MSPM0G3519: MSPM0G3519

Part Number: MSPM0G3519

Dear Team,

I am working on MSPM0G3519 controller(32 pin) and trying to start external crystal 16MHz, but it stuck at the below line:

You can check the hardware design for crystal connection(HFIN connect at PTA5 and HFOUT connected at PTA6) :

Please check the attached configuration and help us to resolve the issue.

thank you.

/*
 * Copyright (c) 2023, Texas Instruments Incorporated
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * *  Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * *  Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * *  Neither the name of Texas Instruments Incorporated nor the names of
 *    its contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 *  ============ ti_msp_dl_config.c =============
 *  Configured MSPM0 DriverLib module definitions
 *
 *  DO NOT EDIT - This file is generated for the MSPM0G351X
 *  by the SysConfig tool.
 */

#include "ti_msp_dl_config.h"

DL_TimerA_backupConfig gTIMER_10_MsBackup;
DL_TimerA_backupConfig gTIMER_1_MsBackup;
DL_SPI_backupConfig gSPI_1_EepromBackup;

/*
 *  ======== SYSCFG_DL_init ========
 *  Perform any initialization needed before using any board APIs
 */
SYSCONFIG_WEAK void SYSCFG_DL_init(void)
{
    SYSCFG_DL_initPower();
    SYSCFG_DL_GPIO_init();
    /* Module-Specific Initializations*/
    SYSCFG_DL_SYSCTL_init();
    SYSCFG_DL_PWM_0_init();
    SYSCFG_DL_TIMER_10_Ms_init();
    SYSCFG_DL_TIMER_1_Ms_init();
    SYSCFG_DL_LIN_0_init();
    SYSCFG_DL_SPI_1_Eeprom_init();
    SYSCFG_DL_WWDT1_init();
    SYSCFG_DL_MCAN0_init();
    SYSCFG_DL_SYSCTL_CLK_init();
    /* Ensure backup structures have no valid state */

	gTIMER_10_MsBackup.backupRdy 	= false;
	gTIMER_1_MsBackup.backupRdy 	= false;
	gSPI_1_EepromBackup.backupRdy 	= false;


}
/*
 * User should take care to save and restore register configuration in application.
 * See Retention Configuration section for more details.
 */
SYSCONFIG_WEAK bool SYSCFG_DL_saveConfiguration(void)
{
    bool retStatus = true;

	retStatus &= DL_TimerA_saveConfiguration(TIMER_10_Ms_INST, &gTIMER_10_MsBackup);
	retStatus &= DL_TimerA_saveConfiguration(TIMER_1_Ms_INST, &gTIMER_1_MsBackup);
	retStatus &= DL_SPI_saveConfiguration(SPI_1_Eeprom_INST, &gSPI_1_EepromBackup);

    return retStatus;
}


SYSCONFIG_WEAK bool SYSCFG_DL_restoreConfiguration(void)
{
    bool retStatus = true;

	retStatus &= DL_TimerA_restoreConfiguration(TIMER_10_Ms_INST, &gTIMER_10_MsBackup, false);
	retStatus &= DL_TimerA_restoreConfiguration(TIMER_1_Ms_INST, &gTIMER_1_MsBackup, false);
	retStatus &= DL_SPI_restoreConfiguration(SPI_1_Eeprom_INST, &gSPI_1_EepromBackup);

    return retStatus;
}

SYSCONFIG_WEAK void SYSCFG_DL_initPower(void)
{
    DL_GPIO_reset(GPIOA);
    DL_TimerG_reset(PWM_0_INST);
    DL_TimerA_reset(TIMER_10_Ms_INST);
    DL_TimerA_reset(TIMER_1_Ms_INST);
    DL_UART_Extend_reset(LIN_0_INST);
    DL_SPI_reset(SPI_1_Eeprom_INST);
    DL_WWDT_reset(WWDT1_INST);
    DL_MCAN_reset(MCAN0_INST);

    DL_GPIO_enablePower(GPIOA);
    DL_TimerG_enablePower(PWM_0_INST);
    DL_TimerA_enablePower(TIMER_10_Ms_INST);
    DL_TimerA_enablePower(TIMER_1_Ms_INST);
    DL_UART_Extend_enablePower(LIN_0_INST);
    DL_SPI_enablePower(SPI_1_Eeprom_INST);
    DL_WWDT_enablePower(WWDT1_INST);
    DL_MCAN_enablePower(MCAN0_INST);
    delay_cycles(POWER_STARTUP_DELAY);
}

SYSCONFIG_WEAK void SYSCFG_DL_GPIO_init(void)
{

    /* Configure GPIO/IOMUX for HFXT functionality */
    DL_GPIO_initPeripheralAnalogFunction(GPIO_HFXIN_IOMUX);
    DL_GPIO_initPeripheralAnalogFunction(GPIO_HFXOUT_IOMUX);

    DL_GPIO_initPeripheralOutputFunction(GPIO_PWM_0_C0_IOMUX,GPIO_PWM_0_C0_IOMUX_FUNC);
    DL_GPIO_enableOutput(GPIO_PWM_0_C0_PORT, GPIO_PWM_0_C0_PIN);

    DL_GPIO_initPeripheralOutputFunction(
        GPIO_LIN_0_IOMUX_TX, GPIO_LIN_0_IOMUX_TX_FUNC);
    DL_GPIO_initPeripheralInputFunction(
        GPIO_LIN_0_IOMUX_RX, GPIO_LIN_0_IOMUX_RX_FUNC);

    DL_GPIO_initPeripheralOutputFunction(
        GPIO_SPI_1_Eeprom_IOMUX_SCLK, GPIO_SPI_1_Eeprom_IOMUX_SCLK_FUNC);
    DL_GPIO_initPeripheralOutputFunction(
        GPIO_SPI_1_Eeprom_IOMUX_PICO, GPIO_SPI_1_Eeprom_IOMUX_PICO_FUNC);
    DL_GPIO_initPeripheralInputFunction(
        GPIO_SPI_1_Eeprom_IOMUX_POCI, GPIO_SPI_1_Eeprom_IOMUX_POCI_FUNC);

    DL_GPIO_initDigitalOutput(GPIO_GRP_PTA_PIN_IND_LED6_IOMUX);

    DL_GPIO_initDigitalOutput(GPIO_GRP_PTA_EEPROM_CS_PIN_IOMUX);

    DL_GPIO_clearPins(GPIO_GRP_PTA_PORT, GPIO_GRP_PTA_PIN_IND_LED6_PIN);
    DL_GPIO_setPins(GPIO_GRP_PTA_PORT, GPIO_GRP_PTA_EEPROM_CS_PIN_PIN);
    DL_GPIO_enableOutput(GPIO_GRP_PTA_PORT, GPIO_GRP_PTA_PIN_IND_LED6_PIN |
		GPIO_GRP_PTA_EEPROM_CS_PIN_PIN);

    DL_GPIO_initPeripheralOutputFunction(
        GPIO_MCAN0_IOMUX_CAN_TX, GPIO_MCAN0_IOMUX_CAN_TX_FUNC);
    DL_GPIO_initPeripheralInputFunction(
        GPIO_MCAN0_IOMUX_CAN_RX, GPIO_MCAN0_IOMUX_CAN_RX_FUNC);

}


static const DL_SYSCTL_SYSPLLConfig gSYSPLLConfig = {
    .inputFreq              = DL_SYSCTL_SYSPLL_INPUT_FREQ_16_32_MHZ,
	.rDivClk2x              = 1,
	.rDivClk1               = 0,
	.rDivClk0               = 0,
	.enableCLK2x            = DL_SYSCTL_SYSPLL_CLK2X_ENABLE,
	.enableCLK1             = DL_SYSCTL_SYSPLL_CLK1_ENABLE,
	.enableCLK0             = DL_SYSCTL_SYSPLL_CLK0_ENABLE,
	.sysPLLMCLK             = DL_SYSCTL_SYSPLL_MCLK_CLK2X,
	.sysPLLRef              = DL_SYSCTL_SYSPLL_REF_HFCLK,
	.qDiv                   = 4,
	.pDiv                   = DL_SYSCTL_SYSPLL_PDIV_1,
	
};
SYSCONFIG_WEAK void SYSCFG_DL_SYSCTL_init(void)
{

	//Low Power Mode is configured to be SLEEP0
    DL_SYSCTL_setBORThreshold(DL_SYSCTL_BOR_THRESHOLD_LEVEL_0);
    DL_SYSCTL_setFlashWaitState(DL_SYSCTL_FLASH_WAIT_STATE_2);

    DL_SYSCTL_setSYSOSCFreq(DL_SYSCTL_SYSOSC_FREQ_BASE);
    /* Set default configuration */
    DL_SYSCTL_disableHFXT();
    DL_SYSCTL_disableSYSPLL();
    DL_SYSCTL_setHFCLKSourceHFXTParams(DL_SYSCTL_HFXT_RANGE_8_16_MHZ, 10, false);
    DL_SYSCTL_configSYSPLL((DL_SYSCTL_SYSPLLConfig *) &gSYSPLLConfig);
	
    DL_SYSCTL_setULPCLKDivider(DL_SYSCTL_ULPCLK_DIV_1);
    DL_SYSCTL_setMCLKSource(SYSOSC, HSCLK, DL_SYSCTL_HSCLK_SOURCE_SYSPLL);
    DL_SYSCTL_setMCLKDivider(DL_SYSCTL_MCLK_DIVIDER_DISABLE);

}
SYSCONFIG_WEAK void SYSCFG_DL_SYSCTL_CLK_init(void) {
    while ((DL_SYSCTL_getClockStatus() & (DL_SYSCTL_CLK_STATUS_SYSPLL_GOOD
		 | DL_SYSCTL_CLK_STATUS_HFCLK_GOOD
		 | DL_SYSCTL_CLK_STATUS_HSCLK_GOOD
		 | DL_SYSCTL_CLK_STATUS_LFOSC_GOOD))
	       != (DL_SYSCTL_CLK_STATUS_SYSPLL_GOOD
		 | DL_SYSCTL_CLK_STATUS_HFCLK_GOOD
		 | DL_SYSCTL_CLK_STATUS_HSCLK_GOOD
		 | DL_SYSCTL_CLK_STATUS_LFOSC_GOOD))
	{
		/* Ensure that clocks are in default POR configuration before initialization.
		* Additionally once LFXT is enabled, the internal LFOSC is disabled, and cannot
		* be re-enabled other than by executing a BOOTRST. */
		;
	}
}



/*
 * Timer clock configuration to be sourced by  / 4 (20000000 Hz)
 * timerClkFreq = (timerClkSrc / (timerClkDivRatio * (timerClkPrescale + 1)))
 *   20000000 Hz = 20000000 Hz / (4 * (0 + 1))
 */
static const DL_TimerG_ClockConfig gPWM_0ClockConfig = {
    .clockSel = DL_TIMER_CLOCK_BUSCLK,
    .divideRatio = DL_TIMER_CLOCK_DIVIDE_4,
    .prescale = 0U
};

static const DL_TimerG_PWMConfig gPWM_0Config = {
    .pwmMode = DL_TIMER_PWM_MODE_EDGE_ALIGN_UP,
    .period = 1000,
    .isTimerWithFourCC = false,
    .startTimer = DL_TIMER_STOP,
};

SYSCONFIG_WEAK void SYSCFG_DL_PWM_0_init(void) {

    DL_TimerG_setClockConfig(
        PWM_0_INST, (DL_TimerG_ClockConfig *) &gPWM_0ClockConfig);

    DL_TimerG_initPWMMode(
        PWM_0_INST, (DL_TimerG_PWMConfig *) &gPWM_0Config);

    // Set Counter control to the smallest CC index being used
    DL_TimerG_setCounterControl(PWM_0_INST,DL_TIMER_CZC_CCCTL0_ZCOND,DL_TIMER_CAC_CCCTL0_ACOND,DL_TIMER_CLC_CCCTL0_LCOND);

    DL_TimerG_setCaptureCompareOutCtl(PWM_0_INST, DL_TIMER_CC_OCTL_INIT_VAL_LOW,
		DL_TIMER_CC_OCTL_INV_OUT_DISABLED, DL_TIMER_CC_OCTL_SRC_FUNCVAL,
		DL_TIMERG_CAPTURE_COMPARE_0_INDEX);

    DL_TimerG_setCaptCompUpdateMethod(PWM_0_INST, DL_TIMER_CC_UPDATE_METHOD_IMMEDIATE, DL_TIMERG_CAPTURE_COMPARE_0_INDEX);
    DL_TimerG_setCaptureCompareValue(PWM_0_INST, 0, DL_TIMER_CC_0_INDEX);

    DL_TimerG_enableClock(PWM_0_INST);


    
    DL_TimerG_setCCPDirection(PWM_0_INST , DL_TIMER_CC0_OUTPUT );


}



/*
 * Timer clock configuration to be sourced by BUSCLK /  (10000000 Hz)
 * timerClkFreq = (timerClkSrc / (timerClkDivRatio * (timerClkPrescale + 1)))
 *   10000000 Hz = 10000000 Hz / (8 * (0 + 1))
 */
static const DL_TimerA_ClockConfig gTIMER_10_MsClockConfig = {
    .clockSel    = DL_TIMER_CLOCK_BUSCLK,
    .divideRatio = DL_TIMER_CLOCK_DIVIDE_8,
    .prescale    = 0U,
};

/*
 * Timer load value (where the counter starts from) is calculated as (timerPeriod * timerClockFreq) - 1
 * TIMER_10_Ms_INST_LOAD_VALUE = (5ms * 10000000 Hz) - 1
 */
static const DL_TimerA_TimerConfig gTIMER_10_MsTimerConfig = {
    .period     = TIMER_10_Ms_INST_LOAD_VALUE,
    .timerMode  = DL_TIMER_TIMER_MODE_PERIODIC,
    .startTimer = DL_TIMER_STOP,
};

SYSCONFIG_WEAK void SYSCFG_DL_TIMER_10_Ms_init(void) {

    DL_TimerA_setClockConfig(TIMER_10_Ms_INST,
        (DL_TimerA_ClockConfig *) &gTIMER_10_MsClockConfig);

    DL_TimerA_initTimerMode(TIMER_10_Ms_INST,
        (DL_TimerA_TimerConfig *) &gTIMER_10_MsTimerConfig);
    DL_TimerA_enableInterrupt(TIMER_10_Ms_INST , DL_TIMERA_INTERRUPT_REPC_EVENT);
    DL_TimerA_setRepeatCounter(TIMER_10_Ms_INST, TIMER_10_Ms_REPEAT_COUNT_2);

    DL_TimerA_enableClock(TIMER_10_Ms_INST);





}

/*
 * Timer clock configuration to be sourced by BUSCLK /  (10000000 Hz)
 * timerClkFreq = (timerClkSrc / (timerClkDivRatio * (timerClkPrescale + 1)))
 *   10000000 Hz = 10000000 Hz / (8 * (0 + 1))
 */
static const DL_TimerA_ClockConfig gTIMER_1_MsClockConfig = {
    .clockSel    = DL_TIMER_CLOCK_BUSCLK,
    .divideRatio = DL_TIMER_CLOCK_DIVIDE_8,
    .prescale    = 0U,
};

/*
 * Timer load value (where the counter starts from) is calculated as (timerPeriod * timerClockFreq) - 1
 * TIMER_1_Ms_INST_LOAD_VALUE = (1 ms * 10000000 Hz) - 1
 */
static const DL_TimerA_TimerConfig gTIMER_1_MsTimerConfig = {
    .period     = TIMER_1_Ms_INST_LOAD_VALUE,
    .timerMode  = DL_TIMER_TIMER_MODE_PERIODIC,
    .startTimer = DL_TIMER_STOP,
};

SYSCONFIG_WEAK void SYSCFG_DL_TIMER_1_Ms_init(void) {

    DL_TimerA_setClockConfig(TIMER_1_Ms_INST,
        (DL_TimerA_ClockConfig *) &gTIMER_1_MsClockConfig);

    DL_TimerA_initTimerMode(TIMER_1_Ms_INST,
        (DL_TimerA_TimerConfig *) &gTIMER_1_MsTimerConfig);
    DL_TimerA_enableInterrupt(TIMER_1_Ms_INST , DL_TIMERA_INTERRUPT_ZERO_EVENT);
    DL_TimerA_enableClock(TIMER_1_Ms_INST);





}


static const DL_UART_Extend_ClockConfig gLIN_0ClockConfig = {
    .clockSel    = DL_UART_EXTEND_CLOCK_BUSCLK,
    .divideRatio = DL_UART_EXTEND_CLOCK_DIVIDE_RATIO_2
};

static const DL_UART_Extend_Config gLIN_0Config = {
    .mode        = DL_UART_EXTEND_MODE_NORMAL,
    .direction   = DL_UART_EXTEND_DIRECTION_TX_RX,
    .flowControl = DL_UART_EXTEND_FLOW_CONTROL_NONE,
    .parity      = DL_UART_EXTEND_PARITY_NONE,
    .wordLength  = DL_UART_EXTEND_WORD_LENGTH_8_BITS,
    .stopBits    = DL_UART_EXTEND_STOP_BITS_ONE
};

SYSCONFIG_WEAK void SYSCFG_DL_LIN_0_init(void)
{
    DL_UART_Extend_setClockConfig(LIN_0_INST, (DL_UART_Extend_ClockConfig *) &gLIN_0ClockConfig);

    DL_UART_Extend_init(LIN_0_INST, (DL_UART_Extend_Config *) &gLIN_0Config);
    /*
     * Configure baud rate by setting oversampling and baud rate divisors.
     *  Target baud rate: 19200
     *  Actual baud rate: 19200.77
     */
    DL_UART_Extend_setOversampling(LIN_0_INST, DL_UART_OVERSAMPLING_RATE_16X);
    DL_UART_Extend_setBaudRateDivisor(LIN_0_INST, LIN_0_IBRD_40_MHZ_19200_BAUD, LIN_0_FBRD_40_MHZ_19200_BAUD);


    /* Configure Interrupts */
    DL_UART_Extend_enableInterrupt(LIN_0_INST,
                                 DL_UART_EXTEND_INTERRUPT_BREAK_ERROR |
                                 DL_UART_EXTEND_INTERRUPT_LINC0_MATCH |
                                 DL_UART_EXTEND_INTERRUPT_LIN_COUNTER_OVERFLOW |
                                 DL_UART_EXTEND_INTERRUPT_LIN_FALLING_EDGE |
                                 DL_UART_EXTEND_INTERRUPT_RXD_POS_EDGE);


    /* Configure LIN settings */
    DL_UART_Extend_enableLINCounter(LIN_0_INST);
    DL_UART_Extend_setLINCounterValue(LIN_0_INST, 0);
    DL_UART_Extend_enableLINCounterCompareMatch(LIN_0_INST);
    DL_UART_Extend_setLINCounterCompareValue(LIN_0_INST, LIN_0_COUNTER_COMPARE_VALUE);
    DL_UART_Extend_enableLINCountWhileLow(LIN_0_INST);
    DL_UART_Extend_enableLINCounterClearOnFallingEdge(LIN_0_INST);

    DL_UART_Extend_enable(LIN_0_INST);
}

static const DL_SPI_Config gSPI_1_Eeprom_config = {
    .mode        = DL_SPI_MODE_CONTROLLER,
    .frameFormat = DL_SPI_FRAME_FORMAT_MOTO3_POL0_PHA0,
    .parity      = DL_SPI_PARITY_NONE,
    .dataSize    = DL_SPI_DATA_SIZE_8,
    .bitOrder    = DL_SPI_BIT_ORDER_MSB_FIRST,
};

static const DL_SPI_ClockConfig gSPI_1_Eeprom_clockConfig = {
    .clockSel    = DL_SPI_CLOCK_BUSCLK,
    .divideRatio = DL_SPI_CLOCK_DIVIDE_RATIO_1
};

SYSCONFIG_WEAK void SYSCFG_DL_SPI_1_Eeprom_init(void) {
    DL_SPI_setClockConfig(SPI_1_Eeprom_INST, (DL_SPI_ClockConfig *) &gSPI_1_Eeprom_clockConfig);

    DL_SPI_init(SPI_1_Eeprom_INST, (DL_SPI_Config *) &gSPI_1_Eeprom_config);

    /* Configure Controller mode */
    /*
     * Set the bit rate clock divider to generate the serial output clock
     *     outputBitRate = (spiInputClock) / ((1 + SCR) * 2)
     *     4000000 = (80000000)/((1 + 9) * 2)
     */
    DL_SPI_setBitRateSerialClockDivider(SPI_1_Eeprom_INST, 9);
    /* Set RX and TX FIFO threshold levels */
    DL_SPI_setFIFOThreshold(SPI_1_Eeprom_INST, DL_SPI_RX_FIFO_LEVEL_1_2_FULL, DL_SPI_TX_FIFO_LEVEL_1_2_EMPTY);

    /* Enable module */
    DL_SPI_enable(SPI_1_Eeprom_INST);
}

SYSCONFIG_WEAK void SYSCFG_DL_WWDT1_init(void)
{
    /*
     * Initialize WWDT1 in Watchdog mode with following settings
     *   Watchdog Source Clock = (LFCLK Freq) / (WWDT Clock Divider)
     *                         = 32768Hz / 2 = 16.38 kHz
     *   Watchdog Period       = (WWDT Clock Divider) ∗ (WWDT Period Count) / 32768Hz
     *                         = 2 * 2^12 / 32768Hz = 250.00 ms
     *   Window0 Closed Period = (WWDT Period) * (Window0 Closed Percent)
     *                         = 250.00 ms * 0% = 0.00 s
     *   Window1 Closed Period = (WWDT Period) * (Window1 Closed Percent)
     *                         = 250.00 ms * 0% = 0.00 s
     */
    DL_WWDT_initWatchdogMode(WWDT1_INST, DL_WWDT_CLOCK_DIVIDE_2,
        DL_WWDT_TIMER_PERIOD_12_BITS, DL_WWDT_STOP_IN_SLEEP,
        DL_WWDT_WINDOW_PERIOD_0, DL_WWDT_WINDOW_PERIOD_0);

    /* Set Window0 as active window */
    DL_WWDT_setActiveWindow(WWDT1_INST, DL_WWDT_WINDOW0);

}


static const DL_MCAN_ClockConfig gMCAN0ClockConf = {
    .clockSel = DL_MCAN_FCLK_HFCLK,
    .divider  = DL_MCAN_FCLK_DIV_1,
};

static const DL_MCAN_InitParams gMCAN0InitParams= {

/* Initialize MCAN Init parameters.    */
    .fdMode            = true,
    .brsEnable         = true,
    .txpEnable         = false,
    .efbi              = false,
    .pxhddisable       = false,
    .darEnable         = false,
    .wkupReqEnable     = true,
    .autoWkupEnable    = true,
    .emulationEnable   = true,
    .tdcEnable         = true,
    .wdcPreload        = 255,

/* Transmitter Delay Compensation parameters. */
    .tdcConfig.tdcf    = 10,
    .tdcConfig.tdco    = 6,
};

static const DL_MCAN_ConfigParams gMCAN0ConfigParams={
    /* Initialize MCAN Config parameters. */
    .monEnable         = false,
    .asmEnable         = false,
    .tsPrescalar       = 15,
    .tsSelect          = 0,
    .timeoutSelect     = DL_MCAN_TIMEOUT_SELECT_CONT,
    .timeoutPreload    = 65535,
    .timeoutCntEnable  = false,
    .filterConfig.rrfs = true,
    .filterConfig.rrfe = true,
    .filterConfig.anfe = 1,
    .filterConfig.anfs = 1,
};

static const DL_MCAN_MsgRAMConfigParams gMCAN0MsgRAMConfigParams ={

    /* Standard ID Filter List Start Address. */
    .flssa                = MCAN0_INST_MCAN_STD_ID_FILT_START_ADDR,
    /* List Size: Standard ID. */
    .lss                  = MCAN0_INST_MCAN_STD_ID_FILTER_NUM,
    /* Extended ID Filter List Start Address. */
    .flesa                = MCAN0_INST_MCAN_EXT_ID_FILT_START_ADDR,
    /* List Size: Extended ID. */
    .lse                  = MCAN0_INST_MCAN_EXT_ID_FILTER_NUM,
    /* Tx Buffers Start Address. */
    .txStartAddr          = MCAN0_INST_MCAN_TX_BUFF_START_ADDR,
    /* Number of Dedicated Transmit Buffers. */
    .txBufNum             = MCAN0_INST_MCAN_TX_BUFF_SIZE,
    .txFIFOSize           = 10,
    /* Tx Buffer Element Size. */
    .txBufMode            = 0,
    .txBufElemSize        = DL_MCAN_ELEM_SIZE_64BYTES,
    /* Tx Event FIFO Start Address. */
    .txEventFIFOStartAddr = MCAN0_INST_MCAN_TX_EVENT_START_ADDR,
    /* Event FIFO Size. */
    .txEventFIFOSize      = MCAN0_INST_MCAN_TX_EVENT_SIZE,
    /* Level for Tx Event FIFO watermark interrupt. */
    .txEventFIFOWaterMark = 0,
    /* Rx FIFO0 Start Address. */
    .rxFIFO0startAddr     = MCAN0_INST_MCAN_FIFO_0_START_ADDR,
    /* Number of Rx FIFO elements. */
    .rxFIFO0size          = MCAN0_INST_MCAN_FIFO_0_NUM,
    /* Rx FIFO0 Watermark. */
    .rxFIFO0waterMark     = 0,
    .rxFIFO0OpMode        = 0,
    /* Rx FIFO1 Start Address. */
    .rxFIFO1startAddr     = MCAN0_INST_MCAN_FIFO_1_START_ADDR,
    /* Number of Rx FIFO elements. */
    .rxFIFO1size          = MCAN0_INST_MCAN_FIFO_1_NUM,
    /* Level for Rx FIFO 1 watermark interrupt. */
    .rxFIFO1waterMark     = 0,
    /* FIFO blocking mode. */
    .rxFIFO1OpMode        = 0,
    /* Rx Buffer Start Address. */
    .rxBufStartAddr       = MCAN0_INST_MCAN_RX_BUFF_START_ADDR,
    /* Rx Buffer Element Size. */
    .rxBufElemSize        = DL_MCAN_ELEM_SIZE_64BYTES,
    /* Rx FIFO0 Element Size. */
    .rxFIFO0ElemSize      = DL_MCAN_ELEM_SIZE_64BYTES,
    /* Rx FIFO1 Element Size. */
    .rxFIFO1ElemSize      = DL_MCAN_ELEM_SIZE_64BYTES,
};

static const DL_MCAN_StdMsgIDFilterElement gMCAN0StdFiltelem = {
    .sfec = 0x7,
    .sft  = 0x1,
    .sfid1 = 272,
    .sfid2 = 0,
};


static const DL_MCAN_BitTimingParams   gMCAN0BitTimes = {
    /* Arbitration Baud Rate Pre-scaler. */
    .nomRatePrescalar   = 0,
    /* Arbitration Time segment before sample point. */
    .nomTimeSeg1        = 26,
    /* Arbitration Time segment after sample point. */
    .nomTimeSeg2        = 3,
    /* Arbitration (Re)Synchronization Jump Width Range. */
    .nomSynchJumpWidth  = 3,
    /* Data Baud Rate Pre-scaler. */
    .dataRatePrescalar  = 0,
    /* Data Time segment before sample point. */
    .dataTimeSeg1       = 5,
    /* Data Time segment after sample point. */
    .dataTimeSeg2       = 0,
    /* Data (Re)Synchronization Jump Width.   */
    .dataSynchJumpWidth = 0,
};


SYSCONFIG_WEAK void SYSCFG_DL_MCAN0_init(void) {
    DL_MCAN_RevisionId revid_MCAN0;

    DL_MCAN_enableModuleClock(MCAN0_INST);

    DL_MCAN_setClockConfig(MCAN0_INST, (DL_MCAN_ClockConfig *) &gMCAN0ClockConf);

    /* Get MCANSS Revision ID. */
    DL_MCAN_getRevisionId(MCAN0_INST, &revid_MCAN0);

    /* Wait for Memory initialization to be completed. */
    while(false == DL_MCAN_isMemInitDone(MCAN0_INST));

    /* Put MCAN in SW initialization mode. */

    DL_MCAN_setOpMode(MCAN0_INST, DL_MCAN_OPERATION_MODE_SW_INIT);

    /* Wait till MCAN is not initialized. */
    while (DL_MCAN_OPERATION_MODE_SW_INIT != DL_MCAN_getOpMode(MCAN0_INST));

    /* Initialize MCAN module. */
    DL_MCAN_init(MCAN0_INST, (DL_MCAN_InitParams *) &gMCAN0InitParams);

    /* Configure MCAN module. */
    DL_MCAN_config(MCAN0_INST, (DL_MCAN_ConfigParams*) &gMCAN0ConfigParams);

    /* Configure Bit timings. */
    DL_MCAN_setBitTime(MCAN0_INST, (DL_MCAN_BitTimingParams*) &gMCAN0BitTimes);

    /* Configure Message RAM Sections */
    DL_MCAN_msgRAMConfig(MCAN0_INST, (DL_MCAN_MsgRAMConfigParams*) &gMCAN0MsgRAMConfigParams);

    /* Configure Standard ID filter element */
    DL_MCAN_addStdMsgIDFilter(MCAN0_INST, 0U, (DL_MCAN_StdMsgIDFilterElement *) &gMCAN0StdFiltelem);


    /* Set Extended ID Mask. */
    DL_MCAN_setExtIDAndMask(MCAN0_INST, MCAN0_INST_MCAN_EXT_ID_AND_MASK );

    /* Loopback mode */

    /* Take MCAN out of the SW initialization mode */
    DL_MCAN_setOpMode(MCAN0_INST, DL_MCAN_OPERATION_MODE_NORMAL);

    while (DL_MCAN_OPERATION_MODE_NORMAL != DL_MCAN_getOpMode(MCAN0_INST));

    /* Enable MCAN mopdule Interrupts */
    DL_MCAN_enableIntr(MCAN0_INST, MCAN0_INST_MCAN_INTERRUPTS, 1U);

    DL_MCAN_selectIntrLine(MCAN0_INST, DL_MCAN_INTERRUPT_BO|DL_MCAN_INTERRUPT_DRX|DL_MCAN_INTERRUPT_TC, DL_MCAN_INTR_LINE_NUM_0);
    DL_MCAN_enableIntrLine(MCAN0_INST, DL_MCAN_INTR_LINE_NUM_0, 1U);

    /* Enable MSPM0 MCAN interrupt */
    DL_MCAN_clearInterruptStatus(MCAN0_INST,(DL_MCAN_MSP_INTERRUPT_LINE0));
    DL_MCAN_enableInterrupt(MCAN0_INST,(DL_MCAN_MSP_INTERRUPT_LINE0));

}