱动模块实现恒流输出。

    图2  恒流驱动电路总图

    3  仿真测试结果

    采用图2电路结构,基于CSMC0.5umBCD工艺库进行LED恒流驱动电路仿真。电路实现了恒流工作电压低,驱动电流大小可以由外部电阻调节,并且外部数字信号对驱动电流具有使能控制功能,响应速度快的目的。

    控制ctr信号变化时驱动电流变化情况如图3.

    结果显示ctr对驱动电流具有输出使能控制作用,测量得到控制信号ctr响应时间仅为7ns.

    图3  驱动电流随控制信号变化情况

    不同外接电阻下恒流输出特性曲线如图4.阻值由200Ω~1300Ω时,驱动电流变化范围是14.5mA~91.5mA,输出恒流为91.5mA时,恒流工作电压仅为0.38V.分析时Vcc由0V到5V变化,驱动电流变化保持在5.5%以内,负载电路的增加使得恒流结构的恒流精度与先前相比有所降低。

    设置Rset为500Ω、Vcc为3V,令5V电源电压产生±10%的波动,此时恒流输出情况如图5.驱动电流由37.8mA变化到38.5mA,波动百分比为1. 85%。

    图4  外接电阻变化时,恒流输出特性曲线

    图5  驱动电流随电源电压变化曲线

    设置Rset为500Ω、Vcc为3V,令电路工作的环境温度为25℃~85℃时,恒流输出情况如图6.驱动电流由37.3mA变化到38.1mA,波动百分比2.14%.

    图6  驱动电流随温度变化曲线

    4  结束语

    文中给出一种LED恒流驱动电路,可用于LED显示屏。利用电流负反馈结构并拟合工作区,电路恒流工作电压低,同时实现外部数字信号的使能控制,控制信号响应速度快,可用于实现PWM数字调光。驱动电流大小可以有外接电阻实现控制。仿真显示,电路5V的电源电压波动±10%时,驱动电流波动小于1.85%.环境温度在25℃~85℃时,驱动电流变化2.14%.驱动电流为91.5mA时,恒流工作电压仅为0.38V.电路驱动电流可由外接信号实现输出使能控制,响应时间为7ns.驱动电流大小通过外接电阻设置实现,设置范围200Ω~1300Ω,对应驱动电流变化范围是14.5mA~91.5mA.

  • 本评估套件内的演示板的输入电压范围为2.7V到5.5V,

    使用1.6 MHz的开关转换器LM3410X点亮一个320 mA的高亮

    有机LED(HB/OLED)。这是一块将底层作为接地层的双层

    印刷电路板。

    下列元件清单说明了用在演示板上的器材。原理图和布

    局图以及测得的性能特性也包含其中。上述输入电压范围仅

    限于有如下原理图的演示板。

    工作环境

    VIN = 2.7V 到 5.5V

    VO ฝ VF

    + VFB  ฝ 3.2V + 0.198V  ฝ 3.4V

    IO = 320 mA

  • 求给力啊求给力啊

  • 帮顶帮顶帮顶帮顶帮顶帮顶