• 理解电压基准:简单灌电流

    正如在此电压基准系列中之前文章中所讨论的,使用运算放大器反馈和电压基准可以简单直接产生任意大小的直流电流。为此,我们已经介绍了几种外部运算放大器架构,用于实现单独或网络拉电流和灌电流。在本系列的最后一篇文章中,我们将讨论利用电压基准内部反馈的架构。让我们从考虑电压基准的符号及其实际功能框图开始,如下图1所示。

     

    1:电压基准及其功能框图

     

    我们借用了齐纳二极管的符号,因为这基本上是电压基准的行为;然而,这种行为是通过巧妙的设计而不是简单的设备物理单独实现…

  • 解决智能电表电源设计面临的最大挑战

      智能电表是下一代电表,它们将取代仍在使用几十年前开发技术的现有电表。智能电表使用安全连接网络,将能源使用情况通过无线自动发送到公用事业公司。这意味着客户将不会再收到估计的电表账单,或让抄表员进入家中读表。

      与传统IR(红外线)和IrDA(红外线数据关联)界面相比,智能电表采用了更先进的通信界面;它们需要更多内存和更强大的微控制器。由于这些功能会导致能耗增加,因此必须使用开关型电源(SMPS),而不是电容液滴电源。单相电表的使用范围为交流100V至500V。三相电表为最低单相交流100V到各相300V…

  • 设计成功的反向降压-升压转换器布局

    LM5017系列产品等降压转换器或稳压器集成电路(IC)可以从正VIN产生负VOUT在DC/DC转换器领域是常识。乍一看,使用降压稳压器IC的反向降压-升压转换器的电路图与降压转换器十分相似(图1a和1c)。但是两个电路也存在重大差异,无论是在电压和电流高低,切换电流流动还是在布局上。

    在此前的博文中,我讨论了VIN范围、VOUT范围和可用输出电流IOUT最大值的区别。布局的差异源自反向降压-升压转换器和降压变换器的切换电流流动路径的差异——虽然至关重要——不容易理解。…

  • 直流/直流转换器数据表:电流限制 —— 第一部分

      DC / DC转换器的电流限制规格有时会让不熟悉此类型调压器的设计师感到困惑。此系列博文包括两部分,我希望此内容能帮您消除一些困惑。

      首先,DC / DC转换器数据表中的电流限制规格与低压差稳压器(LDO)的规格并非代指同一内容。对于一个LDO,电流限制值是当调压器处于过载或短路条件时,该装置提供给输出的最大电流。对于降压转换器,数据表将在电感电流的峰值或谷指定限制。然而,正是平均电感电流代表降压转换器的输出电流。方程1和2将电感电流限制转化为最大输出电流:

     

     

      作为一个示例,让…

  • 测量电源上的输出动态响应:示波器接地问题

    测量低电压(<1V)/高电流(30-150A)电源的示波器输出纹波和动态响应一直是一项挑战,每种新设置都有自己的误差。使用示波器“tip-and-barrel”方法或专用匹配阻抗的电压检测电缆解决了探头引线接地引起的误差。但是,即使使用最好的探测方法,也可能得到失真的输出测量,尤其是在应用或去除动态负载时。我注意到两个误差来源:

    • 由通过电压探头接地侧到示波器接地的电流引起的接地环路和示波器的交流插头接地连接。
    • 当同时在同一示波器上测量多个信号时,示波器可能在多个点接地测试设置…
  • SOIC-8经受时间的考验

    作为千禧一代,大家关注的总是最新的手机和小玩意儿,更不要说玩最新的游戏了(有人玩Pokémon Go吧?)。但是更新总是意味着更好吗?就个人而言,我宁愿骑自行车也不愿意用那些悬浮滑板。记得它们吗?悬浮滑板是2015年假期购物季最热门的东西,稍后人们意识到悬浮滑板存在轻微的自燃问题。

    生活中一些时候使用高品质、可靠的产品或品牌比新奇和时尚更重要。浮现在脑海中的有几件事情:我的车,我的家具和我祖母的桃子馅饼食谱。相信我。桃子馅饼食谱已经无可挑剔了。

    即使是半导体行业也不能幸免于趋势和市场宣传…

  • 方波波形开关节点大受欢迎

    所有功率级设计者期望在开关节点看到完美的方波波形。快速上升/下降边降低了开关损耗,而低过冲和振铃最小化功率FET上的电压应力。

    采用TI最新的GaN技术设计,图1a所示的功率级开关节点波形真的引人瞩目。其在120V / ns转换速率下,从0V升到480V,并具有小于50V的过冲。 

    1TI 600V半桥功率级——开关波形(a);设备封装(b);半桥板图(c)。

     

    GaN FET具有低端子电容,因而可快速切换。然而,当GaN半桥在高di / dt条件下切换时,功率环电感在高压总线和开关节点处引入振铃…

  • USB 充电器的过去与现在:Type-C达到能源效率标准

    Other Parts Discussed in Post: PMP15002

    在计划写本篇博客时,我在谷歌趋势中输入了“Type-C”。如图1所示,自2015年以来对这一词语的兴趣一直在上升。

     

    1:谷歌趋势上的兴趣走势图(关键词:Type-C

     

    USB Type-C设备在现实世界中也越来越流行,许多流行的手机和平板电脑采用USB Type-C接口。我预计在未来几年采用USB Type-C接口的产品将迅速增加。

    为什么功率为15W5V3A)?

  • 不检测输入电压可以实现“功率系数校正”吗?

      功率系数校正(PFC)强制输入电流跟随输入电压(VIN),使所有电气负载像电阻一样。这一过程需要检测输入电压,根据检测调整电流基准。电流环会按该电流基准调整输入电流。这称作平均电流模式控制,如图1所示。

     

    1PFC平均电流模式控制

     

      市场上有许多低总谐波失真(THD)商业PFC控制器使用这种平均电流控制算法。然而,这些PFC控制器需要一个专用引脚来检测VIN,需要精密模拟乘法器用于调整电流基准。

      另一个PFC控制算法近来十分流行,该方法不需要检测…

  • 选择双向转换器控制方案

    Other Parts Discussed in Post: LM5170, LM5170-Q1

    作者:Youhao Xi

    48V-12V双电池电源系统正普通用于轻度混合动力电动车。车辆的动态工作条件可能需要在两个电池轨道之间来回传送高达10kW的电功率。由于移动车辆中的各种操作情况,控制一个方向或另一个方向上的功率流需求可以说是一个相当复杂的任务,需要数字控制方案的智能。因此,当领先的汽车制造商和一级供应商开始开发48V-12V双向电源转换器时,大多数都采用了全数字方法。

    全数字解决方案成本昂贵…

  • 使用 LLC 谐振控制器来加速器件运行

    Other Parts Discussed in Post: UCC256301

    作者:Brent McDonald

     

    为了成为最好,人们会付出旁人无法想象的努力。例如,运动员不知疲倦地进行训练,只是为了在比赛中能够快人毫秒。学生花费数年时间钻研学问,只为获得顶级学术成就。公司或机构组织花费数十年时间研究新技术,仅为了解决曾经只在科幻小说中出现的问题。最后 —— 技术控——电源工程师则致力于开发超群的高效的、高密度转换器。

    我敢打赌,当你们中的大部分人启动了电路…

  • 直流/直流转换器数据表:电流限制 —— 第二部分

    第一部分中,我谈到了一个降压或降压DC / DC转换器的最大输出电流。在本文中,我将讲述升压或升压转换器。计算升压稳压器的最大输出电流虽然涉及更多内容,但仍易于理解。

    了解升压转换器的第一件事是,平均电感电流并不等于输出电流,后者处于降压转换器中。升压调节器仍将控制电感电流,但是代表转换器的输入电流,而非输出电流。由此,升压转换器通常指定具有最大MOSFET电流,而非最大的输出电流。

    作为一个示例,LMR62421被称为“2.1A升压电压调节器”。这是指MOSFET开关电流,而非输出电流。您可以使用公式1估计升压转换器的最大输出电流…

  • 蓝牙无线音箱电源方案:有效延长电池续航时间

    Other Parts Discussed in Post: TPS61088, TPA3118D2

    蓝牙无线音箱由于使用方便、便于携带,越来越多受到消费者的青睐。而蓝牙音箱的电池续航能力,由于直接影响到充放电次数和用户体验,一直是消费者所关注的一项重要指标。

    在之前的博客文章《利用包络追踪功能提高声频放大器的效率》声频功率放大器的包络追踪电源参考设计中,我们提到一种蓝牙音箱电源电源设计方案:通过向 电源反馈引脚(FB)引入音频包络信号来调整升压型DCDC电源TPS61088 的输出电压(即音频放大器的电源电压…

  • 用简易充电器为智能家庭供电

    无线连接和低功耗嵌入式处理技术的进步已为智能家居和楼宇提供了新的应用。当然,大部分智能家居系统都具有一个处在固定位置的控制面板或基本单元,可以插入交流电源系统。但也可能有一些构成整个系统一部分的分布式(和可移动)无线传感器或摄像头。这些外围设备并不总是靠近永久电源。图1所示为具有多个远程外围设备和中央网关(控制器)的典型系统。

     

     

    1:智能家居的示例

     

    这些无线传感器或摄像头中的许多类型将需要电池且频繁使用,需要定期更换电池,从而增加了维护成本。因此,对于这些模块化配件,可充电电池越来越受欢迎…

  • 用氮化镓重新考虑功率密度

     作者:Masoud Beheshti

     

    电力电子世界在1959年取得突破,当时Dawon Kahng和Martin Atalla在贝尔实验室发明了金属氧化物半导体场效应晶体管(MOSFET)。首款商业MOSFET在五年后发布生产,从那时起,几代MOSFET晶体管使电源设计人员实现了双极性早期产品不可能实现的性能和密度级别。

    然而,近年来,这些已取得的进步开始逐渐弱化,为下一个突破性技术创造了空间和需求。这就是氮化镓(GaN)引人注目的地方。

    作为一种宽带隙晶体管技术,GaN正在创造一个令人兴奋的机会…

  • 不要忘了肌肉:栅极驱动器

    记得今年早些时候的一篇博客文章将功率因数校正(PFC)比作啤酒吗?这个比喻太精彩了!在这一类比中,杯中啤酒代表电子装置实际上需要的“有功功率”,顶部的泡沫代表“无功功率”,整杯啤酒加上泡沫代表“表观功率”。今天,我打算提出一个相关的比喻来解释栅极驱动器在PFC设计中的作用。

    首先,让我们来简单介绍一下PFC电路的分类。PFC电路整体上分为无源(被动式)或有源(主动式)电路。创建无源PFC电路,需要使用电容器和电感器等无源元件增加电流导通角并平滑脉冲…

  • USB Type C:充电新世界

    USB Type-C™已经开始使用,它代表了截至目前大多数消费者会注意到的USB最重大的变化。在新的可翻转连接器的顶部,最大功率已增加到15W。更高的功率会难以设计满足所需效率和待机功率标准同时保持客户期望小尺寸的电源适配器。但这并不是不可能,因为如今年早些时候TI发布的UCC28704等新型反激式控制器进一步提高了性能,包括许多用于USB Type-C充电器的高级功能。

    CCUV

    所有短路保护不尽相同。虽然大多数控制器可防止输出电流远远超出设置限制的硬短路,但不能防止软短路故障…

  • TI《电源设计基础》中文版新书全新上市!你可知大咖Robert当年电源设计的精彩故事?

    万众期待的Robert A. Mammano新书《电源设计基础》简体中文版隆重上市!电源设计入门推荐经典书籍!

    天猫购买点击这里,京东购买点击这里

       

    作者:Tim Goodrow

    我于2003年7月加入TI,负责电源管理营销方面的工作。在我工作的第一周,我的老板是这样向我介绍Robert Mammano的:“Tim,我想介绍Robert Mammano给你认识。Robert是首个开关电源控制集成电路[IC]的发明者。”

    Robert当时正在管理TI的全球电源设计研讨会…

  • 为您的应用寻找合适的“Goldilocks”电压基准

      您需要一个电压基准,但您不确定如何选择最适合您应用的基准。那么您来对地方了!在这篇博文中,我将讨论一些关键的电压基准参数,并基于您的应用帮您权衡这些参数,以寻找到“刚好适合”您应用的“Goldilocks”电压基准。

      首先,考虑您的应用是否需要一个并联电压基准或一个串联电压基准。您不必立即选定一个拓扑结构,但它有助于了解每一应用的最佳用例。若您不熟悉并联电压基准和串联电压基准之间的差异,就此话题我写了一篇博文“了解参考电压…

  • C型USB 1.2版——USB具有更广阔的市场

      C型USB改变USB生态系统的一种重要途径是通过USB电缆两端互换(不只是翻动)。这使得诸如膝上型电脑或智能手机的USB设备取决于其所连接的其它USB装置具有不同的行为,因为数据角色和功率角色可独立交换。USB开发者论坛已经发布了C型USB 1.2版本规格。其在1.1版本上做出几个关键变化,我将在此博文中总结,但最大的区别是用来描述这种新型USB生态系统的术语变化。您可能会说了C型USB术语通过此版本进行了“返工”。

      新的术语更好地解释了这一新型USB世界,旨在澄清并强调数据角色和功率角色是彼此正交的…

  • 如何用空调有效降温

    作者:Nagarajan Sridhar

    我的童年是在印度的一个沿海城市度过的,回首往事,我仍然记得严重潮湿和尚可忍受的90°F热浪相互夹杂的情形——典型的赤道气候。重回故里,我发现当地的温度变得更高,经常会超过100°F。我还发现随处可见的分体式空调;这在我的童年是非常罕见的。分体式空调由内机和外机组成。外机安装在房屋的外墙上,机身里面是冷凝旋管和压缩机。最后,我还发现空调主要供应商们的很多标志和广告。

    空调机组的耗电量很大,因此随着其普及度日渐提高…

  • 采用GaN实现48V至POL单级转换

    Other Parts Discussed in Post: TPS53632G

    企业服务器、交换机、基站和存储硬件设计师都在寻求在其主板上提高功率密度和效率。随着主板上元件数量的增加和外形尺寸的减小,电源密度成为进一步减小面积的限制因素。电源越小,主板尺寸就越小,减小主板尺寸就可以将更多的主板装入给定的机架中,最大限度地提高数据中心吞吐量和性能。

    在图1所示的典型电信电源系统中,48VDC输入电压必须进一步降低到中间母线电压(在此例中为3.3V),然后用一个或多个降压直流(DC/DC)转换器降压成处理器…

  • 保持直流/直流解决方案(超)简单易用,适用于成本敏感型应用

    您最近是否将电视升级为具有更大屏幕和超高清分辨率的电视?您是否安装了六通道同步数字视频录制的新机顶盒?您的调制解调器是否支持200Mbps Wi-Fi速度?您可以用您的智能手机控制家里的空调或汽车点火吗?

    技术确实发展得非常快,在幕后不断的创新实现更好的性能,新颖的功能和更时尚的设计是下一代消费设备开发的基础。

    例如,我对新一代数字电视以及主要品牌如何继续发布具有更高图像分辨率、更时尚设计和更大屏幕尺寸的型号感到惊讶。他们现在正在谈论到2020年实现8K HD。除此之外,领先的制造商在过去10年中大幅下调定价…

  • 简化 100V 宽输入电压电源转换

    当需要执行降压电源转换时,开关稳压器是一种高效设备。得益于新的应用,针对这些产品,宽输入电压(VIN空间(TI认为其> 30V)的使用范围越来越广。

    图1所示为具有宽VIN的主要应用,以及它们的标称总线工作电压范围和DC / DC转换器将看到的瞬态范围。在这些应用中,用于汽车和高槽电池应用(如电动自行车、GPS跟踪器和无人机)的48V电池的问世使得对高达48V宽VIN的需求不断增长。 > 48V空间要求DC/DC转换器承受由负载突降、雷击和电动机的反电势等原因导致的高达100V的瞬态,…

  • 汽车照明的明智之选

    作者:Kol Zhang

    汽车照明技术已历经数十年的发展。在发光二极管(LED)照明时代,人们对一体式车灯设计的期望从未如此之高正因为如此,这些高期待推动着半导体行业LED驱动器的技术不断发展。如今,汽车照明要求高质量的均衡设计以保证无论是前灯还是尾灯都具有卓越的照明效果。

     

       

    1:汽车前灯和尾灯

     

    在过去,提高亮度的方式是增加LED灯的数量。但如果您现在拆开一个新的尾灯,就会看到大量的导光材料、光管、遮光罩和其它复杂的照明结构,这些都是为了实现更佳的照明效果。为实施上述措施,需要减少LED灯的数量且提高每个LED灯的电流是必不可少的…

1 2