最新技术文章
  • 模拟: 如何设计高性能低侧电流感应设计中的印刷电路板

    Other Parts Discussed in Post: TLV9061

    在之前的博客文章中,我向大家介绍了如何借助低侧电流感应控制电机,并分享了为成本敏感型应用设计低侧电流感应电路的三个步骤。在本篇文章中,我将介绍如何使用应用印刷电路板(PCB)技术,采用一款微型运算放大器 (Op amp)来设计精确的、低成本的低侧电流感应电路。

    图1是之前的博客文章引用的低侧电流感应电路原理图,图一中使用的是TLV9061超小型运算放大器。

     

    图1:低侧电流感应原理图

     

    公式1是计算图1所示电路的传递函数:

    其中。

    精确的低侧电流感应设计对印刷电路板的设计有两大要求。首先要确保分流电阻(Rshunt)直接连接到放大器的同相输入端和RG的接地端,这通常被称为“开尔文接法”(Kelvin connection)。如果不使用开尔文接法,会产生与分流电阻(Rshunt)串联的寄生电阻,导致系统产生增益误差。图2显示了系统中寄生电阻的位置。…

  • 模拟: LDO的PSRR测量

    Other Parts Discussed in Post: LP5907, THS3120, OPA552, OPA564, OPA211, OPA228, OPA189, OPA656, THS3120EVM

      

    作者:Hao Wang   深圳模拟工程师

    PSRR是什么

    PSRR(Power supply rejection ratio)又称电源抑制比,是衡量电路对于输入电源中纹波抑制大小的重要参数,表示为输出纹波和输入纹波的对数比,单位为分贝(dB)[1],其计算公式为:

                                                         

    式中:

     :输入电压中纹波峰峰值

     :输出电压中纹波峰峰值

    从公式中可以看出PSRR越大,相同输入纹波在输出端的纹波越小,对于纹波有较高要求的射频和无线应用中,需要选用高PSRR的LDO。那么LDO的PSRR该如何测量呢?本文总结了各种测量方法。

    PSRR测量原理

    在LDO输入的直流电压Vin_DC中叠加一定…

  • 嵌入式处理: 如何为您的传感应用选择正确的集成ADC

    谷歌搜索术语“模数转换器选择”会产生了数以千计的搜索结果,证明这一任务对参与设计传感解决方案的许多人而言仍然具有挑战性。毕竟,从8位微控制器(MCU)中集成的简单10位ADC到可以GHz速率解析的ADC,有大量的模数转换器(ADC)解决方案。

    除非正在设计专门的传感前端,否则您很可能正在寻找一款集成ADC,能够实现高质量的性能,而不会影响节能或操作的灵活性。在这篇文章中,我列出了几个参数,可帮助您缩小ADC的搜索范围,根据应用的具体需要,您可能还要参考其他参数。

    • 分辨率。也许是讨论最多的ADC参数,关于ADC可以解析的比特数是否是其准确度的最重要的测量值,存在许多问题。审视这一点的一个简单的方法是通过检查您应用在ADC转换后采取的行动。例如,测量温度变化是否已经发生是相对测量吗?如果是,一个10位或12位的ADC就足够了,因为这是真-假-否问题。另一方面,考虑电表等产品。在这种应用中,模数转换需要高精度…
  • 模拟: 低侧电流感应用于高性能、成本敏感型应用

    作者:Tim Claycomb

    需要控制电机的应用通常包含某种类型的电流感应电路。感应通过电机电流的能力可以帮助设计师根据电机电流状态做出如速度之类的调整。

    例如,在无人机的应用中,每个控制螺旋桨的电机通常使用低侧电流感应电路,操控无人机在空中行进、停留或上升。在钻机和往复锯等电动工具中,低侧电流感应根据用户按动扳机的力度来控制工具的速度。这些产品通常需要成本敏感型设计,因为这些产品面对消费者市场。在这篇博文中,我将介绍如何为成本敏感型应用设计低侧电流感应电路。

    在设计低侧电流感应电路时,高性价比的方法之一是使用非反相配置运算放大器(op amp)。图1是使用运算放大器的典型低侧电流感应电路原理图。

     

    图1:低侧电流感应原理图

    公式1用于计算图1中的电流传递函数:

                        

    其中    。

    图1中所示的低侧电流感应电路设计过程分为三个简单的步骤:

    1. 计算最大分流电阻。当来自负载(ILOAD)的电流流过分流电阻器(R
  • 嵌入式处理: CC1310片内固件升级的工程编译

    Other Parts Discussed in Post: CC1310, UNIFLASH

    作者: TI 工程师 LOUIS LU

     

    OAD(http://www.ti.com/cn/lit/swra580 ), 即Over the Air Download,是通过无线的方式远程更新固件的一种方法。On chip,就是片上, 升级的对象不需要外挂Flash, 通过芯片片内Flash完成新固件存储及老固件向新固件的切换。On chip OAD方案因为不需要外部接口就能够实现固件的更新,在传感器,智能门锁,电力监控等无线应用广受欢迎。

    在TI新发布的CC1310 片内OAD工程里, 由于很多细节没有说明, 用户使用过程可能出错. 这里将结合TI CC1310 SDK 1.60.00.21 版本(http://www.ti.com.cn/tool/cn/simplelink-cc13x0-sdk), 讲解在工程编译和OAD测试过程中的注意事项…

  • 电源管理: 如何着手电源设计

    在本篇文章中,我将从不同方面深入介绍降压、升压和降压-升压拓扑结构。

    降压转换器

    图1是非同步降压转换器的原理图。降压转换器将其输入电压降低为较低的输出电压。当开关Q1导通时,能量转移到输出端。

     

    1非同步降压转换器原理图

     

    公式1计算占空比:

     

     

    公式2计算最大金属氧化物半导体场效应晶体管(MOSFET)应力:

     

     

    公式3给出了最大二极管应力:

     

     

    其中Vin是输入电压,Vout是输出电压,Vf是二极管正向电压。

    与线性稳压器或低压差稳压器(LDO)相比,输入电压和输出电压之间的差异越大,降压转换器的效率就越高。

    尽管降压转换器在输入端具有脉冲电流,但由于的电感 - 电容(LC)滤波器位于转换器的输出端,输出电流是连续的。结果,与输出端的纹波相比,反射到输入端的电压纹波将会更大。

    对于占空比小且输出电流大于3A的降压转换器,建议使用同步整流器。如果您的电源需要大于30A的输出电流…

  • 模拟: 新颖的想法:创造一个带有较低额定输入电压控制器的150V非同步降压解决方案

    在如今的许多应用中,要求的额定输入电压超过许多现有DC/DC控制器的VIN最大额定值。对此,传统的解决办法包括使用昂贵的前端保护或实现低端栅极驱动器件。这意味着采用隔离拓扑,如反激式转换器。隔离拓扑通常需要自定义磁性,且与非隔离方法相比,设计复杂性和成本也有所增加。

    存在着另一种解决方案,可以通过使用VIN max(最大输入电压)小于系统输入电压的简易降压控制器来解决问题。这是如何实现的呢?

    降压控制器通常来源于参考电位(0V)的偏置电源(图1a)。偏置电源来自输入电压;因此,器件需要承受全部的VIN电位。然而,因为开通P通道金属氧化物半导体场效应晶体管(MOSFET)所需的栅极驱动电压在VGS低于VIN,P通道降压控制器具有参考VIN(图1b)的栅极驱动电源。关闭P通道MOSFET则仅需简单地将栅极电压变为VIN(0V VGS)(图2)。

     

    1N通道(a)VCC偏置生成;和P通道控制器(b)

     

    2

  • 电源管理: 电源小贴士#78:同步整流可改善反激式电源的交叉调整率

    当选择一个可从单电源产生多输出的系统拓扑时,反激式电源是一个明智的选择。由于每个变压器绕组上的电压与该绕组中的匝数成比例,因此可以通过匝数来轻松设置每个输出电压。在理想情况下,如果调节其中一个输出电压,则所有其他输出将按照匝数进行缩放,并保持稳定。

    然而,在现实情况中,寄生元件会共同降低未调节输出的负载调整。在本电源小贴士中,我将进一步探讨寄生电感的影响,以及如何使用同步整流代替二极管来大幅提高反激式电源的交叉调整率。

    例如,一个反激式电源可分别从一个48V输入产生两个1 A的12V输出,如1的简化仿真模型所示。理想的二极管模型具有零正向压降,电阻可忽略不计。变压器绕组电阻可忽略不计,只有与变压器引线串联的寄生电感才能建模。这些电感是变压器内的漏电感,以及印刷电路板(PCB)印制线和二极管内的寄生电感。当设置这些电感时,两个输出相互跟踪,因为当二极管在开关周期的1-D部分导通时,变压器的全耦合会促使两个输出相等。

     

  • DLP® 技术: 4K超高清,看见更精彩的世界

    Other Parts Discussed in Post: DLP470TE

    4K超高清 (UHD) 流媒体、播放器和蓝光影碟业务正在快速增长。4K UHD内容每帧数据包含800多万个像素 – 数量是全高清 (1080p) 内容的四倍多。

     

    面临的挑战是如何呈现4K超高清内容的细节、景深以及身临其境的观感。我们已习惯使用大屏电视,50英寸1080p的电视几乎随处可见,而且4K大电视价格也逐渐亲民。可是,如果想体验到四倍的1080P电视所显示的细节,我们也可以合理假设需要四倍的屏幕尺寸。这就意味着4K UHD投影是唯一能够以合理价格呈现超大画面的显示技术。

     

    在学校或商业环境中,投影显示非常有效,便于观众观看所有的细节。在家庭娱乐中,投影也能带来无比精彩的沉浸式体验。真正的4K UHD显示解决方案可以展现4K UHD规格要求的800万像素,呈现精准、清晰的图像,让你看清楚所有细节。

     

    4K UHD技术的…

  • 汽车: 多开关检测接口:为实现更小型、更高效设计集成化功能

    Other Parts Discussed in Post: TIC12400-Q1

    作者:John Griffith

     

    作为汽车的电子控制装置,汽车车身控制模块(BCMs)可以控制与汽车舒适性、便利性和照明等相关的多种功能,包括门锁、车窗、警报声、关闭传感器、内饰和外饰照明、雨刮器和转向灯。如图1所示,BCM可以监控不同的驱动开关并根据相应的车内负载控制功率。

     

     

    图1:BCM框图

     

    通常,一款BCM会包含一个处理汽车12V电池量驱动器开关状态的微处理器。传统上采用电阻电容和二极管等分立式无源器件通过接口电路将信号连接至微处理器。您必须细心保护微处理器免受电池电压、静电放电(ESD)、瞬态和反向电池的影响。另外,您需要为偏置开关输入提供附聚电流并确保开关接触点状态良好。

     

    图2所示的实际案例阐述了如何处理外部接地开关输入。电容C2分流ESD和瞬态能量;二极管D1阻止高压;电阻R4设置开关处的附聚电流;电阻R4与R8共同分压…

  • 电源管理: 汽车照明的明智之选

    作者:Kol Zhang

    汽车照明技术已历经数十年的发展。在发光二极管(LED)照明时代,人们对一体式车灯设计的期望从未如此之高正因为如此,这些高期待推动着半导体行业LED驱动器的技术不断发展。如今,汽车照明要求高质量的均衡设计以保证无论是前灯还是尾灯都具有卓越的照明效果。

     

       

    1:汽车前灯和尾灯

     

    在过去,提高亮度的方式是增加LED灯的数量。但如果您现在拆开一个新的尾灯,就会看到大量的导光材料、光管、遮光罩和其它复杂的照明结构,这些都是为了实现更佳的照明效果。为实施上述措施,需要减少LED灯的数量且提高每个LED灯的电流是必不可少的。

    设计人员使用开关型LED驱动器提高每个LED灯的电流。但是在车尾组合灯(RCL)中,高开关频率可能会对天线造成很大干扰,带来电磁干扰(EMI)和电磁兼容(EMC)问题。使用线性LED驱动器时,LED驱动器内部的高功耗可能会影响整个照明灯的使用寿命。

    TI推出的全新三通道高侧恒流汽车线性LED控制器…

  • 电源管理: 使用 LLC 谐振控制器来加速器件运行

    Other Parts Discussed in Post: UCC256301

    作者:Brent McDonald

     

    为了成为最好,人们会付出旁人无法想象的努力。例如,运动员不知疲倦地进行训练,只是为了在比赛中能够快人毫秒。学生花费数年时间钻研学问,只为获得顶级学术成就。公司或机构组织花费数十年时间研究新技术,仅为了解决曾经只在科幻小说中出现的问题。最后 —— 技术控——电源工程师则致力于开发超群的高效的、高密度转换器。

    我敢打赌,当你们中的大部分人启动了电路,至少在功率密度和效率方面取得了个人的最佳成果。回家后,你也许会激情满满地向你的配偶或孩子们讲述这段令人兴奋的经历,但这只会让他们对你的行为感到非常不解。

    放心,您不会在此获得这样的反馈。就个人而言,我喜欢摸索新鲜事物,并尝试使之变得比以前更好。TI推出了一个新型的控制器,UCC256301,目前正引发众人热议,因为它使电源性能表现出色…

  • 模拟: 超声波感应器会被用于何处?—— 第二部分

    近年来,消费类无人机越来越受欢迎,用于拍摄震撼的的片段、运送救援物资,甚至用于竞赛。大多数无人机使用各种传感技术实现自主导航、碰撞检测和许多其他功能。超声波传感尤其有助于无人机着陆、悬停和地面跟踪。

    无人机降落辅助是无人机所具有的一项功能,可以检测无人机底部与着陆区域的距离,判定着陆点是否安全,然后缓慢下降到着陆区域。尽管GPS监测、气压传感和其他传感技术有助于着陆过程,但在这个过程中,超声波传感是无人机的主要和最准确的判断依据。大多数无人机中还有悬停和地面跟踪模式,主要用于捕捉连续镜头和陆地导航,其中超声波传感器有助于将无人机保持在高于地面的恒定高度。本博文系列的第1部分讨论了如何将超声波传感器与汽车应用相结合。本博文将探讨超声波传感可用于无人机应用的原因。

    超声波原理

    超声波的定义是使用高于人类听力上限频率的声波 —— 见图1。

     

    1超声波范围

    超声波可以穿过各种介质(气体、液体、固体…

  • 模拟: 超声波感应器会被用于何处?——第一部分

    Other Parts Discussed in Post: PGA460-Q1

    多年以来,超声波感应器在乘用车上应用广泛如超声波停车辅助可帮助车辆在低速停车时检测周围物体。此外,踢脚开启后备箱和入侵检测报警则是超声波传感器的两个新兴应用。如图1所示。本文将为您详细解释这三种应用为何以及如何使用超声波感应器。

    1用于乘用车中的超声波感应器

    超声波停车辅助系统

    超声波停车辅助也被称为停车辅助系统、停车引导系统和倒车辅助。这些系统可实现从简单地检测周围物体并通过声音警示驾驶员,到几乎没有人为操作的自动停车。通常,这些系统拥有4-16个感应器,巧妙地围绕车身安装,以提供所需的检测覆盖,如图2所示。

      

    2使用PGA460-Q1的超声波停车辅助星型配置

    设计这些类型应用的工程师应寻求驱动超声波传感器(发射器)的集成电路,同时接收、调节和处理确定物体与车辆距离的超声回波。例如,PGA460-Q1能够可靠地检测距离最远为5米的国际标准化组织…

  • 模拟: 如何以毫微功率预算实现精密测量 —— 第1部分:毫微功耗运算放大器的直流增益

    Other Parts Discussed in Post: LPV811, TLV8541, LPV821

    作者: Gen Vansteeg - 2017年12月6日

    运算放大器(op amp)的高精度和高速度直接影响着功耗的量级。电流消耗降低则增益带宽减少;相反,偏移电压降低则电流消耗增大。

    运算放大器的许多电子特性相互作用,相互影响。由于市场对低功耗应用的需求逐渐增大,如无线感应节点、 物联网 (IoT) 和楼宇自动化,因此为确保同时满足终端设备性能优化及功耗尽可能低,了解各电子特性间的平衡至关重要。此系列博文包含三部分,在第一部分中,我将介绍在毫微功率精密运算放大器中关于直流增益的功率与性能表现的平衡。

    直流增益

    你也许还记得,在学校中学到的运算放大器的典型反相(如图1)和非反向(如图2)增益配置。

    1反相运算放大器

     

    2非反相运算放大器

    根据这些配置可分别得出反相和非反相运算放大器闭环增益等式…

  • 汽车: 为什么还在使用继电器驱动汽车电机?

    Other Parts Discussed in Post: DRV8702-Q1, DRV8703-Q1

    作者:Phil Beard

     

    随着汽车电气系统中更小更智能的集成电路(IC)的出现,是时候开始正视房间里的“大象”了:为什么我们仍然使用继电器控制汽车天窗、窗玻璃升降装置、电动锁、后行李箱盖提升装置、记忆座椅、压缩机以及车上的各种泵?虽然,继电器价格亲民且易于设计,但是由于它们的使用寿命有限且体积较大,因此它们的功能对于现代电机应用来说稍显笨重。对于一个安静、小型而安全的解决方案而言,固态IC是汽车电机控制应用的最佳选择。

     

    解决方案尺寸

    让我们比较两种解决方案,如图1所示的是具有相同的电压和电流额定值的典型继电器解决方案及等效固态解决方案。

     

     

    图1:继电器解决方案与固态解决方案

     

    仅针对解决方案尺寸,固态8mm×8mm四方扁平无引线(QFN)和两个双封装N通道金属氧化物半导体场效应晶体管…

  • 工业: 探索高压输电——第2部分:电压源换流器

    该系列文章的第一部分介绍了电网换相换流器(LCC)。这篇文章将讨论电压源换流器(VSC)并比较两种拓扑结构。

     

    VSC目前已成为首选实施对象,原因如下:VSC具有较低的系统成本,因为它们的配站比较简单。VSC实现了电流的双向流动,更易于反转功率流方向。VSC可以控制AC侧的有功和无功功率。VSC不像LCC那样依赖于AC网络,因此它们可以向无源负载供电并具有黑启动能力。使用绝缘栅双极晶体管(IGBT)阀,则无需进行晶闸管所需的换流操作,并可实现双向电流流动。

     

    表1对LCC和VSC进行了对比。VSC的电压电平通常在150kV-320kV范围内,但一些电压电平可高达500kV。VSC有几种不同的类型。让我们来看看两电平、三电平和模块化多电平。

     

     

    VSCs

    电网换相换流器

    换流

    不需要交流波形。独立于电网工作,具有黑启动功能。

    在网络的交流侧需要正弦波以进行换流…

  • 模拟: 适合于给NFC模块供电的低EMI噪声升压变换器

    Other Parts Discussed in Post: TPS61256A

    作者: Helen Chen

    越来越多的手机支持NFC功能。目前各个品牌的手机生产商(苹果,华为,小米,三星,联想等)生产的旗舰机和中高端机都支持NFC功能。手机里面现成 的, 能给NFC模块供电的电压是电池电压。但是电池电压在充满电以后,输出电压会随着客户的使用越来越低。从4.35V一直降到3V左右。而NFC模块的可靠工作范围和其供电电压有很大的关系,供电电压越低,可靠工作范围越窄。因此,如果直接拿手机内置电池给NFC模块供电,那么NFC模块的性能会随着电池电量的减少而越来越差, 大大影响了用户体验。

    如果将电池电压通过一个DC-DC升压变换器转换到一个固定的电压(5V或 5.2V)给NFC模块供电,那么即使电池电压降得很低,DC-DC升压变换器的输出能保持始终不变,NFC模块就能一直稳定工作,用户在使用NFC功能的时候就不会因为电池电量的减小而受到影响…

  • 电源管理: 轻松解决充电宝因过载使用而导致的过热问题

    Other Parts Discussed in Post: PMP9806

    作者: TI 工程师 Helen Chen

    充电宝 在给移动设备充电的过程中如果发生过热的问题,很容易导致起火爆炸等安全问题。我们经常能从媒体上看到此类事故的发生。因此充电宝的设计者们通常会加入过流保护电路,过热保护电路来增加产品的可靠性。充电宝行业竞争激烈,成本压力很大,因此这些额外增加的线路越简单可靠, 产品越有竞争力。

    TI的参考设计PMP9806就是针对这一客户需求而设计的。这个参考设计的输入电压为2.7-4.4V, 输出能力为18W (5V/3A, 9V/2A 及12V/1.5A)。当升压变换器TPS61088 的输出电流大于设定值,输出电压就会下降, 有效地限制了输出功率和输出电流, 从而避免了充电宝 因过载使用而导致的过热问题。下面我们来看一下具体的电路设计。

    TI参考设计PMP9806的系统框图

    图1是TI参考设计PMP980…

  • 嵌入式处理: 25美分获得25项功能:如何使用MCU进行简单的功能增强

    Other Parts Discussed in Post: MSP430FR2000

     如果有一个25美分的MCU,可以用0.5KB的内存做些什么?

     

    您现在可能已经使用固定功能的集成电路(IC)很长一段时间了,并且在某些情况下,已经适应了它们有限的灵活性。一个简单的通用异步收发器(UART)到串行外设接口(SPI)桥接器、一个复位控制器或一个带有后备存储器的外部实时控制器(RTC)在自身功能方面拥有良好的表现,但却仅限于设定的功能。

     

    但是如果可以通过智能化或功能定制来更好地满足您的需求呢?如果可以使用独立的低成本MCU来实现这些独立功能呢?

     

    新型MSP430™超值传感系列MCU可以通过多种集成混合信号功能帮助部署简单的传感解决方案。为扩展这些低成本MCU的功能,TI为25个常见系统级功能创建了一个代码实例库,包括定时器、输入/输出(I/O)扩展器、系统复位控制器、电可擦可编程只读存储器(EEPROM)等。…

  • 嵌入式处理: 通过电子门锁拥抱物联网生活

    在发展物联网(IoT)新世界的过程中,企业和家庭对于通过云服务保护其财产安全更有信心。电子门锁(电子锁)只是开启新时代物联网生活的大门。

     

    传统的门锁已经发展了好几个世纪,现代门锁的发展趋势是针对住宅和楼宇提供更高的安全性和可操控性。想像这样一个世界,您可以监测谁进入或离开您的家庭或楼宇,并控制距您几英里远的所有活动。

    今天,云技术已经使这一功能成为现实。通过TI的SimpleLink™连接微控制器(MCU)平台,可以将现实情形带到家庭或楼宇,并按不同的喜好个性化布置。通过使用SimpleLink Bluetooth ®低能量网络处理器和MSP432™MCU,您可以使用智能手机应用程序进行简单的访问控制和用户身份验证。若您添加了SimpleLink Wi-Fi®无线MCU,则该锁可以低功耗与云端直接连接,而无需额外的桥接。除连接外,添加具有CapTIvate™技术的MSP430™MCU使现场接口现代化,可用光滑的电容触摸控制面板取代机械按钮…

  • 电源管理: 一款用于视频监控摄像头的简单高效的发光二极管驱动器

    视频监视安防监控需求正旺,而且该技术也在个人和商业应用方面变得更加经济。受对更高标准的安保需求的驱动,在全球已经有数以百万计的监控摄像头被安装。

     

    由于许多监控摄像头一直处于打开状态,因此监控摄像头制造商已经转向使用节能发光二极管(LED)照明。与以前使用的白炽灯/荧光灯相比,LED的效率提高了80-90%,且散热较低。同时,LED还具有更长的使用寿命,在视频监控摄像头的应用中占据更小的空间。

     

    随着生产数量的增加,摄像头制造商要求LED驱动板的设计更简单、更紧凑、成本更低。但同时,他们需要的LED驱动器能满足更高的效率、更低的功耗、更高的精度、更好的图像分辨率的要求。面对这些挑战,硬件工程师需要一个可以满足以上所有要求的LED驱动器解决方案。

     

    TI的TPS54200是一款新型DC/DC同步降压LED驱动器,可帮助支持视频监控和其它终端设备。该器件提供了高效、高性价比的解决方案,且具有高模拟调光精度。T…

  • 汽车: 为什么还在使用继电器驱动汽车电机?

    随着汽车电气系统中日益采用更小更智能的集成电路(IC),现在是开始在解决大家熟视无睹的问题的时候了:为什么我们仍然在天窗模块、车窗玻璃升降器、动力锁、后挡板升降器、记忆座椅、压缩机和泵中用继电器控制电机?当然,使用继电器进行设计便宜而且简单,但是,考虑到其有限的使用寿命和较大的解决方案尺寸,它们的功能对于现代电机应用而言似乎颇显笨重。对于安静、小而安全的解决方案,固态IC是汽车电机控制应用的最佳选择。

    解决方案尺寸

    我们来比较一下两种解决方案,如图1所示:典型的继电器解决方案和具有相同额定电压和电流的等效固态解决方案。

    1: 继电器解决方案与固态解决方案

    针对解决方案尺寸,固态8mm×8mm方形扁平无引脚封装(QFN)加上两个双排封装N沟道金属氧化物半导体场效应晶体管(MOSFET)约占继电器解决方案电路板面积的三分之一。看z轴,整个固态解决方案大约9毫米高。或0.035英寸。如果要构建电机驱动器印刷电路板(PCB…

  • 电源管理: TI《电源设计基础》中文版新书全新上市!你可知大咖Robert当年电源设计的精彩故事?

    万众期待的Robert A. Mammano新书《电源设计基础》简体中文版隆重上市!电源设计入门推荐经典书籍!

    天猫购买点击这里,京东购买点击这里

       

    作者:Tim Goodrow

    我于2003年7月加入TI,负责电源管理营销方面的工作。在我工作的第一周,我的老板是这样向我介绍Robert Mammano的:“Tim,我想介绍Robert Mammano给你认识。Robert是首个开关电源控制集成电路[IC]的发明者。”

    Robert当时正在管理TI的全球电源设计研讨会,并在我们的办公室与技术专家会面。对于我而言,能够与电源行业的标志性人物会面,是一个令人难忘的时刻。

    时间快进到2016年1月——我的老板表示希望让我负责一个新项目,记得当时他是这么和我说的:“Tim,我希望你和Robert Mammano一起工作,共同编制一本电源教科书,总结出我们三十年电源设计研讨会的技术内容。”…

  • 嵌入式处理: 如何在xWR1xxx芯片上运行mmw demo

    Other Parts Discussed in Post: UNIFLASH, IWR1642

    作者:TI 工程师 Chris Meng

      

            本文基于的软件环境是mmwave_sdk_01_00_00_05和CCS7.1。本文测试使用的硬件是xWR1642 EVM,类似的方法适用于xWR1443 EVM。

             用户需要预先安装好mmwave sdk,CCS和Uniflash。相关链接如下:

    • mmWave SDK: mmWave Software Development Kit

    http://www.ti.com/tool/mmwave-sdk

    • CCS7.1

    http://processors.wiki.ti.com/index.php/Download_CCS#Code_Composer_Studio_Version_7_Downloads

    • Uniflash

    http://www.ti…