• 为你的flyback瘦身;甩掉多余的缓冲器

    在过去至少20年间,MOSFET已经被选择为很多开关模式电源设计的开关器件。由于它们较高的开关速度和更加简便的驱动特性,MOSFET已经取代了很多应用与功率级中的双极性结型晶体管 (BJT)。然而,对于基于反激式的低功率AC/DC充电器等应用,相对MOSFET,BJT具有某些明显的优势。

    由于它们不同的器件结构,高压BJT的制造成本要低于高压MOSFET。正因如此,额定电压在1kV或者以上的BJT的价格要低于通用输入离线反激式转换器中常见的600V或650V MOSFET。

    优势是显而易见的。由于BJT具有较高的电压额定值,泄露尖峰会高出几百伏特,不过仍然处于所要求的开关降额设计范围内。根据尖峰的幅度不同,常常有可能在不使开关过压的情况下完全移除缓冲器。

    移除缓冲器

    优点:

    • 减少了物料清单 (BOM) 上的组件数量,从而实现一个更小、成本有效性更高的解决方案。更为重要的一点是,你可以移除缓冲器二极管,而这通常是一个600V的部件…
  • 安静地转换

    正如你也许在之前的博客和Greg Lubarsky的白皮书“被遗忘的转换器”中读到的那样,从解决方案大小和成本角度看,在系统中使用一个针对特殊电源轨的电荷泵DC/DC转换器将是非常有效的,特别是这种做法消除了对电感器的需要。

    电荷泵解决方案的一个挑战就是它产生的噪声要高于电感式DC/DC转换器。某些应用设计人员解决这个问题的方法是,在电荷泵输出上添加一个低压降稳压器 (LDO),以实现一个低噪声解决方案。然而,当你需要一个负电压轨时,这种做法会特别的麻烦,原因在于负电压轨LDO的封装尺寸通常很大。例如,ADP7182采用的就是3mm x 3mm封装。

    借助于TI全新的LM27761负电荷泵加上超低噪声LDO,可以既省钱又有效地解决这个难题。这个解决方案包括最新发布的LM27761反相电荷泵,并且集成了一个超低噪声LDO—所使用的技术与TI广受欢迎的LP5907相类似。

    只使用电荷泵将 +…

  • 高压电源创新:前世今生

    我每天都期待着两件事情:与我共事的人,以及我将要使用的技术。不过,我有时候也会花些时间反思一下,在这个行业中,高压创新会发展到什么水平,它又将为我们带来怎样的惊喜。由于我的团队正在帮助推动高压电源转换方面的创新,我有幸能够亲眼目睹我们用户如何利用全新电源产品,创建系统级设计,在节能和能源创新方面真正的改变我们的世界。

    在高压电源转换方面,往往是仁者见仁、智者见智。在TI,我们经常将其称为基于硅芯片的器件,它的主要用途就是转换或操纵一个100V或者电压值更高的电压轨。

    对于很多人来说,高压方面的创新也许看起来微不足道,或者仅仅是“想到过、尝试过”—特别是,你可以想一想,集成电路 (IC) 自从Jack Kilby时代以来,它 (IC) 已经取得了怎样的发展。不过事情远非如此。

    以栅极驱动器为例,传统电路使用栅极驱动变压器,这种器件会占用很多电路板空间。诸如TI 600V UCC2771…

  • 用Hercules™ LaunchPad™ 开发套件控制GaN功率级—第1部分

    今天的博文是一个动手操作项目:你将用一个氮化镓 (GaN) 功率级、一个Hercules™ 微控制器和一个滚轮来调节一盏灯的亮度。我将会谈到其中的硬件和固件。先给你的焊接设备充上电,我们马上开始。

    你可以用很多种方法来控制GaN功率级。针对LMG5200 GaN半桥功率级的TI用户指南使用了一个无源组件和分立式逻辑门的组合。在这篇博文中,我将会讨论到如何用一个Hercules微控制器来驱动它。图1显示的是将用来驱动LMG5200的Hercules模块。

    图1:具有死区发生器的Hercules PWM模块

    GaN与Hercules功率级是天生的一对儿。它们在工业和汽车应用中都能发挥很好的作用。Hercules脉宽调制 (PWM) 模块具有专门的硬件来驱动这些信号。死区发生器 (DB) 子模块非常适合于生成你所需要的死区时间。

    设置                                          

    图3显示的是将连接在一起的硬件模块。负载是一个常见的灯泡。一个德州仪器…

  • 我能让那个并联基准运行吗?

    Other Parts Discussed in Post: LM4040

    有时,在多种电压参考拓扑之间做出选择时有点像儿你在早上起来是喝咖啡还是喝白水。当然,喝水让人感觉清爽,并且具有排除体内毒素的功效,不过咖啡中的咖啡因真的十分有必要。

    同样的,串联基准提供低压降,不过并联基准能够处理任何的输入电压。而与并联基准一同出现的外部电阻器将二者结合了起来。通过仔细认真的选择,外部电阻器将使你能够具有一个能够支持宽输入电压范围,并且能够实现低压降运行的电压基准。

    为了使支路电流保持在器件的工作电流范围内,你必须选择一个电阻值范围介于方程式1与2所定义电阻值之间的外部电阻器:

    通过以即时数字和可视化反馈的方式,提供输入对于输出影响,TI的全新External Resistor Quick Start Calculator(外部电阻器快速入门计算器)工具简化了电阻器选型。请见图1。

    1:针对并联基准的外部电阻器快速入门计…

  • 如何使热插拔与电子熔丝相结合

    在进行电源设计时,经常会产生保护问题。您需要多大程度的保护?如何实施保护?如果您仍使用熔丝进行保护,请查看我同事的博客更新您的熔丝。如果您使用带外部FET的热插拔控制器进行保护,请继续阅读,了解如何利用电子熔丝节省空间。

    使用热插拔控制器的优势

    电子熔丝与热插拔控制器之间的主要区别是热插拔是一种能够驱动外部FET的控制器(如图1所示)。FET通过热插拔控制器中的控制逻辑进行开启和关闭,以调节负载处的电源供应。当感应电阻检测到过电压或过电流时,关闭FET可以减轻发生这类故障(图1RSENSE中的)的情况。某些控制器还会通过故障(FLT)针脚向微型控制器报告故障。

    1:典型热插拔控制器方块图

    由于热插拔具有外部FET,所以您可以控制任何用于您系统中的FET。替换外部FET和“调整”各种设计具有以下三种优势:

    • 可根据每个项目进行修改的灵活RDSON
      • 电流限制无上限,因此您始终可增加一个较大的FET来提高最大电流…
  • 借助设计计算器工具设计出精简稳健的热插拔

    随着热插拔行业的发展和系统需要更高的功耗、更低的形状系数和低成本的解决方案,组件选型变得更加重要。这其中涉及了多种计算,且对最坏情况的设计也很快将成为一项难题。您是否考虑了定时器针脚的最小/最大源电流?或者是否降低MOSFET安全工作区(SOA)曲线过温?您需要考虑到这些问题,否则您的设计可能会遇到启动问题—甚至是MOSFET或集成电路故障。

    LM25066设计计算器等设计工具有助于解决这些问题并为您进行必要的计算,能够节省大量时间并避免人为错误产生的风险。无论是创建新设计,还是对现有设计进行故障排除,请考虑使用设计计算器以显示可能存在问题的部分。

    热插拔设计中可能会发生的最危险的故障是在应用输入功率后,输出端发生短路。MOSFET在达到饱和区(高VDS电压)时会开启,此时的功率损耗可能会很高。某些热插拔控制器(例如TPS24770)可能会在这种情况下限制MOSFET的功率损耗,而其他控制器则不会。

    要检查MOSFET是否有危险…

  • 救世主Ga N来啦!第二部分:测量

    在我的上一篇博文中,我介绍了体二极管反向恢复。今天,我们来看一看在一个真实电路中测量反向恢复的方法。

    测量一个同步降压转换器中的反向恢复不太容易。电流探头太大,并且会大幅增加功率级环路中的电感。而且电流探头的带宽也不够。

    使用一个分流电阻器怎么样?这听起来是可行的,不过你需要确保这个器件不会引入过大的环路电感。我找到了几个电阻值在10mΩ,并且具有“低电感”的电阻器。

    我很想把这个器件放在同步FET的源极上,不过会有两个问题:

    • 分流电阻器上会出现栅极驱动电流,以及恢复和负载电流。
    • 这个分流电阻器将增加电感,会由于高di/dt电流而影响到下桥栅极驱动。

    其中一个解决方案就是将分流电阻器放在上桥MOSFET的漏极内,这样的话,分流电阻器就不会影响到栅极驱动了。Vishay VCS1625/Y08500R01000F9R就具有这样的功能—它内置有开尔文连接,并且具有能够减少电感的结构…

  • 救世主GaN来了!第1部分:体二极管反向恢复。

    Other Parts Discussed in Post: LMG5200, TPS40170

    作为电源工程师,我们能够回忆起第一次接触到理想化的降压和升压功率级的场景。还记得电压和电流波形是多么的漂亮和简单(图1),以及平均电流的计算是多么地轻松,并且确定与输入和输出相关的传递函数也轻而易举?

    图1:理想化的降压与升压功率级:这些图看起来真是太棒了!

    当我们对于用实际组件来实现转换器有更加深入的了解时,这个波形变得复杂了很多。不断困扰开关转换器的一个特别明显的非理想状态就是同步降压或升压转换器内所使用的MOSFET体二极管的反向恢复。氮化镓—GaN器件不会表现出反向恢复特性,并因此避免了损耗和其它相关问题。借助于我的LMG5200和一个差不多的基于硅FET的TPS40170EVM-597,我将开始在24V至5V/4A电源转换器中测量反向恢复。

    反向恢复—到底是个啥东西?

    一个二极管中的反向恢复就是当反向电压被施加到端子上时流经二极管的反向电流…

  • 何时使用负载开关取代分立MOSFET

    在知道用电之前,人们用蜡烛照明。这在过去是常用的能在黑暗中视物的照明方式,但灯泡的发明显然是更好的解决方案。

    像蜡烛一样,功率MOSFET(功率场效应晶体管)是切换负载最常见的方式,其四周围绕着众多分立电阻器与电容器(以及用于控制功率MOSFET的双极结型晶体管(BJT)/第二个场效应晶体管)围绕的功率MOSFET)。但在多数情况下,使用全面集成的负载开关具有更显著的优点。

    系统中的负载开关在哪里

    一个典型系统包括一个电源和多个负载,需要各种不同的负载电流,如Bluetooth®、Wi-Fi或处理器轨。多数情况下,系统必须独立控制哪些负载开启,何时开启,以什么速度开启。利用分立MOSFET电路或集成负载开关便能完成这种功率切换,如图1所示。

    图1:从电源切换到多个负载

    分立MOSFET电路包含多个组件来控制分立功率MOSFET的导通与关断。这些电路可通过来自微控制器的通用输入/输出(GPIO)信号来进行开启或关闭…

  • 设计适用于2S电池组的电池电量计

    对于串联连接的电池数量,电池电量计行业始终是二选一的状态。您在设计时可以选择单节电池电量计或2-4个串联连接的多节电池电量计。如果您的所有设计属于1S或4S电极,则二选一方案完全能够应付;但如用设计用于笔记本电脑、可穿戴设备和无人机等,则这种方案不免有些捉襟见肘了。

    原因是多节电池电量计与单节电池电量计的主要区别是这两种类型从一开始就存在。因此1S和4S电池组的电压自然存在差异,其中1S <5V而4S在~18V范围内(取决于锂离子电池的类型)。电压越高,电池组的安全注意事项更多。例如,对于单节电池组,电池组中除了带电量计,还带有一个过电压保护器。但一个4S电池组通常具有多层安全防护:用来提供电压保护的独立冗余集成电路,以及在发生重要安全事件时可能存在对电源组用户造成潜在伤害时使熔丝熔断的机制。

    单节和多节电池电量计的另一个主要区别功能在于电量平衡。多节电池组中的串联电池均衡设计,能够均分电池电压并在电池组达到充满状态时均分充电状态…

  • 读取电池背面的标签,配置电池电量计

    您可能听说过“电量计一点通”、“使用方便的电量计”、“电量计附加值产品”,甚至是“只需轻松点击即可使用电量计”等宣传措辞。事实上,要制作出“好”的电池电量计绝非易事,但是德州仪器的工程师们成功地将电量计初始配置简化,您只需要借助电池组背面的信息即可。在这一篇博客文章中,我将解释如何读取标签上的数据、这些数据的含义以及在初始配置过程中如何使用这些数据。

    德州仪器电量计系列配备了Impedance Track™技术“简便”算法,支持进行此类配置。事实上,算法本身并不简便。我们称之为“简便”是因为我们希望系统工程师在配置电量计时觉得过程简便。

    基本上,电量计至少需要了解您的电池容量,什么构成充满电,什么构成容量为空(针对您的系统)。

    第一个参数被称为设…

  • 想要电池容量大?试试(高)端吧

    近来,从事电池行业前景可观——当然,我们了解的大多是可佩带产品、智能手机和微型无线耳机,但是在手提产品的另一领域,创新层出不穷。它就是大型电机应用,其领域涉及交付或工业无人机、电池备份和储能系统以及电动自行车和摩托车。

    这些产品具有极高的市场溢价(具有充分理由)。它们具有健壮性且使用寿命长,适用于寻求与价格匹配的优质体验的消费者。

    对于为这类应用提供动力的电池组,需要搭配一种监测解决方案。bq76940bq76925等产品适合用来捕获特定电池的关键模拟信息并通过继电器传递到微型控制器中,此微型控制器可以是我们的预编程电量计(bq78350-R1)或是由MSP430™微型控制器自行制成的产品。

    每个电池系统需要考虑的另一个首要事项是如何控制充电和放电。时机正确时,这两种动作都能够简单完成,但是在设计时,每一步都要考虑到可能暂时(或永久)阻止其中一种或两种动作发生的情况。例如,已充满电的电池组可能会连接到质量一般的充电器…

  • 生成任意量级的偏置电流网络(第二部分)

    本系列上一篇文章中,得出了描述如图1中第N个RSET电阻比的等式。

    1:灌电流网络

    该等式如下所示:

    现在,关于等式1,有什么可说的呢?首先,MIN比为1时,相应的MRN比也将为1,这恰如预计的一样。第二,MIN大于1时,等式1分母中两个项具有不同的表现。这意味着基于某些相关物理量(Kn、RSET1、VREF)的取值,MRN可以变得任意大。因此,应避开这一范围,相应地,应转向MIN ≤ 1区域,即确保ISINKN小于或等于ISINK1,N取任意值。

    注意,等式1中根项的分母(Kn、RSET1、VREF乘积)在MRN与MIN1:1线性关系中可导致结果变得极大。最终,VREF和RSET1可增大该乘积结果的可用范围值将受相应的沉余量所限制,不过值得注意的是,ISINK1值固定时,增加VREF需要同时增加RSET1。乘积中最后一个变量Kn是MOSFET过程跨导,可通过设备的选择使其最大化。Kn针对MRN与MIN线性关系…

  • 生成任意量级偏置电流网络(第一部分)

    正如上一篇系列文章所述,利用运放反馈与基准电压生成任意大小的直流电流是一个简单、直接的过程。但是,假设须要生成一些任意数量(以N为例)的电流沉/源(current sink/source),而每个电流沉/源的大小任意,可能须要针对不同阶段的一些复杂模拟电路进行偏置。虽然基准电压的生成仅须一次实施即可,电流沉整个反馈部分的重复进行却使成本与设计空间密集化。那么问题来了:是否可以使用单个反馈源来实现这种偏置网络呢?答案是肯定的,尽管这有些复杂,也须满足某些特定条件。该网络(本文分析中仅以电流沉为例)如图1所示。

    图1:灌电流网络

    最终MOSFET(金氧半场效晶体管)源电压VS以及RSET电阻决定着各柱上的灌电流(sink current);通过去除来自外部电流沉柱的反馈(即所有N>1),已失去对VSN的直接控制。因此,RSETN必须精心选择以生成预期的任意第N个柱的灌电流,即ISINKN。仔细观察上面的图1,很容易得出定义偏置网络第N个柱电流与第1个柱电流的比值的等式…

  • 低压差线性稳压器如何满足汽车摄像头模块的功率要求

    后视摄像头正在成为车辆的基本安全特性;事实上,美国国家公路交通安全管理

    (NHTSA) 宣布,2018年5月之后生产的全部汽车必须具有后视技术。所以在这篇博文中,我将讨论一下使用低压降稳压器 (LDO) 来处理后视摄像头的功率限制1显示的是高性能LDO的共同特性。

    1:LP5907LP5907-Q1特性

    如果你正在为汽车摄像头设计一个电源,你主要考虑的问题就是洁净电压稳压和经优化的总体系统尺寸和成本。这些要求都可以使用TIDA-00535参考设计中所示的LDO来实现;TIDA-00535提供摄像头模块一侧的电源管理解决方案的指导原则、测试数据和设计文件。2显示的是TIDA-00535的一个概念方框图。

    2:TIDA-00535方框图

    洁净电压稳压意味着低纹波和稳定的电压调节,这两点对于摄像头模块内的互补金属氧化物半导体 (CMOS) 图像传感器都很关键。CMOS图像传感器对于标称输入电压电平的变化十分敏感…

  • 我的LDO怎么了?

    热力学中常犯的一个错误就是选择和线性稳压器一样简易的装置。当设计上台面后,设计师通常会意识到自己的错误。更糟的是,由于稳压器的运行温度超过其额定温度,这种设计在实际使用中会发生故障。凭借新型线性稳压器的新功能和规格,很容易忽视封装中消散的功率。

    记住,线性稳压器基本上由一个旁路元件和一个控制器组成。该元件是一个晶体管,可以在控制回路的帮助下作为可变电阻器,在旁路元件和负荷之间形成一个分压器。

    1. 线性稳压器框图。注意,旁路元件将在其自身和负荷之间形成一个分压器,起到耗散功率的作用。

    人们常常忽略了它并非一个神奇实体的事实。旁路元件上的电压会降低,并逐渐升温。例如,如果图1中的电路有100毫安的恒定负荷,则可以将其简化并模拟用于2所示的热目的。当输入电压为5V,输出电压和功率分别为3.3V和100mA时,旁路元件耗散的功率将达到170MW。

    那么如果输入电压为24伏时会怎样?此时的耗散功率为(24-3.3…

  • 保持电池电量计量准确度,即使在寒冷天气条件下也可实现

    由于很多因素会影响到电量计IC,预测锂离子电池的剩余电量会很难;气温较低就是其中一个因素。市面上有几种电量计量IC;这些电量计量IC有几个特性,提供寒冷天气下运行时的准确性能,而这正是我将在这篇博文中着重强调的内容。在这篇博文中,我将讨论准确电量计量的某些参数,以及如何微调参数获得最佳性能。应用工程师、电池组工程师,甚至是系统级工程师,在大批量生产前经常会进行这些微调。

    一个定制的电池模型

    为了获得电量计的最佳性能,你将会须要使用基于闪存的电量计,在这里,你可以完全定制电池模型。对于寒冷温度下的性能,第一步就是始终具有一个定制的电池模型。这个过程会花费数月,并且只能在具有可配置数据闪存的电量计上可用。

    散热模型

    几乎所有的电量计都有一个散热模型功能,以帮助更加准确地预测电量。与一个电池模型相类似,散热模型用于解决充电或放电期间的电池自发热。简言之,散热模型使用阻抗信息和放电电流来从功率计算中获得温度数据。这个特性使用数据闪存参数进行配置…

  • 用负载开关减少涌入电流

    在大多数系统中,为了确保电源轨电压不会出现压降,电容器遍布于整个设计中。当电源刚刚被施加到系统中时,为这些电容器充电会导致一个涌入电流,如果不加以处理的话,这个电流会造成数个系统问题。

    图1显示的是一个使用一个电源—DC/DC,低压降 (LDO) 稳压器,或者外部电源—为一个下游负载供电的系统示例。

    图1:典型配电电路

    系统启动时,电源将上升到经稳压电压。随着电压增加,一股涌入电流进入未被充电的电容器。当电容负载被切换到一个电源轨,并且必须被充电至那个电压电平时,也会产生涌入电流。进入这个电容器的涌入电流的数量由电压斜升的斜率决定,由方程式1表示:

    (1)

    在这里,IINRUSH 表示由电容所导致的涌入电流的数量,C代表总电容值,dV是斜升期间电压的变化量,而dt是电压斜升时的上升时间。

    涌入电流带来的问题

    主要有两个与涌入电流相关的顾虑。第一个顾虑就是电路板上的迹线和组件的绝对最大电流额定值…

  • 一个简单6通道电源轨排序解决方案

    多通道加电和断电排序已经成为很多电源系统的必备功能。随着这些系统的复杂度不断增加,工程师必须针对更加严密紧凑的计时技术规格进行设计,并且在反向序列出现时具有断电功能,并且能够处理大量的电源轨。

    LM3880/LM3881简单电源排序器提供一个简单且精准的方法,来控制这3个独立电源轨的加电和断电—然而,根据目前电源系统所具有的复杂度来看,3通道排序也许还是不够用。所以,对于那些需要对更多电源轨进行排序的系统,你可以将两个LM3880/LM3881器件级联在一起,以实现6通道电源排序。在这篇博文中,我将讨论一下如何将这些器件级联在一起,实现所需应用。

    针对3通道排序的单个LM3880

    LM3880通常用于3个电源的加电和断电排序,并且在宽温度范围内,借助精密时序功能来提供一个非常简单的解决方案。这一点在断电过程中需要反向序列时特别重要;这种情况会出现在很多微处理器和现场可编程门阵列 (FPGA) 中。图1显示了一个

  • 为什么静态电流 (Iq) 对于USB Type-C很重要?

    在全新的笔记本电脑、智能手机和平板电脑推出后,USB Type-C成为了一个热门话题;在这些设备上都有即可用于充电,又可用于连接外设的Type-C端口。

    这个变化增加了对于Type-C AC/DC充电器和充电宝的需求量,这是因为Type-C接头具有方便用户使用的可翻转功能。而更加重要的一点是,Type-C充电器和充电宝普遍适用于多个笔记本电脑、智能手机、平板电脑以及更多其它电子设备。

    有意思的是,这些充电器和充电宝的配置与它们的上一代产品Type-A并没有很大的不同。然而,某些充电器设计人员有可能会忽略的一个关键点,那就是由于额外的Type-C电路,Type-C连接会需要额外的电能。而这不仅仅是USB 2.0时代的D+/D-连接。

    Type-C需要配置通道 (CC) 引脚来检测插头方向、确定已连接端口的用途,并且在需要更高的输出电压时建立额外的电力传输 (PD) 通信。这些额外功能需要更加复杂的集成电路 (IC),这也就自然会消耗更多的电流…

  • 在使用负载开关时,时序决定一切!

    对于一个终端用户来说,打开一个电子设备很简单;只需按下按钮就可以了。然而,需要花费大量的精力来创建一个平滑顺畅的加电体验。系统接通的过快将会导致由不可控的涌入电流大尖峰所引起的电源故障。对于那些基于微处理器或FPGA的应用来说,正确的运行需要特定的电源轨排序。有时候,在启用下游电路之前,最好让特定的子系统加电。使用负载开关来管理电源排序可以更轻松地为终端用户提供平滑顺畅的加电体验。

    在大多数系统中,在一个设计中遍布着电容器,以确保不会出现电源轨压降。在最开始加电时,为这些电容器充电会导致涌入电流;而这个涌入电流会超过下游电路的最大电流额定值。如果听之任之,这会使得电压轨处于稳压之外,从而使系统进入不利的状态。不对涌入电流进行检查和限制也会损坏电路板连接器和电路板迹线,这是因为涌入电流超过了它们的承载能力。为了管理涌入电流,施加到电容负载上的电压需要具有一个受控的上升时间。所有德州仪器 (TI) 负载开关都具有一个集成软启动,而某些器件甚至提供针对变化电容负载的可调上升时间…

  • 更小巧、更高效的充电宝正向你走来!

    在长途飞行或参加时间较长的会议时,如果你需要为智能手机平板电脑充电的话,充电宝就是一个必备设备。在事先为充电宝充电后,你可以将其内的电能高效地传输到你的便携式设备中,从而实现更长的运行时间。为了给你的设备提供足够电能,充电宝应该具有一个大容量电池—比你设备电池的容量高一个数量级。它还应该将非电池电路保持在尽可能低的水平上,这样的话,它的尺寸就不会比你的手机大多少了。最后,充电宝的效率必须非常高(95%以上),在电力传输时不会浪费电能,也不会变得过热。

    图1显示的是一个典型充电宝供电系统配置。由于电源几乎一直是一个单节锂电池,而输出电压始终为5V左右的USB端口,充电宝还需要:

    • 一个将充电宝电池电压转换为USB端口电平的升压转换器。
    • 故障期间,一个将输出电流限制在USB端口的负载开关。
    • 一个检测电路,在有物体连接至输出USB端口时通知系统。

    1:典型充电宝供电架构

    TPS61088是一个传统升压转换器…

  • 保护你的系统不受反向电流的影响

    在使用电子元器件时,你有时候不可避免地会闻到明显是芯片烧焦的味道。这都是反向电流惹的祸。反向电流就是由于出现了高反向偏置电压,系统中的电流以相反的方向运行;从输出到输入。幸运的是,有很多方法可以保护你的系统不受反向电流的影响。这是反向电流保护系列博文的第一篇文章,在这篇文章中,你将能够对现有解决方案有高层次的总体认识和了解。 

    原因

    反向电流的最常见原因,即反向偏置电压,就是输出上的电压要高于输入上的电压,从而使电流在系统中的流动方向与你希望的流动方向相反。图1中显示了这个情况。

    图1:反向电流

    VIN 由于功率损耗突然变为零,使得系统输出上的电压高于输入电压,这种情况是有可能发生的。或者是电源MUXing意外地导致了一个反向电压事件。

    如何防止?

    反向电流有可能损坏内部电路和电池等电源。事实上,甚至是电缆都有可能被损坏,连接器的性能也会被降低。这也是器件着火的原因,就是因为大电流导致功率耗散呈指数级别的上升。

  • 集成式5W无线充电的秘密武器

    2011年发布了第一款支持集成式无线电源的智能手机;自从那时开始,无线充电联盟 (WPC) 已经认证了800多种不同的产品。这些产品中的大多数与智能手机或发射器相关。

    无线充电提供的巨大优势远非改进智能手机领域的便利性那么简单—例如,可以选择不使用接头、使产品具有防水功能、易于清洁和更加耐用。此外,输电能力,以及提升恶劣环境下的安全性也提供了其自身的优势集合。因此,这项技术有可能在智能手机应用领域之外的很多应用中变得更加普遍。

    当工程师们进行无线电源设计时,一件有意思的事情就是他们经常会遇到技术挑战,特别是在他们第一次开发无线电源时更是如此。诸如功率耗散和外来物体检测 (FOD) 等重要系统需求会产生设计挑战。实现WPC兼容性,或者只是确保良好用户体验的能力在很大程度上由使用的组件、线圈类型和电路板布局布线决定。

    图1:500511无线电源发射器控制器和bq50002模拟前端。

    通过提供更高集成度、效率提升高达5…