最新技术文章
  • 嵌入式处理: 如何利用视觉处理器在可视门铃和智能零售设计中扩展边缘 AI 功能

    Other Parts Discussed in Post: AM62A3, AM62A7-Q1, AM62A3-Q1, AM62A7

    随着“边缘人工智能 (AI)”的兴起,“在网络边缘拥有更高的智能性”也倍受讨论,拥有更高本地实时处理能力的好处就易被忽视,而这种处理无需依赖基于云的资源来运行 AI 模型。通过使我们日常交互的电子设备能够根据 AI 模型在现实世界中做出决策,我们可以提高其响应能力、安全性和整体效率。

    当然,一些 AI 驱动型系统可能一直都需要基于云的资源。利用诸如人员和物体分类、异常检测和人体姿势估计等处理功能,可以大大增强许多低功耗应用,特别是那些具有一至两个摄像头的应用。然而,由于成本限制以及此类处理水平的功率要求,在低功耗应用中实现这些功能颇具挑战。

    新的基于 Arm® Cortex® 的视觉处理器(例如 AM62A 处理器系列)可帮助设计人员在应用中扩展视觉和…

  • 电源管理: 独立式有源 EMI 滤波器 IC 如何缩小共模滤波器尺寸

    Other Parts Discussed in Post: TPSF12C3-Q1, TPSF12C1-Q1

    功率密度是汽车车载充电器和服务器电源等高度受限系统环境中的主要指标。务必要减小电磁干扰 (EMI) 滤波器元件的体积,从而确保解决方案能够满足严苛的外形尺寸要求。

    鉴于接触电流安全要求,用于上述和其他高密度应用的共模 (CM) 滤波器通常会限制总 Y 电容大小,因此需要大尺寸共模扼流圈来实现目标转角频率或滤波器衰减特性。这导致了权衡后的无源滤波器设计采用笨重且昂贵的共模扼流圈,尺寸相当于整个滤波器大小。

    随着无源器件逐渐跟不上高速功率半导体器件以及电路拓扑的发展,无源滤波器的体积是提高功率密度的限制因素之一。实际的滤波器实现会占用电源解决方案总体积的 30%(如图 1 所示)。

    13.3kW 图腾柱功率因数校正参考设计中的传统单相无源 EMI 滤波器

    有源 EMI 滤波器 (AEF) 电路可为新一代电源管理系统实现更紧凑的滤波器解决方案…

  • 嵌入式处理: Arm®︎ Cortex®︎-M0+ MCU 如何优化通用处理、传感和控制

    Other Parts Discussed in Post: MSPM0G3507

    嵌入式系统中的微控制器 (MCU) 像是繁忙机场的空中交通管制系统。MCU 可以感知所在的工作环境,根据感知结果采取相应操作,并与相关系统进行通信。MCU 可以管理和控制从数字温度计到烟雾探测器,再到暖通空调电机等几乎各种电子设备中的信号。

    为了确保系统的经济性和使用寿命,嵌入式设计人员在设计过程中需要更大的灵活性。如果采用目前市面上的 MCU 产品系列,设计人员在当前和未来设计中可以重复使用的硬件和代码数量将很有限,并且计算、集成模拟和封装选项也很有限。这种有限的灵活性通常意味着设计人员必须向多家制造商采购 MCU,并需要花费额外的时间进行重新编程才能满足每个设计的独特需求,因此会增加开发成本以及整体系统成本和复杂性。

    MSPM0 Arm® Cortex®-M0+ MCU 为设计人员提供更多的选择、更大的设计灵活性以及更直观的软件和工具…

  • 工业: 如何在工业驱动器中实现精密的运动控制

    乘坐电梯时,您肯定希望平稳安全地从一层到达另一层。在电梯驱动中,精密的运动控制使电梯能够停在指定位置,并平稳地减速直到完全停止。缺乏精密的运动控制可能会导致电梯误停在两层之间,这会让乘坐电梯的人感到头晕不适或不安全。

    机器人、计算机数控机器和工厂自动化设备都需要通过伺服驱动器进行精密的位置控制,此外在许多情况下还需要进行精密的速度控制,以便正确地制造产品并维护工作流程。

    工业驱动器的诸多方面都对实现精密的运动控制很重要,精密运动控制涉及实时控制设计中的三个基础子系统,即感应、处理和驱动。本文将论述各个子系统的支持技术示例。

    感应

    缺乏精密的位置和速度感应,就无法实现精密的运动控制。感应可以包括电机轴角位置和速度感应或传送带线性位置和速度感应。设计人员经常使用增量式光学编码器,每转有几百到一千个槽,以感应位置和速度。这些编码器通常通过正交编码脉冲 (QEP) 连接到微控制器 (MCU),因此需要 QEP 接口功能。

    相比之下,绝对编码器的精度明显更高…

  • 电源管理: 一种用于户外电源电池管理系统的冗余设计

    Other Parts Discussed in Post: OPA197, BQ76952, INA280, TPS3431, LM293

    作者:Chen, Dillen 

    便携储能市场的快速增长带来了户外电源这一消费品类,并且随着消费者对用电需求增加,使得户外电源功率不断增大。为了保证户外电源的安全,电池管理系统(BMS)设计需要高度可靠,有些设计者会采用冗余设计来实现该需求。本文介绍一种户外电源BMS中的冗余设计策略,以避免单点失效。

    1. 供电环节冗余设计

    BMS板上的主要用电设备有MCU、模拟前端、信号调理芯片、通信芯片等。其中,模拟前端由电池直接供电,而信号调理、通信、风扇、显示这些用电设备不直接影响系统安全,由降压芯片将电池转换为合适电压供电即可。MCU最为重要,它不仅用于接收、处理、传输数据,还用于直接下达保护指令,因此需要冗余供电,常见的冗余供电设计如下图1所示。

    图1 户外电源BMS供电系统框图

    图1显示MCU具备两路供电链路…

  • 嵌入式处理: 使用C2000™︎内部比较器替外部比较器

    Other Parts Discussed in Post: TIDM-02002

    作者:Emma Wang

    1. 介绍

    C2000系列芯片在数字电源和电机控制中有着广泛的应用,在这些应用中,过流过压保护是必不可少的。传统的方法是使用外部比较器,但是会存在滤波电路不好设计,不同版本需要不同的BOM来提供不同的保护点等问题。本文针对所有第三代C2000芯片,比如F2807x/37x,F28004x,F28002x等,介绍C2000内部比较器的具体实践方法,并提供了与传统的外部比较器方法的比较,结果表明,使用C2000内部比较器的方法在效率和成本上都具备明显的优势。

    2. C2000 内部比较器的介绍

    TI 第三代C2000芯片全系列集成了带DAC的片内比较器,通过DAC设定阈值,与采样信号分别送到片内比较器的正负输入端做比较,由于DAC的集成,用户可以方便地修改比较的电压值。同时,C2000比较器内部集成数字滤波器,可以实现高性能的滤波…

  • 嵌入式处理: 使用HRPWM的注意事项

    作者:Ke, Shaoxing 

    摘要

    随着新能源领域的发展, 在数字电源控制系统中要求功率密度高且转换效率高。其中,整机功率密度的提升,就需要提高开关频率, 大部分现有产品的开关频率在50k~200kHz。然而, 由于SiC/GaN器件的大面积推广与使用, 开关频率已经提升到500kHz,甚至1MHz。当系统的开关频率超过200kHz时,此时PWM脉宽的调节精度会变低, 这就需要使用高精度模式的PWM调制。我们把用于扩展传统ePWM模块的时间精度的模块, 称之为高精度PWM(High resolution PWM)。本文将对C2000 片上HRPWM模块的工作原理、使用方法和注意事项进行详细讨论,并以实际案例进行展示。此外,HRPWM模块也可以作DAC输出用来实现模拟信号的观测。

    1.高精度PWM的工作原理 (HRPWM)

    1.1 高精度PWMMEP技术

    C2000支持占空比、相移、死区和周期的高精度控制。HRPWM是在普通PWM模块上采用微边沿定位…

  • 嵌入式处理: 推动电气化发展的 4 大电流检测设计趋势

    Other Parts Discussed in Post: TMCS1100, INA301, INA228, INA226, INA232, INA253

    在所有描述世界日益电气化的流行语中,有一个词十分亮眼:电流检测。如果电流检测技术不可靠、不准确且难以用于设计,那么在太阳能电池阵列、电动汽车 (EV) 充电站或机器人领域令人耳熟能详的创新几乎都不可能实现。

    本文将介绍随着电气化应用发展而出现的四大设计趋势,以及用于提高系统电压、增强系统保护、实现遥测监测和缩减外形尺寸的电流检测技术。总的来说,电流传感器监测电气系统中的一项重要参数,即电流,这能够使系统在安全范围内尽可能高效地运行。

    通过电流检测支持更高的系统电压

    随着对效率的要求愈加严格,系统电压也随之增加,从而有助于提高效率。根据欧姆定律,在较高的系统电压下,可通过降低负载的电流来得到等量的功率,这有助于减少系统中的 I2R 损耗。电压愈高,系统可以愈发高效地传输大功率…

  • 汽车: 推动增强现实抬头显示 (AR-HUD) 的未来发展

    Other Parts Discussed in Post: DLP4620S-Q1

    随着汽车的电气化和连接程度越来越高,抬头显示 (HUD) 的未来正在迅速改变。特别是,增强现实AR-HUD已成为智能驾驶舱设计的核心要素,有助于通过驾驶辅助和安全功能提升整体驾驶体验。设计下一代 AR-HUD 时,需要牢记几项技术要点。

    视场 (FOV) 和虚拟图像距离

    视场可能是 AR-HUD 解决方案的最重要参数之一,因为它会直接影响驾驶员所看到的图像的尺寸。DLP4620S-Q1 DMD DLP® 技术可实现 15 度以上的视场,可为驾驶员在多个车道上投影信息。

    虚拟图像距离指示图像的投射距离,以及驾驶员能看到前方多远距离的投影图像。由于驾驶员需要提前知晓道路障碍等情况,这在车速较高时特别重要。更重要的是,更长的虚拟成像距离(大于7.5m)可以极大的减小因为驾驶员目光在HUD与实际场景图像聚焦切换时 (Convergence…

  • 模拟: 有疑问?TI帮你汇总隔离型RS-485收发器的七大设计问题

    Other Parts Discussed in Post: ISO1410, SN6501, ISOW7841

    1.何时必须隔离RS-485总线?

    隔离可防止系统两个部分之间的直流电(DC)和异常的交流电(AC),但仍然支持两个部分之间的信号和电能传输。隔离通常能够阻止电气组件或人员遭受危险电压和电流浪涌的伤害;用于保护人员的隔离称为增强型隔离。隔离可防止节点之间进行长途通信时形成接地回路。隔离还允许远高于RS-485标准所推荐的节点间通信接地电位差变化率。

    2.可以把多少个节点连接到一条RS-485总线上?

    为预估可能的最大总线负载数量,RS-485定义了一个假设术语“单位负载(UL)”,它代表约为12kΩ的负载阻抗。美国电子工业协会(TIA/EIA) RS-485标准强制规定最多能够为一条RS-485总线添加32 UL负载。我们使用输入电压除以漏电流得到的最坏情况下的性能比来计算一个节点的UL,如等式1所示。…

  • 汽车: 如何优化汽车 HVAC 设计,以在持续增长的混合动力汽车和电动汽车市场保持优势

    Other Parts Discussed in Post: TMS320F2800157-Q1

    随着混合动力汽车 (HEV) 和电动汽车 (EV) 的数量在全球范围内持续增长,汽车研发人员也在不断创新以保持优势。混合动力汽车/电动汽车动力总成系统差异化历来就是重点关注领域,而现如今,混合动力汽车/电动汽车热管理或加热、通风和空调 (HVAC) 系统差异化对于市场佼佼者而言亦是不容忽视的领域。热管理系统消耗的功率在混合动力汽车/电动汽车中排名第二(仅次于动力总成系统),会直接影响续航里程。

     

    数十年来,内燃机 (ICE) 一直在为汽车及其 HVAC 系统提供动力。在混合动力汽车/电动汽车中,由于尺寸限制或不使用内燃机,需要额外引入两个元件,这些元件在 HVAC 系统中起着关键作用:

    • 无刷直流 (BLDC) 电机是代替发动机使空调压缩机旋转的直流电机。
    • 正温度系数 (PTC) 加热器或热泵代替发动机对冷却液进行加热。在使用热泵的情况下…
  • 汽车: 使用低功耗 60GHz 毫米波雷达传感器满足 Euro NCAP 儿童存在检测要求

    Other Parts Discussed in Post: AWRL6432

    在选购新车时,具有安全意识的消费者可以查看欧盟新车安全评鉴协会 (NCAP) 提供的评级,了解不同地区如何比较汽车的 NCAP 评级;作为发展路线图的一部分,Euro NCAP 一直致力于推动车内儿童存在检测计划。

     

    从 2025 年开始,只有直接传感解决方案才能获得 NCAP 分数,因此会引导汽车制造商从间接传感方案(如开门逻辑、压力电容传感和不可靠的重量传感解决方案)转向采用单个 60GHz 雷达传感器的方案。

     

    60GHz 雷达传感器提供更高的精度,与重量传感器和基于摄像头的替代方案等解决方案相比更具成本效益,后者在具有挑战性的现实照明条件下可能难以满足需求。TI 的 60GHz AWRL6432 雷达传感器等传感器支持车内传感,可检测车内(包括搁脚空间)是否存在儿童,并支持超低的系统物料清单成本,从而帮助您满足 Euro NCAP 设计要求。

  • 嵌入式处理: 具有高性价比的无线 MCU 如何帮助您将低功耗 Bluetooth®︎ 技术应用到更多产品中

     

    环顾我们当前日常生活中的 Bluetooth® 应用,我们有理由期待未来世界能够实现更高程度的互联。据蓝牙技术联盟(SIG)估计,蓝牙设备的年出货量将在 2026 年超过 70 亿。在医疗设备、玩具、个人电子产品、智能家居设备等领域,市场需要更高的蓝牙集成度。为满足该市场需求,富有创新精神的工程师将有机会大展拳脚。

    蓝牙在医疗领域的发展趋势

    蓝牙功能在医疗方面的应用越来越多,包括血糖监测仪、医疗传感器贴片,甚至还有智能牙刷。对于设计者来说,需要满足消费者对以下特性的需求:

    • 尺寸小巧且便于使用。没有人希望在使用血糖监测仪或温度贴片时有诸多限制条件。
    • 电池寿命较长。较长的电池寿命有助于让消费者在危急时刻去安心使用一些设备。
    • 强大的性能。提供可靠的连接至关重要。

    蓝牙在个人电子产品领域的发展趋势

    尽管游戏产品、玩具或遥控器等个人电子产品与医疗救生设备大不相同,但对集成蓝牙的特性要求则较为类似,包括:

    • 时尚且实用的设计。不管是无线键盘还是鼠标…
  • 工业: 超声波镜头清洗:您不了解却需要的固态技术

    Other Parts Discussed in Post: ULC1001

    如果您曾用过便携式 CD 播放器,大概率懂得CD 被划伤或弄脏后听到跳音的感受。或许,您也还记得 VHS 磁带的缠绕问题、磁带老化和图像质量差的体验。闪存作为一种经济实用的固态解决方案,淘汰了这些复杂的机械存储方式。

    在如今的汽车行业,制造商可以通过使用微型雨刮器、喷水器、压缩空气和其他系统来解决摄像头和传感器的清洗问题。然而,由于这些解决方案价格昂贵且机械复杂度高,因此普及使用的可能性不大。

    本文介绍的超声波镜头清洗 (ULC) 固态解决方案可实现摄像头和传感器的自清洗,并且具有成本效益。

    鉴于镜头尺寸和材料繁多,实现 ULC 的结构方法也多种多样。那么,半导体如何发挥作用?尽管 ULC 可实现的功能不限于本文所述,为方便起见,本文将典型圆形摄像头上的水滴作为污染物进行演示。

    要清洗镜头,可以施加一个力将水滴从镜头上排到视场 (FoV) 外,或者也可以通过施加大于表面张力的力将水滴雾化…

  • 工业: 什么是超声波镜头清洗技术?

    您可能听说过高音尖叫可以震碎玻璃,那么是否听说过尖叫可以清洗玻璃?借助精确受控的高频振动,超声波清洗技术便可以用于清洗玻璃表面。在雨天情况下,这项技术可以结合汽车的后置摄像头镜头自动检测并清除车窗雨滴,无需驾驶员操作。

    在本文中,我将介绍超声波镜头清洗 (ULC) 技术以及该项技术如何帮助实现自清洗摄像头应用。

    超声波镜头清洗技术如何工作?

    我们先了解下相关的物理知识。所有物体都有一个固有频率,该频率大小取决于物体的分子结构和几何形状。如果以这个特有频率对物体施加能量,物体会产生振动或振荡。例如,以吉他弦的固有频率拨动吉他弦时,吉他弦会发生振动。同样,以酒杯的固有频率敲击酒杯时,酒杯也会发生振动。如果在某个材料上以其固有频率重复施加能量,输入波形会对其本身波形产生显著干扰,使其振幅增大,但仍保持在同一相位内。这一现象称为共振。

    为了更好地理解共振,试想一下您正在推着某人荡秋千。在秋千恰好向后摆到最高点时向前推,可以让荡秋千的人荡得更高…

  • 汽车: 低功耗 60GHz 毫米波雷达传感器如何在更多应用中实现高精度传感

    Other Parts Discussed in Post: AWRL6432, IWRL6432

    基于雷达的传感器集成电路 (IC) 得益于其远距离探测能力、高运动灵敏度和隐私保护的特性,成为一种常用的传感技术。凭借其高精度,雷达传感器广泛的应用在在汽车和工业市场中,例如盲点检测、碰撞检测、人员存在和运动检测等应用。

    近年来,60GHz 和 77GHz 雷达传感器取代了 24GHz 雷达传感器,具有更高的分辨率、更高的精度和更小的外形尺寸。60GHz 和 77GHz 雷达频段还支持了多种新的应用,例如车辆中的儿童存在检测和医院中的老年人跌倒检测。

    尽管具有雷达传感的独特优势,但高性能 60GHz 和 77GHz 片上系统传感器以前在功耗预算紧张的应用中会受到限制。IWRL6432 和 AWRL6432 等新型雷达传感器因采用低功耗架构使得功耗更低,可以支持在工业、个人电子产品和汽车应用中使用雷达。低功耗雷达内置休眠模式和提供高效的运行占空比…

  • 电源管理: 高压技术是实现更可持续未来的关键

    随着电气化的普及,半导体创新使我们能够与电动汽车、可再生能源和其他高压系统安全可靠地进行交互。

     

    随着世界各地的电力消耗持续增长,高电压技术领域的创新让设计工程师能够开发出更高效的解决方案,使电气化和可再生能源技术更易于使用。

     

    “随着人均用电量的持续增长,可持续能源变得越来越重要,”TI 副总裁及高电压产品部总经理 Kannan Soundarapandian 表示。“以负责的方式管理能源使用非常重要。我们不能浪费任何一毫焦1的能量。这就是为什么高电压技术的创新是实现能源可持续的关键。”

     

    随着电力需求的增加( 2 秒内将电动汽车 (EV) 0mph加速到 60mph 需要大量的电池电量),电压也必须增加,以便尽可能减少热量损失。将电力从电池传输到电动汽车的牵引逆变器通常需要更高的电压来提高效率,其他众多高压系统也是如此。

     

    虽然设计这些系统可能成本高昂且困难重重,但与通过传输线…

  • 汽车: 如何设计适用于高级电动汽车电池管理系统的智能电池接线盒

    Other Parts Discussed in Post: BQ79731-Q1, BQ79631-Q1, BQ79616-Q1

    作者:Issac Hsu,德州仪器(TI)电池管理系统产品市场经理

    随着电动汽车 (EV) 日益流行,如何在反映真实续航里程的同时让汽车更加经济实惠,成为汽车制造商面临的挑战之一。首先,这意味着需要降低电池包成本并提高其能量密度。电芯中存储和消耗的每瓦时能量都对延长续航里程至关重要。

     

    电池管理系统 (BMS) 的主要功能是监测电芯电压、电池包电压和电池包电流。此外,鉴于 BMS 的高电压设计,需要测量高压域和低压域之间的绝缘电阻,从而捕捉电池结构中的缺陷并防止危险状况发生。 

    1:传统的 BMS 架构 (a);具有智能电池接线盒 (BJB) BMS 架构 (b)

     

    图 1 展示了典型的 BMS 架构,其中包括电池管理单元 (BMU)、电芯监控单元 (CMU) 和电池接线盒 (BJB)BMU…

  • 工业: 实时控制和通信领域的 IT/OT 融合如何推动工业自动化

    Other Parts Discussed in Post: DP83826E

    试想有一个可以弯曲和转动的机械臂,它的每个轴都配备了十分精准的电机驱动器、传感器或机器视觉,仿佛在演奏一曲运动交响乐。但如果没有“指挥”告诉系统的每个器件在何时该如何执行各自的操作,那么机械臂可能会发出刺耳的碰撞声和金属摩擦声。

     

    在之前的实时控制系列文章中,我们探讨了用于感应、驱动和处理的实时控制 (RTC) 仪器。而要将它们贯穿起来需要借助“指挥”:实时通信。在本文中,我们将以基于实时通信和控制的工业 4.0 作为讨论的出发点。

     

    推动自动化领域大数据发展的因素

    受疫情影响,无人工干预的工厂运营模式广受欢迎。大数据(牛津词典将其定义为可以通过计算分析揭示模式、趋势和关联的超大数据集,特别是与人类行为和互动有关的数据集)的收集和适当分布可为数字孪生、计量、服务收费和预测性维护提供支持。例如,拥有可用的大数据能够监测机械臂的性能和系统运行状况…

  • 模拟: 超声波镜头清洗:您不了解却需要的固态技术

    Other Parts Discussed in Post: ULC1001

    如果您曾用过便携式 CD 播放器,大概率懂得CD 被划伤或弄脏后听到跳音的感受。或许,您也还记得 VHS 磁带的缠绕问题、磁带老化和图像质量差的体验。闪存作为一种经济实用的固态解决方案,淘汰了这些复杂的机械存储方式。

     

    在如今的汽车行业,制造商可以通过使用微型雨刮器、喷水器、压缩空气和其他系统来解决摄像头和传感器的清洗问题。然而,由于这些解决方案价格昂贵且机械复杂度高,因此普及使用的可能性不大。

     

    本文介绍的超声波镜头清洗 (ULC) 固态解决方案可实现摄像头和传感器的自清洗,并且具有成本效益。

     

    鉴于镜头尺寸和材料繁多,实现 ULC 的结构方法也多种多样。那么,半导体如何发挥作用?尽管 ULC 可实现的功能不限于本文所述,为方便起见,本文将典型圆形摄像头上的水滴作为污染物进行演示。

     

    要清洗镜头,可以施加一个力将水滴从镜头上排到视场 (FoV) 外,或者也可以通过施加大于表面张力的力将水滴雾化…

  • 嵌入式处理: 基于TI MSPM0 MCU的车载充电机插枪唤醒方案

    作者:Terry Liang

    摘要

             车载充电机(OBC)在整车下电后,为保证低功耗,包括主控MCU在内的绝大部分电路都处于休眠状态,此时需要一个低功耗的常待机唤醒模块,检测充电枪的插枪信号,来唤醒车载充电机主电路。本文将介绍基于TI MSPM0 MCU的唤醒方案,相对于传统方案,具有高兼容性,高可靠性,便于维护,更低功耗,以及小体积等优点。

    1.      GB/T 18487.1-2015

                在展开讲述前,我们需要简单了解一下国内比较通用的电动汽车的充电协议标准-GB/T 18487.1-2015(电动汽车传导充电系统 第1部分:通用要求)。

                主要的充电握手步骤可以简单拆分成以下几点:

    1. 车辆检测CC端口阻值,判断车端连接头的连接状态(断开/半连接/连接状态);
    2. 充电设备监控检测点1的电平,判断线缆是否接好,且本身无故障,如果一切就绪,则S1切换到PWM档;
    3. 车辆检测CP占空比,以及电压值,初步判断是否为有效值,判断S1是否已经切换到PWM档…
  • 电源管理: Adjustable Inverting Output Using LMR54406

    Other Parts Discussed in Post: LMR54406

    作者:Dylan Zheng

    很多工业系统中常需要负电源供电,如双电源运算放大器、超声波扫描仪自动化测试设备等。本文主要介绍如何通过同步Buck 变换器LMR54406实现可调负电压输出,该方案具有外围电路少,成本优等特点。

    LMR54406是一款易用的同步Buck变换器,输入电压范围4V~36V,最大连续输出电流0.6A,非常适用于有宽压需求的工业应用。同时,其开关频率为1.1MHz,可以选用更小尺寸的电感;内部集成了软启动、补偿电路、过流保护和过温保护,大大节省方案体积。

    如图1所示,通过将原有Buck的正输出端接到系统GND;将原有Buck的GND pin作为反向电压输出端;正电源输入端加入一个对系统GND的输入电容CBUCK,即可将现有的LMR54406由同步Buck变换器转变为Inverting Buck-boost (IBB),提供负电压输出…

  • 模拟: 基于MPY634的有效值电路设计

    Other Parts Discussed in Post: MPY634

    作者:Brian Li

    MPY634是一款宽带宽、高精度、四象限模拟乘法器。其精确的激光微调特性使其易于在各种应用中使用。它的差分X,Y和Z输入使其在保持高精度的同时可以进行乘法、除法、开方等多种运算。精确的内部电压参考可精确设置比例因数。

    本文对MPY634应用中需要注意的比例因数设置以及输入信号幅值问题进行了分析,然后介绍了两种基于MPY634的有效值电路实现方法并对这两种方法进行了对比分析。

    图1 MPY634简化内部结构图

    在实际应用中,MPY634会面临两大问题:

    • 比例因数SF的设置:

    MPY634芯片默认的比例因数SF值为10,不论任何运算,涉及比例因数SF时,只需将SF引脚悬空,即可在运算中将SF值代入为10进行计算(注:该引脚实际测试电压值为-13V,并不是10V)。

    根据规格书说明,可以通过在SF引脚和-Vs引脚中间串接电阻的方法改变SF值…

  • 汽车: CC2340R5上手开发指南

    Other Parts Discussed in Post: LP-EM-CC2340R5, LP-XDS110, CC2340R5, SYSCONFIG, UNIFLASH, SYSBIOS

    作者:Island Wei

    摘要

        这篇博客的目的是引导第一次接触 TI 产品且第一次接触 CC2340 的用户在 CC2340 量产之前导入、调试运行一个名为 Project_Zero 的小项目。目的是帮助您快速认识 CC2340 芯片以及TI 的开发软件。如果您已经使用过 TI的产品,并且熟悉了 Code Composer StudioCCS 的使用,那么此篇博客的很多内容对于您来说可能过于基础。

        Project_Zero的内容是将作为CC2340 LaunchPad 上的 LED 灯注册给 Bluetooth 协议栈作为一种可以被 Bluetooth 客户端访问的 GATT 服务(GATT Service),并且将 Red LED…

  • 汽车: Jacinto™︎ 7系列HS芯片中的JTAG调试控制

    作者:王力(Neo Wang)

    1. 背景介绍:

    在TI最新一代JacintoTM 7处理器芯片中,为了保证客户系统安全以及功能隐私,保证应用镜像不被恶意篡改、复制以及删除,TI为每一颗JacintoTM 7 家族的SoC芯片都提供了HS(high security)的芯片类型,其中HS芯片的详细开发流程可参考如下应用手册:

    JacintoTM 7 High Security Device Developmenthttps://www.ti.com/lit/an/sprad04/sprad04.pdf

    而JTAG作为嵌入式开发过程中必不可少的调试接口,在应用开发以及产品发布阶段,推荐进行不同的处理,从而避免第三方通过JTAG接口对产品系统进行攻击从而造成损失。针对这种考虑,在GP和HS芯片中,JTAG接口具有不同的权限,如下表1所示:

    表 1 不同芯片类型中的JTAG状态

    芯片类型

    芯片状态

    M3 JTAG 状…