• 雷达技术正在改变驾驶舱内感应市场的三大趋势

    雷达传感器不仅改变了车辆感周围环境的方式,而且还改变了它们感物体和乘员的方式。想象一下:有一辆能够检测到后座遗忘儿童或患病驾驶员,并设计了一个系统来采取行动缓解这种情况的汽车。

    雷达具有穿透固体材料进行检测的能力,使其能够比以往任何时候都更精确地检测无人管的儿童、监视乘员状态并预估驾驶员的生命体征。

    在本篇技术文章中,随着越来越多的汽车制造商将注意力转雷达传感器上,我将探讨汽车驾驶舱内感市场的三个趋势。

    趋势一:儿童在场检测之外的功能

    为符合欧洲新车评估计划等监管机构的要求,汽车制造商正在转向雷达传感器来实现儿童在场检测功能。但是他们发现他们不必止步于此。

    在此视频(点击该链接可查看视频:https://v.qq.com/x/page/o096612i40f.html)中,您可看到单个雷达传感器如何检测和确定汽车内所有乘员的位置,将后排座椅中的乘员归类为成人或儿童,并跟踪乘员的生命体征。

    雷达用于驾驶舱内感应的功能不断增强…

  • 德州仪器多合一动力总成系统解决方案,助力新能源汽车快速实现轻量、高效、降本

    当汽车应用程序可以用更少的零件完成更多的工作时,就可以在减少重量和成本的同时提高可靠性,这就是将电动汽车(EV)和混合电动汽车(HEV设计与多合一动力总成系统相整合的思路。

    什么是多合一动力总成组合架构?

    多合一动力总成组合架构整合了诸如车载充电器(OBC)、高电压DC/DCHV DCDC)、逆变器和配电单元(PDU)等动力系统终端器件。如图1所示,可在机械、控制或动力系统级别应用整合。

    1:电动汽车标准架构概述

    为什么多合一动力总成系统最适合HEV/EV

    多合一动力总成系统能够实现:

    • 提高功率密度。
    • 增加可靠性。
    • 优化成本。
    • 具有标准化和模块化能力,设计和组装更简易。

    当前市场上的多合一动力总成系统应用

    有多种不同的方法来实现多合一动力总成系统,但是图2概述了四种最常见的方法(以车载充电器和高电压DC/DC组合框为例),以便在组合动力系统、控制电路和机械时实现高功率密度。选项包括:

    带有独立系统的选项1;人气逐渐降低…

  • 汽车旋变解码应用设计指导

    作者: Maksim Liu

    在工信部发布的《新能源汽车产业发展规划(2021-2035年)》(征求意见稿)中提出,到2025年,新能源汽车新车销量占比达到25%左右,智能网联汽车新车销量占比达到30%,高度自动驾驶智能网联汽车实现限定区域和特定场景商业化应用。新能源汽车主要以电能为动力源,通过电动机驱动行驶。为了获得更好的驾驶体验,工程师往往需要知道电机当前的角度位置以及速度信息,在算法上提供相应扭矩和功率。汽车应用驾驶环境复杂,旋转变压器(Resolver)是常被选择使用在这个应用场景的传感器。

    旋转变压器(Resolver)工作原理简介

    旋转变压器是一种电磁式传感器,又称同步分解器。它是一种测量角度用的小型交流电动机…

  • Jacinto™汽车处理器助力汽车智能网联化进程

    德州仪器在信号处理和汽车处理器领域有着悠久的发展历史。迄今,我们已向汽车市场交付超过1.5亿辆汽车,并且我们见证了原始设备制造商(OEMs)设计创新的高级驾驶辅助系统(ADAS)和信息娱乐应用程序的过程,这些技术突破了当前技术的限制。

    德州仪器将持续开发可扩展、经济高效的汽车片上系统(SoCs),其性能和功能使原始设备制造商自主驾驶和集成驾驶舱(多操作系统/多域系统)更近一步。但要做到这一点,首先要确保我们为处理器提供统一的软件、安全性和实现安全的解决方案来。

    用于ADAS应用程序的TDA系列处理器现在将成为Jacinto™汽车处理器平台的一部分,该平台包括DRA系列的信息娱乐和片上系统集群,如图1所示。为补充其通用架构,我们的软件开发套件(SDK)和工具除了具有定期的更新节奏外,还支持TDADRA系列。我们的目标是通过这种协同作用使原始设备制造商和一级制造商能够利用平台的软件可扩展性来减少研发投资和缩短上市时间…

  • 探索车内低功耗蓝牙®连接趋势

    互联互通在全球无处不在,汽车行业的发展势头无疑正在增强。许多车主认为汽车无线连接是与车内信息娱乐系统的简单交互,但新应用正不断涌现,无论是对车主与车辆的互动进行个性化设置,还是在钥匙关闭状态下为低功耗连接操作创建路径,还是通过手机即钥匙”(PaaK使用户进入被动体验。

    多年来,TI的低功耗蓝牙®技术已经连接了汽车内部的多个元件,包括音响主机轮胎压力监测系统(TPMSs)远程信息控制单元(TCUs)PaaK的汽车门禁和其他配件。

    2014年,TI开发了CC2541-Q1器件,随后在2017年创建了CC2640R2F-Q1器件。现在,CC2642R-Q1器件已诞生,其具有352 KB的可用闪存空间和Arm®Cortex®-M4F处理器内核,同时能够保持与先前平台相同的低功耗性能。该设备可与SimpleLink™软件开发套件(SDK)一起工作。

    让我们来剖析一下如…

  • 细数T-BOX中TI的明星产品之音频放大器 | 第六节 TAS5411-Q1:高效又可靠的D类功放

    Other Parts Discussed in Post: TAS5411-Q1

    汽车新热点:细数T-BOXTI的明星产品(已完结)

    Interface

    PHY

    第一节   DP83TC811S-Q1:车载以太网让您的T-BOX如虎添翼

    CAN

    第二节   TCAN1042-Q1:“硬核”的CAN收发器

     

    Power

    Wide Vin BUCK

    第三节  LMR33630-Q1:一级电源的绝佳选择

    Low Vin BUCK

    第四节  TPS6281x-Q1:二级电源的 “种子选手”

    LDO

    第五节 TPS7B7701-Q1:为车载应用保驾护航

    Audio

    Power AMP

    第六节TAS5411-Q1:高效又可靠的D类功放

    汽车新热点: T-BOX系统解决方案深度剖析(已完结)

    第一节

  • 高级驾驶辅助系统解决方案系列介绍—数字摄像头

     

    近年来,随着人们对驾驶安全水平需求的不断提高,高级驾驶辅助系统ADAS)相关技术的不断成熟,伴随着ADAS市场高速发展,摄像头的需求也更加旺盛。其应用场景也是非常多的,主要是以下几个应用场景:

    数字摄像头,主要有玻璃透镜…

  • 细数T-BOX中TI的明星产品之 线性稳压器 | 第五节TPS7B7701-Q1:为车载应用保驾护航

    Other Parts Discussed in Post: TPS7B7701-Q1, TLE4275-Q1

    汽车新热点:细数T-BOX中TI的明星产品(进行中)

    Interface

    PHY

    第一节     DP83TC811S-Q1:车载以太网让您的T-BOX如虎添翼

    CAN

    第二节   TCAN1042-Q1:“硬核”的CAN收发器

     

    Power

    Wide Vin BUCK

    第三节 LMR33630-Q1:一级电源的绝佳选择

    Low Vin BUCK

    第四节   TPS6281x-Q1:二级电源的 “种子选手”

    LDO

    第五节 TPS7B7701-Q1:为车载应用保驾护航

    汽车新热点: T-BOX系统解决方案深度剖析(已完结)

  • 细数T-BOX中TI的明星产品之窄输入降压电源 | 第四节 TPS6281x-Q1:二级电源的 “种子选手”

    汽车新热点:细数T-BOX中TI的明星产品(进行中)

    Interface

    PHY

    第一节     DP83TC811S-Q1:车载以太网让您的T-BOX如虎添翼

    CAN

    第二节   TCAN1042-Q1:“硬核”的CAN收发器

     

    Power

    Wide Vin BUCK

    第三节 LMR33630-Q1:一级电源的绝佳选择

    Low Vin BUCK

    第四节 TPS6281x-Q1:二级电源的 “种子选手”

    LDO

    敬请期待!

    汽车新热点: T-BOX系统解决方案深度剖析(已完结)

    第一节

    电源轨

    第二节

    充放电管理

    第三节

    接口

    第四节

    紧急呼叫单元

    第五节

    无线连接单元

  • 保持正确转向:汽车照明系统故障电路的设计

    向用户指示系统故障相当重要,尤其是在汽车照明方面。

    以汽车尾灯中的转向指示灯为例,它表示驾驶员想要变换车道或转向。LED是用于转向指示灯的一种常见且不断增强的光源,由一个双级LED驱动电路拓扑驱动。该双极LED驱动电路拓扑由一个第一级降压稳压器和一个第二级恒流线性LED驱动器构成,具有热效率优势。

    图1中基于LED的转向指示灯模块包括一个典型汽车电池、开关、输入滤波器、降压稳压器和几个LED驱动器。当车灯停止正常运行时,驾驶员将如何得知?如何确定是系统的哪个部分出现故障?

    1:转向指示灯模块

    降压稳压器和LED驱动器集成电路实施诊断功能,以便检测故障事件。例如,“电源正常”信号是一种诊断特征,用于指示降压的输出是否处于调节状态。同样,恒流LED驱动器输出故障信号来指示LED短路和开路。

    在本文中,我将着重讨论汽车尾灯故障电路,以及如何结合降压稳压器的PWRGD信号和LED驱动器的故障信号来设计故障电路…

  • 细数T-BOX中TI的明星产品之宽输入降压电源 | 第三节 LMR33630-Q1:一级电源的绝佳选择

    Other Parts Discussed in Post: LMR33630-Q1, LM76005

    汽车新热点:细数T-BOX中TI的明星产品(进行中)

    Interface

    PHY

    第一节     DP83TC811S-Q1:车载以太网让您的T-BOX如虎添翼

    CAN

    第二节   TCAN1042-Q1:“硬核”的CAN收发器

     

    Power

    Wide Vin BUCK

    第三节 LMR33630-Q1:一级电源的绝佳选择

    Low Vin BUCK

    敬请期待!

    汽车新热点: T-BOX系统解决方案深度剖析(已完结)

    第一节

    电源轨

    第二节

    充放电管理

    第三节

    接口

    第四节

    紧急呼叫单元

    第五节

    无线连接单元

     
     第三节 LMR33630…
  • 细数T-BOX中TI的明星产品之CAN 收发器 | 第二节 TCAN1042-Q1:“硬核”的CAN收发器

    Other Parts Discussed in Post: TCAN1042-Q1

    汽车新热点:细数T-BOX中TI的明星产品(进行中)

    Interface

    PHY

    第一节     DP83TC811S-Q1:车载以太网让您的T-BOX如虎添翼

    CAN

    第二节   TCAN1042-Q1:“硬核”的CAN收发器

    Power

    Wide Vin BUCK

    敬请期待!

    汽车新热点: T-BOX系统解决方案深度剖析(已完结)

    第一节

    电源轨

    第二节

    充放电管理

    第三节

    接口

    第四节

    紧急呼叫单元

    第五节

    无线连接单元

     

     第二节 TCAN1042-Q1:“硬核”的CAN收发器

    前文谈及,在车载应用中…

  • 细数T-BOX中TI的明星产品之车载以太网 | 第一节 DP83TC811S-Q1:车载以太网让您的T-BOX如虎添翼

    Other Parts Discussed in Post: DP83TC811S-Q1

    汽车新热点:细数T-BOX中TI的明星产品(进行中)

    Interface

    PHY

    第一节   DP83TC811S-Q1:车载以太网让您的T-BOX如虎添翼

    CAN

    敬请期待

    汽车新热点: T-BOX系统解决方案深度剖析(已完结)

    第一节

    电源轨

    第二节

    充放电管理

    第三节

    接口

    第四节

    紧急呼叫单元

    第五节

    无线连接单元

    第一节 DP83TC811S-Q1:车载以太网让您的T-BOX如虎添翼

    近年来“车联网”概念的热度一直都居高不下。说起车联网,当然就不得不提车载以太网以及车联网的核心组成部分之一---T-BOX!

    本文将会从车载以太网100BASE…

  • 开发适用于下一代汽车的汽车网关

    Other Parts Discussed in Post: DRA829V

    介绍

    汽车架构正在快速演进,车辆逐步从半自动驾驶向最终的完全自动驾驶发展。汽车制造商还加入了多种功能,例如智能访问、车辆共享、预测性维护、车辆跟踪、车队管理和空中 (OTA) 升级,以增强互联能力和车载通信。这些高级功能生成的数据量不断增加,需要通过高性能处理器进行处理,并在 CAN、LIN 和高速网络(如以太网)等接口之间安全可靠地进行通信。因此,汽车制造商正在重新评估汽车网关和远程信息处理控制单元系统(TCU)的架构。

    汽车网关

    汽车网关是一种核心功能为在车辆内安全可靠地传输数据的系统。车辆中可以存在多种网关:中央网关和域网关(或域控制器)。

    中央网关可以在TCU、动力传动系统、车身、信息娱乐系统、数字驾驶舱和 ADAS 应用等多个域之间安全可靠地传输数据。

    域网关(或域控制器)具有类似的功能,只不过它仅在其相应域内的 ECU 之间路由数据。

    与域网关相比…

  • 互联汽车,前路何方?

    从硅谷的初创企业,到知名的德国原始设备制造商(OEM),乃至世界各地的驾驶员和狂热的车迷,都在思索互联汽车的未来蓝图。它将如何改变我们的日常通勤?移动5G功能何时能够上路应用?自动驾驶车辆中的连接性如何发挥作用?这些问题发人深思,只有未来能够回答。

    不过,问题的线索之一可以在车联网发展进程中寻找。结合我们对当今市场的认知,便可一探未来的多种可能性。

    车联网的演进

    21世纪初,紧急呼叫(eCall)车载道路安全系统问世,为人们提供安全功能和应急援助,而个人导航设备则帮助驾驶员了解路线,使后座上的人不必手忙脚乱地指路,驾驶员可以安静地开车,其他人也获得了休息的可能。(我们大家都要感谢这个设备。)该技术兴起的推手是欧洲委员会E112、俄罗斯的欧洲地区航空公司协会(ERA)全球导航卫星系统(GLONASS)或美国E911的实施。

    2018年4月1日,当欧盟强制要求所有出厂新车安装eCall硬件时,该系统取得了突破性进展——起初,它仅是基础的电话和导航设备…

  • 互联车辆如何处理数据:3个常见问题

    互联驾驶虽然已经实现,但仍然有很大的发展空间。在未来,车辆将与驾驶员、其他汽车、道路和周围基础设施、行人和云相互通信,同时与乘客保持稳定连接。

    由于连接水平的不断提高,车辆将能够接收、理解和传输车内及周围环境数据,从而帮助司机做出驾驶决策,为乘客提供方便,并提高车辆自主性。

    今天,我们将处理三个关于未来互联汽车的常见问题。

    问:什么是V2X?它与互联汽车有什么关系?

    答:车联万物(V2X)是一种允许信息在车辆和其周围世界之间传递的多点网络,涵盖行人、周围基础设施(如灯柱、交通信号灯和停车场)、其他车辆和云/网络。此生态系统如图1所示。

    1V2X包括车对云(V2C)、车对基础设施(V2I)、车对行人(V2P)和车对车(V2V)连接。

    V2X网络的核心是远程信息处理控制单元(TCU)——远程信息处理系统的大脑,该系统是几乎所有外部世界与汽车无线通信的中心枢纽。

    问:DSRCC-V2X有何区别?

    答:专用短程通信…

  • 互联汽车中远程信息技术硬件的四个设计注意事项

    说出来可能让您很惊讶,一项已存在近二十年的科技为互联汽车的应用铺平了道路。按照高科技标准衡量,ECall已经是落伍技术,目前欧盟强制要求在所有出厂新车里安装ECall。这部法规仅是技术与立法互相交叉的一个例子 - 两者之间微妙的关系可能会决定我们能够在多久以后拥有完全互联的汽车。

    从其最基础的定义来看,eCall仅仅是汽车内的基础性蜂窝电话,能在紧急情况下自动拨打求助电话,自1990年代起就已上市。展望未来,消费者需要更高级的集成,这也成为引入远程信息技术控制单元(TCU)的契机。

     TCU可为互联汽车提供eCall的所有功能以及包括发送和接收数据(如位置、无线更新或电话)在内的其他功能。如果没有TCU,eCall便只能拨打电话。图 1 概括介绍了具有拨打紧急求助电话功能的TCU。 

    1:当代TCU内集成的拨打紧急求助电话功能

     具备集成eCall系统的典型TCU的要求

    设计TCU具有很多硬件变数,这是因为原始设备制造商(OEM)和一级供应商具有自己的设计规格…

  • 解决混合动力汽车/电动汽车中的高压电流感应设计难题

    解决混合动力汽车/电动汽车中的高压电流感应设计难题

    电气化已为汽车动力系统创造了一个新的范例——无论该设计是混合动力汽车(HEV)还是电动汽车(EV),总有新的设计难题要解决。在这篇技术文章中,我想要强调高压电流感应的一些主要挑战,并分享其他资源来帮助和简化您的设计过程。 

    有关电流感应的介绍,请参阅我们的电子书“简化电流感应。” 

    高电压、高电流:(>200 A或更常见的1,000 A)

    高电压(≥400 V)全电动系统旨在降低驱动车辆的牵引系统的电流消耗。这需要隔离解决方案,以便“热”高压侧能够向“冷”侧(连接到低压≤5-V微控制器或其他电路)提供电流测量。由于I2R的功耗,当用分流电阻器测量时,高电流就会出现问题。 

    如要在这些情况下使用分流器,意味着你必须选择低于100-µΩ的分流电阻器,但是这些电阻器往往比更为常见的毫欧级电阻器更大…

  • 半导体技术如何改变汽车照明硬件设计线路图

    Other Parts Discussed in Post: TPS92520-Q1, TCAN1044-Q1

    半导体技术如何改变汽车照明硬件设计线路图

    自适应大灯系统|动态尾灯|个性化内饰照明|更亮、定制的水坑灯|透明车窗显示

    汽车照明持续飞速发展。尽管LED光源可提高效率并具有独特的车辆风格,但原始设备制造商(OEM)现在正在实现新颖且有用的照明用例。在本技术文章中,我想重点介绍几种半导体技术,他们正在影响大灯、尾灯和内饰照明系统的路线图。

     

    自适应大灯系统

    自适应前灯系统和自适应远光大灯系统分别调整近光灯和远光灯的形状。尽管欧洲生产汽车都可使用自适应大灯,但美国汽车制造商无法使用这些高级灯。不过,这种情况可能很快就会改变。自适应系统使用大功率LED作为光源,这需要大功率LED驱动器来调节电流,并达到所需亮度。开关LED驱动器必须用于实现高效率,并实现用于热管理的两级功率处理拓扑。

    第一级是升压稳压器。它管理变化较广的汽车输入电压…

  • 让汽车仪表组上的指针动起来

    虽然汽车仪表组在过去几年已经取得了一定的发展,但它在很多方面依然是我们好几代人都熟悉的样子。原先的仪表组就像图1中所示的那样,由显示车速、油位、发动机温度和油压的模拟(机械)仪表以及里程表组成。现代车辆的仪表组上仍然会显示这些对驾驶员有用的重要信息,但除此之外,高新科技的进步也为仪表组带来了更多新的功能。

     图1:由六个机械仪表组成的模拟仪表组

    如今的仪表组保留了传统的外观,由微控制器(MCU)供电,MCU从控制器局域网(CAN)总线读取车辆状态信息。驾驶员可以接收到熟悉格式的信息,但步进电机和仪表组的MCU会控制机械仪表和指针。仪表组上还有多个可识别的指示灯,并可发出可听见的铃声,为驾驶员提供更丰富的信息。

    随着电子科技的进步,里程表逐渐被字母数字显示屏所取代,这种显示屏主要显示各种功能参数和指标,如燃油效率、室外温度和行程长度,同时通过机电仪表来显示传统的信息。从电子角度而言,具有信息图形支持的混合仪表组(如图2所示)是比较经济且相对简易的…

  • 低功耗Bluetooth®技术助力实现汽车门禁系统变革

    Other Parts Discussed in Post: CC2640R2F

    为了满足消费者希望以智能手机取代车钥匙的需求,汽车行业正在经历着重大变革。随着“手机即钥匙”技术的普及,你不再需要传统的密钥卡,使用手机即可操作“被动门禁/被动启动”(PEPS)系统。低功耗Bluetooth®技术的领先优势在于它是一种可以广泛应用于智能手机的多功能技术。

    图1:车内的低功耗蓝牙PEPS架构,卫星模块的数量可能会随系统要求变化。 

    图1所示为车内低功耗蓝牙PEPS的典型架构,采用了“手机即钥匙”技术。该架构中有一个中央智能钥匙模块和九个卫星模块,中央智能钥匙模块与手机钥匙进行通信,卫星模块可被动监控中央模块和智能手机之间的蓝牙低功耗连接。TI的车用低功耗Bluetooth®汽车门禁卫星节点参考设计介绍了如何实现该节点设计。 

    虽然目前有许多无线技术力求实现…

  • FPDLINK 的电火花干扰优化

    随着汽车工业的不断发展其电气化程度越来越深,从而其各种前/后装设备的电气系统稳定性对车辆安全而言也愈加重要。例如根据GB/T 19056-2012和JT-T794-2011标准,车载MDVR等产品就需强制通过电火花干扰测试以确保其稳定可靠工作。

    而与此同时,在目前MDVR智能化的趋势下(AI),需要更精确的摄像头视频数据用于AI分析。此时用TI的FPDLINK-III来实现数字视频信号的传输,相较传统的模拟视频信号传输优势明显,但挑战的是:在上述电火花干扰测试方面,FPDLINK更高频的信号传输也更易受到干扰,本文即主要针对该问题进行原理剖析,并整理相应优化方法以应对该挑战。

    1.  实验模型及干扰途径

    电火花干扰实验模型可参考下图fig.1,同时实验用电火花信号规格如table.1。

    Fig.1 电火花干扰实验模型

    Tabl.1 电火花信号规格

    通过上图我们可看出,电火花干扰实验基本等效于存在外界强干扰源情况下的EMC抗扰测试(EMS…

  • 如何为汽车门禁系统的发展打开机遇大门

    随着汽车设计工程师开始采纳其他行业中广泛使用的技术,驾驶员们进入汽车的方式开始变得日益方便。纵观行业发展,过去人们需要使用机械钥匙解锁车辆,到后来出现了按钮式遥控钥匙。现在,最常见的汽车进入方式是被动门禁/被动启动(PEPS)系统,使驾驶员能够在不使用钥匙的情况下进入他们的汽车,并启动发动机。

    PEPS系统的工作原理

    PEPS系统通过汽车和遥控钥匙之间的射频(RF)通信,帮助汽车理解驾驶员意图以及认证驾驶员身份。低频(通常为125 kHz或134 kHz)和超高频(UHF)(通常为Sub-1 GHz)信号在遥控钥匙和车辆之间传递唯一的密钥访问代码。只有当交换的代码与预期值相匹配,且遥控钥匙位于解锁车辆的有效距离内,二者同时满足时,汽车才会允许驾驶员解锁车辆。遥控钥匙和车辆之间的这种检验方式会同时探测位置和距离,并判断钥匙是在车内还是车外。如果钥匙靠近但仍在车外,汽车就会启用被动门禁功能,而不是被动启动功能。

    PEPS系统可以是触发系统或轮询系统…

  • 在低功耗 Bluetooth® PEPS 系统中添加 CAN 节点

    在使用低功耗 Bluetooth® 技术的汽车被动进入被动启动 (PEPS) 系统中,司机使用与汽车门禁系统通信的密钥卡(而不是钥匙)上车和启动电机(或引擎,如有内燃机)。

    图 1 所示为车内低功耗蓝牙 PEPS 的典型架构。该架构中有一个中央智能钥匙模块和九个卫星模块。此处所示的九个卫星模块仅为示例,在实际应用中,卫星模块的数量可能更多或更少。图 1 还显示了这些模块通过使用通信总线进行通信。

     

    图 1:车内的低功耗蓝牙 PEPS 架构

    卫星节点内部

    那么卫星节点内部是什么?图 2 所示为低功耗蓝牙卫星模块的典型方框图。该模块有一个低功耗蓝牙片上系统 (SoC)(如 TI 的 SimpleLink™ CC2640R2F-Q1)、一个电源和一个通信接口(通常为收发器)。图 2 还显示了 PEPS 系统内的其他模块,包括智能钥匙模块,甚至车身控制模块。 


    图 2:汽车 PEPS 系统方框图

    通信总线选项

    汽车 PEPS…

  • 智能传感器将改变您的驾驶方式(因为最终您将不需要驾驶)

    在日常生活中实现全自动无人驾驶汽车是件激动人心的梦想。想象一个汽车是真正自动化的世界:你只需上车,告诉车辆你去哪里,并继续你的事,而你就能从A点到达B点,无需更多的人机交互。

    突然间,全国平均最长26分钟到达办公室的通勤时间 -开始消失。驾驶的焦虑和压力转化为放松和富有成效的体验。

    自动驾驶汽车出现如此多的令人激动的提案极的监管互动并不是什么新鲜事。自动驾驶汽车将从根本上改变城市以及更多地区的全球交通网络,同时重新制定交通基础设施,车辆所有权等规则。

    IHS Automotive最新预测显示,在物联网(IoT)连接、处理能力和机器视觉等必要技术发展的关键时期,到2035年全球自动驾驶汽车将有近2100万销售量

     考虑到当今的情况:

    • 机器通过物联网连接的能力已经成为众多行业中的游戏规则改变者,但它仍然是一项新兴技术。Gartner公司预测,到2020年全球将有204亿物联产品

    • 常规视觉备份摄像机是如今车辆的常见功能…