• 细数T-BOX中TI的明星产品之CAN 收发器 | 第二节 TCAN1042-Q1:“硬核”的CAN收发器

    Other Parts Discussed in Post: TCAN1042-Q1

    汽车新热点:细数T-BOX中TI的明星产品(进行中)

    Interface

    PHY

    第一节     DP83TC811S-Q1:车载以太网让您的T-BOX如虎添翼

    CAN

    第二节   TCAN1042-Q1:“硬核”的CAN收发器

    Power

    Wide Vin BUCK

    敬请期待!

    汽车新热点: T-BOX系统解决方案深度剖析(已完结)

    第一节

    电源轨

    第二节

    充放电管理

    第三节

    接口

    第四节

    紧急呼叫单元

    第五节

    无线连接单元

     

     第二节 TCAN1042-Q1:“硬核”的CAN收发器

    前文谈及,在车载应用中…

  • 细数T-BOX中TI的明星产品之车载以太网 | 第一节 DP83TC811S-Q1:车载以太网让您的T-BOX如虎添翼

    Other Parts Discussed in Post: DP83TC811S-Q1

    汽车新热点:细数T-BOX中TI的明星产品(进行中)

    Interface

    PHY

    第一节   DP83TC811S-Q1:车载以太网让您的T-BOX如虎添翼

    CAN

    敬请期待

    汽车新热点: T-BOX系统解决方案深度剖析(已完结)

    第一节

    电源轨

    第二节

    充放电管理

    第三节

    接口

    第四节

    紧急呼叫单元

    第五节

    无线连接单元

    第一节 DP83TC811S-Q1:车载以太网让您的T-BOX如虎添翼

    近年来“车联网”概念的热度一直都居高不下。说起车联网,当然就不得不提车载以太网以及车联网的核心组成部分之一---T-BOX!

    本文将会从车载以太网100BASE…

  • 开发适用于下一代汽车的汽车网关

    Other Parts Discussed in Post: DRA829V

    介绍

    汽车架构正在快速演进,车辆逐步从半自动驾驶向最终的完全自动驾驶发展。汽车制造商还加入了多种功能,例如智能访问、车辆共享、预测性维护、车辆跟踪、车队管理和空中 (OTA) 升级,以增强互联能力和车载通信。这些高级功能生成的数据量不断增加,需要通过高性能处理器进行处理,并在 CAN、LIN 和高速网络(如以太网)等接口之间安全可靠地进行通信。因此,汽车制造商正在重新评估汽车网关和远程信息处理控制单元系统(TCU)的架构。

    汽车网关

    汽车网关是一种核心功能为在车辆内安全可靠地传输数据的系统。车辆中可以存在多种网关:中央网关和域网关(或域控制器)。

    中央网关可以在TCU、动力传动系统、车身、信息娱乐系统、数字驾驶舱和 ADAS 应用等多个域之间安全可靠地传输数据。

    域网关(或域控制器)具有类似的功能,只不过它仅在其相应域内的 ECU 之间路由数据。

    与域网关相比…

  • 互联汽车,前路何方?

    从硅谷的初创企业,到知名的德国原始设备制造商(OEM),乃至世界各地的驾驶员和狂热的车迷,都在思索互联汽车的未来蓝图。它将如何改变我们的日常通勤?移动5G功能何时能够上路应用?自动驾驶车辆中的连接性如何发挥作用?这些问题发人深思,只有未来能够回答。

    不过,问题的线索之一可以在车联网发展进程中寻找。结合我们对当今市场的认知,便可一探未来的多种可能性。

    车联网的演进

    21世纪初,紧急呼叫(eCall)车载道路安全系统问世,为人们提供安全功能和应急援助,而个人导航设备则帮助驾驶员了解路线,使后座上的人不必手忙脚乱地指路,驾驶员可以安静地开车,其他人也获得了休息的可能。(我们大家都要感谢这个设备。)该技术兴起的推手是欧洲委员会E112、俄罗斯的欧洲地区航空公司协会(ERA)全球导航卫星系统(GLONASS)或美国E911的实施。

    2018年4月1日,当欧盟强制要求所有出厂新车安装eCall硬件时,该系统取得了突破性进展——起初,它仅是基础的电话和导航设备…

  • 互联车辆如何处理数据:3个常见问题

    互联驾驶虽然已经实现,但仍然有很大的发展空间。在未来,车辆将与驾驶员、其他汽车、道路和周围基础设施、行人和云相互通信,同时与乘客保持稳定连接。

    由于连接水平的不断提高,车辆将能够接收、理解和传输车内及周围环境数据,从而帮助司机做出驾驶决策,为乘客提供方便,并提高车辆自主性。

    今天,我们将处理三个关于未来互联汽车的常见问题。

    问:什么是V2X?它与互联汽车有什么关系?

    答:车联万物(V2X)是一种允许信息在车辆和其周围世界之间传递的多点网络,涵盖行人、周围基础设施(如灯柱、交通信号灯和停车场)、其他车辆和云/网络。此生态系统如图1所示。

    1V2X包括车对云(V2C)、车对基础设施(V2I)、车对行人(V2P)和车对车(V2V)连接。

    V2X网络的核心是远程信息处理控制单元(TCU)——远程信息处理系统的大脑,该系统是几乎所有外部世界与汽车无线通信的中心枢纽。

    问:DSRCC-V2X有何区别?

    答:专用短程通信…

  • 互联汽车中远程信息技术硬件的四个设计注意事项

    说出来可能让您很惊讶,一项已存在近二十年的科技为互联汽车的应用铺平了道路。按照高科技标准衡量,ECall已经是落伍技术,目前欧盟强制要求在所有出厂新车里安装ECall。这部法规仅是技术与立法互相交叉的一个例子 - 两者之间微妙的关系可能会决定我们能够在多久以后拥有完全互联的汽车。

    从其最基础的定义来看,eCall仅仅是汽车内的基础性蜂窝电话,能在紧急情况下自动拨打求助电话,自1990年代起就已上市。展望未来,消费者需要更高级的集成,这也成为引入远程信息技术控制单元(TCU)的契机。

     TCU可为互联汽车提供eCall的所有功能以及包括发送和接收数据(如位置、无线更新或电话)在内的其他功能。如果没有TCU,eCall便只能拨打电话。图 1 概括介绍了具有拨打紧急求助电话功能的TCU。 

    1:当代TCU内集成的拨打紧急求助电话功能

     具备集成eCall系统的典型TCU的要求

    设计TCU具有很多硬件变数,这是因为原始设备制造商(OEM)和一级供应商具有自己的设计规格…

  • 解决混合动力汽车/电动汽车中的高压电流感应设计难题

    解决混合动力汽车/电动汽车中的高压电流感应设计难题

    电气化已为汽车动力系统创造了一个新的范例——无论该设计是混合动力汽车(HEV)还是电动汽车(EV),总有新的设计难题要解决。在这篇技术文章中,我想要强调高压电流感应的一些主要挑战,并分享其他资源来帮助和简化您的设计过程。 

    有关电流感应的介绍,请参阅我们的电子书“简化电流感应。” 

    高电压、高电流:(>200 A或更常见的1,000 A)

    高电压(≥400 V)全电动系统旨在降低驱动车辆的牵引系统的电流消耗。这需要隔离解决方案,以便“热”高压侧能够向“冷”侧(连接到低压≤5-V微控制器或其他电路)提供电流测量。由于I2R的功耗,当用分流电阻器测量时,高电流就会出现问题。 

    如要在这些情况下使用分流器,意味着你必须选择低于100-µΩ的分流电阻器,但是这些电阻器往往比更为常见的毫欧级电阻器更大…

  • 半导体技术如何改变汽车照明硬件设计线路图

    Other Parts Discussed in Post: TPS92520-Q1, TCAN1044-Q1

    半导体技术如何改变汽车照明硬件设计线路图

    自适应大灯系统|动态尾灯|个性化内饰照明|更亮、定制的水坑灯|透明车窗显示

    汽车照明持续飞速发展。尽管LED光源可提高效率并具有独特的车辆风格,但原始设备制造商(OEM)现在正在实现新颖且有用的照明用例。在本技术文章中,我想重点介绍几种半导体技术,他们正在影响大灯、尾灯和内饰照明系统的路线图。

     

    自适应大灯系统

    自适应前灯系统和自适应远光大灯系统分别调整近光灯和远光灯的形状。尽管欧洲生产汽车都可使用自适应大灯,但美国汽车制造商无法使用这些高级灯。不过,这种情况可能很快就会改变。自适应系统使用大功率LED作为光源,这需要大功率LED驱动器来调节电流,并达到所需亮度。开关LED驱动器必须用于实现高效率,并实现用于热管理的两级功率处理拓扑。

    第一级是升压稳压器。它管理变化较广的汽车输入电压…

  • 让汽车仪表组上的指针动起来

    虽然汽车仪表组在过去几年已经取得了一定的发展,但它在很多方面依然是我们好几代人都熟悉的样子。原先的仪表组就像图1中所示的那样,由显示车速、油位、发动机温度和油压的模拟(机械)仪表以及里程表组成。现代车辆的仪表组上仍然会显示这些对驾驶员有用的重要信息,但除此之外,高新科技的进步也为仪表组带来了更多新的功能。

     图1:由六个机械仪表组成的模拟仪表组

    如今的仪表组保留了传统的外观,由微控制器(MCU)供电,MCU从控制器局域网(CAN)总线读取车辆状态信息。驾驶员可以接收到熟悉格式的信息,但步进电机和仪表组的MCU会控制机械仪表和指针。仪表组上还有多个可识别的指示灯,并可发出可听见的铃声,为驾驶员提供更丰富的信息。

    随着电子科技的进步,里程表逐渐被字母数字显示屏所取代,这种显示屏主要显示各种功能参数和指标,如燃油效率、室外温度和行程长度,同时通过机电仪表来显示传统的信息。从电子角度而言,具有信息图形支持的混合仪表组(如图2所示)是比较经济且相对简易的…

  • 低功耗Bluetooth®技术助力实现汽车门禁系统变革

    Other Parts Discussed in Post: CC2640R2F

    为了满足消费者希望以智能手机取代车钥匙的需求,汽车行业正在经历着重大变革。随着“手机即钥匙”技术的普及,你不再需要传统的密钥卡,使用手机即可操作“被动门禁/被动启动”(PEPS)系统。低功耗Bluetooth®技术的领先优势在于它是一种可以广泛应用于智能手机的多功能技术。

    图1:车内的低功耗蓝牙PEPS架构,卫星模块的数量可能会随系统要求变化。 

    图1所示为车内低功耗蓝牙PEPS的典型架构,采用了“手机即钥匙”技术。该架构中有一个中央智能钥匙模块和九个卫星模块,中央智能钥匙模块与手机钥匙进行通信,卫星模块可被动监控中央模块和智能手机之间的蓝牙低功耗连接。TI的车用低功耗Bluetooth®汽车门禁卫星节点参考设计介绍了如何实现该节点设计。 

    虽然目前有许多无线技术力求实现…

  • FPDLINK 的电火花干扰优化

    随着汽车工业的不断发展其电气化程度越来越深,从而其各种前/后装设备的电气系统稳定性对车辆安全而言也愈加重要。例如根据GB/T 19056-2012和JT-T794-2011标准,车载MDVR等产品就需强制通过电火花干扰测试以确保其稳定可靠工作。

    而与此同时,在目前MDVR智能化的趋势下(AI),需要更精确的摄像头视频数据用于AI分析。此时用TI的FPDLINK-III来实现数字视频信号的传输,相较传统的模拟视频信号传输优势明显,但挑战的是:在上述电火花干扰测试方面,FPDLINK更高频的信号传输也更易受到干扰,本文即主要针对该问题进行原理剖析,并整理相应优化方法以应对该挑战。

    1.  实验模型及干扰途径

    电火花干扰实验模型可参考下图fig.1,同时实验用电火花信号规格如table.1。

    Fig.1 电火花干扰实验模型

    Tabl.1 电火花信号规格

    通过上图我们可看出,电火花干扰实验基本等效于存在外界强干扰源情况下的EMC抗扰测试(EMS…

  • 如何为汽车门禁系统的发展打开机遇大门

    随着汽车设计工程师开始采纳其他行业中广泛使用的技术,驾驶员们进入汽车的方式开始变得日益方便。纵观行业发展,过去人们需要使用机械钥匙解锁车辆,到后来出现了按钮式遥控钥匙。现在,最常见的汽车进入方式是被动门禁/被动启动(PEPS)系统,使驾驶员能够在不使用钥匙的情况下进入他们的汽车,并启动发动机。

    PEPS系统的工作原理

    PEPS系统通过汽车和遥控钥匙之间的射频(RF)通信,帮助汽车理解驾驶员意图以及认证驾驶员身份。低频(通常为125 kHz或134 kHz)和超高频(UHF)(通常为Sub-1 GHz)信号在遥控钥匙和车辆之间传递唯一的密钥访问代码。只有当交换的代码与预期值相匹配,且遥控钥匙位于解锁车辆的有效距离内,二者同时满足时,汽车才会允许驾驶员解锁车辆。遥控钥匙和车辆之间的这种检验方式会同时探测位置和距离,并判断钥匙是在车内还是车外。如果钥匙靠近但仍在车外,汽车就会启用被动门禁功能,而不是被动启动功能。

    PEPS系统可以是触发系统或轮询系统…

  • 在低功耗 Bluetooth® PEPS 系统中添加 CAN 节点

    在使用低功耗 Bluetooth® 技术的汽车被动进入被动启动 (PEPS) 系统中,司机使用与汽车门禁系统通信的密钥卡(而不是钥匙)上车和启动电机(或引擎,如有内燃机)。

    图 1 所示为车内低功耗蓝牙 PEPS 的典型架构。该架构中有一个中央智能钥匙模块和九个卫星模块。此处所示的九个卫星模块仅为示例,在实际应用中,卫星模块的数量可能更多或更少。图 1 还显示了这些模块通过使用通信总线进行通信。

     

    图 1:车内的低功耗蓝牙 PEPS 架构

    卫星节点内部

    那么卫星节点内部是什么?图 2 所示为低功耗蓝牙卫星模块的典型方框图。该模块有一个低功耗蓝牙片上系统 (SoC)(如 TI 的 SimpleLink™ CC2640R2F-Q1)、一个电源和一个通信接口(通常为收发器)。图 2 还显示了 PEPS 系统内的其他模块,包括智能钥匙模块,甚至车身控制模块。 


    图 2:汽车 PEPS 系统方框图

    通信总线选项

    汽车 PEPS…

  • 智能传感器将改变您的驾驶方式(因为最终您将不需要驾驶)

    在日常生活中实现全自动无人驾驶汽车是件激动人心的梦想。想象一个汽车是真正自动化的世界:你只需上车,告诉车辆你去哪里,并继续你的事,而你就能从A点到达B点,无需更多的人机交互。

    突然间,全国平均最长26分钟到达办公室的通勤时间 -开始消失。驾驶的焦虑和压力转化为放松和富有成效的体验。

    自动驾驶汽车出现如此多的令人激动的提案极的监管互动并不是什么新鲜事。自动驾驶汽车将从根本上改变城市以及更多地区的全球交通网络,同时重新制定交通基础设施,车辆所有权等规则。

    IHS Automotive最新预测显示,在物联网(IoT)连接、处理能力和机器视觉等必要技术发展的关键时期,到2035年全球自动驾驶汽车将有近2100万销售量

     考虑到当今的情况:

    • 机器通过物联网连接的能力已经成为众多行业中的游戏规则改变者,但它仍然是一项新兴技术。Gartner公司预测,到2020年全球将有204亿物联产品

    • 常规视觉备份摄像机是如今车辆的常见功能…

  • TI 平板显示器 Link III 器件中断功能的配置及应用

    作者:Fery Feng

    此文主要针对利用DS09UB933/34/62/64-Q1FPD-Link器件搭建的流媒体后视镜/全景泊车等应用中,由于链路设计、应用环境干扰、ESD等情况,导致概率性出现屏幕显示闪屏或者滚动的现象。利用解串器中的诊断/中断功能,再配合上有帧buffer及视频处理能力的SOC就可以有效地应对此类问题。

    TIADAS应用中的FPD-LINK器件均带有丰富的诊断功能,包括奇偶校验/反向通道CRC校验/LOCK状态/帧水平宽度检测/帧垂直宽度检测等,利用这些诊断功能我们可以十分便利的知道解串器接收到的数据是否有问题。同时,我们可以将以上的诊断结果映射到中断管脚上,并将中断脚连接到SOC,如果解串器接收的数据检测出来有问题的话,可以通过中断脚通知SOC去读取相关的寄存器,从而知道具体是出现什么故障了。

    而对于接收端带有帧buffer或者视频处理能力的SOC的系统,在我们知道当前帧的数据有问题的话,…

  • 成像雷达:一个传感器控制所有传感器

    业界对三种主要传感器(摄像头、雷达和LIDAR)在汽车中的不同作用,以及它们各自如何满足先进驾驶辅助系统(ADAS)和自动驾驶的感测需求仍然存在一些困惑。

    最近,我和我的一个朋友进行了一次有趣的讨论,他知道我在研究用于ADAS系统和自动驾驶车辆(AVs)中雷达的TI毫米波(mmWave)传感器。

    每当他读到自动驾驶汽车在不同驾驶环境下(比如障碍物检测)运行情况的文章时都会不失时机地取笑我。其中一次的对话如下:

    Matt:“如果那辆车搭载有LIDAR的话,就能轻松识别出车道中间的物体。”

    我:“我依然不同意这样的看法。”

    Matt:“什么?!你为什么不同意?那辆车上装有一个摄像头传感器和一个雷达传感器,但ADAS系统仍然完全未能感测到车道中间的那辆车。”

    我:“当读到这些最近发生的事件时,你就会注意到如果摄像头经常暴露在刺眼的强光和其他因素之下,就会导致其看不到路上的物体…

  • 了解风门执行器以及在它们在汽车暖通空调系统中的驱动因素

    无论在酷暑还是寒冬,乘客始终可以通过汽车的加热和制冷系统享受到舒适的车内环境。在不同类别的车辆中,这些暖通空调(HVAC)系统的复杂性和自动化程度也各不相同。经济型汽车可能需要驾驶员手动旋转旋钮来控制温度,而在高端车辆中,则可以通过传感器同时自动控制车内的温度以及空气的湿度和质量。

    空气流动

    无论何种类别的车辆,汽车HVAC系统都需要交换空气,并在此过程中改变其温度、湿度和质量。

    让我们来看一下空气流动的原理。空气可以从车厢外部或内部吸入系统。也可以通过蒸发器或换热器进入HVAC系统以进行调节;经过调节的空气分布在整个车厢内,让乘客脚部保暖,或者防止挡风玻璃起雾。

    空气流动的途径有很多种:从外部到蒸发器再到挡风玻璃,或从内部到热交换器再到车厢底部的通风口。那么HVAC系统是如何控制空气流动的方式呢?

    图1所示为HVAC系统的侧视图。关键组件用数字标记,箭头指示空气流动的方向。图1中的部件4至8所示为风门执行器。橙色虚线表示风门移动的区域…

  • 汽车背后的故事 通过深度学习提高和发展车辆感知

    当今汽车认知

    自动驾驶汽车的梦想正在成为现实。通过在车辆中实现多个高级驾驶辅助系统(ADAS),汽车行业对自动驾驶的追求正在稳步推进。当今的新车均已配备多个摄像头、雷达和超声波传感器,实现基于感知的辅助功能,如自动泊车辅助、自动紧急制动、车道保持辅助、驾驶员疲劳警报等。

    基于摄像头的感知功能在当今的车辆中至关重要。感知系统的功能与人体具有很强的相似性:摄像头或图像传感器充当车辆的“眼睛”,数据从图像传感器发送到主处理器即“大脑”,它使用各种算法来理解和解释数据,最后,通过发送控制转向、加速器和/或制动的命令(类似“手、脚”)来做出决定。在过去十年中,汽车感知系统已从基本的后视摄像头演变为具有停车辅助功能的全3D环视。人类能力边界随大脑发展得以拓宽,类似地,ADAS技术进步建立的基础是运行于日益高效的硬件平台上的创新感知算法。

    深度学习概述

    当今自动驾驶领域最热门的话题之一是…

  • 设计更智能的天窗

    作者:德州仪器 Matthew Sullivan

    得益于未来车辆的新技术,天窗和汽车车窗贴膜现已成为汽车的可编程功能。在开关的转动处,您现在可阻挡通过汽车天窗的光线或在夜间驾驶时欣赏飘渺的星空。

    一家名为Research Frontiers的制造商使用SPD-SmartGlass技术创造了电子玻璃贴膜。该技术通过在玻璃、塑料、丙烯酸或化学强化玻璃膜中调准纳米颗粒。这种玻璃可阻挡热量、阳光、紫外线和噪音。SPD-SmartGlass通过改变施加在玻璃上的电压幅度,可即时、精确地控制进入车辆的光线水平。

    为驱动这种动态玻璃,需要高压AC信号快速定向阻光纳米颗粒。

    智能天窗设计为车内乘客提供了大量优势。在贴膜状态下,它可减少热量传递并防止眩光,在贴膜和透明状态下,它可减少紫外线和红外线。控制贴膜着色水平允许用户针对身边的环境调整这些条件。

    产生必要的高压AC信号以控制汽车中的贴膜着色水平具有挑战性,因为汽车没有易获得的AC电压源。相反…

  • TI FPD-Link III 视频传输桥接器件的内部测试模式

    Other Parts Discussed in Post: DS90UB947-Q1, DS90UB948-Q1

    作者:Fery Feng

    TI的FPD Link III 系列的视频传输桥接器件,是专门用于车载信息娱乐系统以及车载ADAS应用的视频传输桥接器件。通常是串化器与解串器一起配对使用,通过50Ω 单端同轴或 100Ω 差分屏蔽双绞线 (STP) 电缆提供单通道或双通道高速串行数据流,从而简化高速音视频数据远距离传输对线束的要求,并减少车内线束用量。
    本文以串化器DS90UB947-Q1,以及解串器DS90UB948-Q1为例,介绍FPD Link III系列器件独有的Test Pattern Generator测试模式生成器。使用该测试模式,可以通过947或者948,使用内部/外部时钟,以及内部/外部timing 参数,来产生纯色/渐变/彩条等测试画面直接显示于屏幕,以辅助判断整个高速视频传输链路的稳定性…

  • 汽车车尾照明设计的变迁

    作者:德州仪器 Arun T. Vemuri

    设想一下在二十世纪初期开车的景象。驾驶员依靠手动信号、叫喊再加上那么一丁点儿的猜测,来预测路上其它车辆的行驶状况。

    受益于现代化车尾照明解决方案的问世,驾驶员在所有环境中都能够更有效地预测其他驾驶员的操作,这大大提高了驾驶的安全性。如今已远离煤油灯的历史,并经历过白炽灯泡阶段,进化到了更可靠高效的LED和有机LED时代。随着技术的进步,汽车光源的数量也日益丰富——从单个灯泡发展到了多种像素化设计。图 1所示为一些示例。

    1:车尾照明系统的组件

    由于车尾照明系统更为复杂,所以设计师必须考虑大量设计上的难题,从电源和热管理、到电磁干扰兼容性、再到故障检测与保护,都需要考虑在内。

    德州仪器最近发布了白皮书——汽车车尾照明中的LED驱动器。该白皮书探讨了针对这些难题的解决方案,以及在您的下一个设计中需要考虑的趋势和拓扑。

    随着这些系统的持续演进…

  • 使用毫米波传感器检测移动车内人员乘坐情况

    作者:德州仪器  Alessandro Veglio

    汽车设计师已成功将毫米波(mmWave)传感器集成到多个汽车驾驶室内应用中。

    这些应用之一是能够在各类照明条件和传感器放置中检测车内人员乘坐情况,而不管其是否移动。这可帮助汽车系统检测到留在车内无人看管的儿童或人员位置,以进行温度控制。

    Azcom Technology展示了AWR1642毫米波传感器结合Azcom专有算法,如何能够可靠识别座椅上人员入座情况。我们以不同的速度,及不同的环境(城市、高速公路)和驾驶室(光照、温度)条件进行驾驶,并分析了不同的座椅配置。

    在我们的演示中,传感器将从天窗悬挂下来,朝向后座(如图1所示),尽管在最终安装中它更可能被放置在座椅靠背内部、后视镜周围或车顶内部等地方。由于毫米波能够感知各种材料,包括构成车辆的材料,因此安装在座椅或车顶内时,传感性能不会发生变化。包括Azcom Technology增强功能的所有处理都在传感器上运行,而主机上的图形用户界面有助于可视化结果…

  • 德州仪器助力斑马智行一年内实现数字座舱功能演进

    科技是汽车行业鏖战正酣的创新战场。“对于大部分OEM来说,当下,差异化的技术特色来源于汽车电子设备系统:从辅助驾驶、到安全性、再到互联网连接性无所不包”,TI汽车处理器部门车载信息娱乐平台市场营销经理Cyril Clocher这样介绍说。“OEM提供的电子设备越丰富,他们打造特色设备的方法就越多。”

    电子创新也为OEM厂商降低复杂性和材料成本铺平了道路。 在2005年至2015年期间,典型汽车中的电子控制单元(ECU)数量翻了一番。 仅在过去的四年中,典型汽车的半导体材料成本上涨了8%。 围绕更少,更强大的处理器,可以让汽车制造商和原始设备制造商通过在整个产品系列中为其系统添加功能和应用来降低成本,最大化投资并提高其产品线的灵活性。

    斑马智行将数字座舱视为增强车载体验的新机会。 基于2016年首个“互联网汽车”系统,面向“智能新物种”的最新斑马智行系统利…

  • 2019年推动汽车行业发展的主要趋势

    作者:德州仪器 Heinz-Peter Beckemeyer

    展望2019年,令人兴奋的是,随着近10年的发展,汽车自发明一个多世纪以来正处在最大变革之中。随着自动和电动汽车的不断发展,汽车行业在未来十年将发生重大变化。展望未来,2019年在以下四大方面将推动汽车行业的创新。

    数字驾驶舱
    提升驾驶体验始于改善驾驶员座椅性能,因为驾驶员掌控中央指挥中心,一个集成驾驶室。 

    • 根据Harvard Health Watch,驾驶员一生的驾驶时长多达38,000小时。无论乘客是在不久的将来驾驶还是在遥远的将来在自动驾驶汽车中休息,车辆座椅必须舒适。这就是为何所有动力座椅的迭代更新在2019年仍将与可定制的功能和气候控制相关。


    • 消费者期待与驾驶室有更动态的互动。2019年,寻求更多挥手感控作为管理数字驾驶室内控制的下一代方式。


    • 随着驾驶室的发展,驾驶室的声学特性也在不断发展。即使在普通车辆中,塑造车辆声音的高级音频创新也更受欢迎…
  • 你是我的眼:环境光传感器

    Other Parts Discussed in Post: OPT3001, OPT3001-Q1

    当夜幕降临,汽车仪表盘上有一双“眼睛”默默地感知周围的光线,从而自动调节背光亮度,以保证用户最佳的驾驶体验且降低功耗。这双神奇的 “眼睛”便是今天的主角---环境光传感器。

    为什么要使用环境光传感器?

    • 改善用户视觉体验;
    • 优化图像显示之外;
    • 降低显示器的消耗,延长电池以及显示器的使用寿命。

    哪里会用到环境光传感器?

    如下图1所示,后视镜、仪表盘、车载娱乐主机显示屏、后枕屏、侧视镜、车大灯等都需要基于亮度做出相应的调整,这时候就需要用到环境光传感器。

    图- 1

    环境光传感器是如何工作的?

    事实上,环境光传感器相当于模仿人眼去感知周围的光线强度,然后将信号告知CPU让其自动调节背光亮度。所以环境光传感器的光谱响应曲线必须与人眼感知光谱响应曲线高度匹配,这样才能准确测量人眼可见光的强度…