This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
嗨,社区,
最近几天,我一直在尝试配置 ADC 来测量电池电量。 所以我在这里使用参考电压发生器作为 ADC 的参考。我们知道,在参考局部缓冲器稳定下来之前,我们无法启动 ADC。 所以我想有两种方法可以做到这一点
1.在 REFCTL 中使用 REFGENRDY 位
2.使用 ADCRDYIFG 中断
由于我在非常电源相关的应用中工作,所以我采用了 ADC 就绪中断。但是,尽管我启用了该中断并以正确的方式设置了大部分内容(我认为) ,但 ADCRDY 中断未被触发。还有一个术语称为样本触发器(这可以帮助 ADCRDYIFG) 但我不知道如何设置信号
2.我也不能用多个 ADCMTL 寄存器和 CSTADDRX 位来总结。这两个寄存器之间的连接是什么。
因此,请您对我的错误和我的问题发表看法。
/* --COPYRIGHT--,BSD_EX * Copyright (c) 2015, Texas Instruments Incorporated * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of Texas Instruments Incorporated nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************* * * MSP430 CODE EXAMPLE DISCLAIMER * * MSP430 code examples are self-contained low-level programs that typically * demonstrate a single peripheral function or device feature in a highly * concise manner. For this the code may rely on the device's power-on default * register values and settings such as the clock configuration and care must * be taken when combining code from several examples to avoid potential side * effects. Also see www.ti.com/grace for a GUI- and www.ti.com/msp430ware * for an API functional library-approach to peripheral configuration. * * --/COPYRIGHT--*/ //****************************************************************************** // MSP430FR5x9x Demo - ADC12, Sample A1, AVcc Ref, Set P1.0 if A1 > 0.5*AVcc // // Description: A single sample is made on A1 with reference to AVcc. // Software sets ADC12SC to start sample and conversion - ADC12SC // automatically cleared at EOC. ADC12 internal oscillator times sample (16x) // and conversion. In Mainloop MSP430 waits in LPM0 to save power until ADC12 // conversion complete, ADC12_ISR will force exit from LPM0 in Mainloop on // reti. If A1 > 0.5*AVcc, P1.0 set, else reset. The full, correct handling of // and ADC12 interrupt is shown as well. // // // MSP430FR5994 // ----------------- // /|\| XIN|- // | | | // --|RST XOUT|- // | | // >---|P1.1/A1 P1.0|-->LED // // William Goh // Texas Instruments Inc. // October 2015 // Built with IAR Embedded Workbench V6.30 & Code Composer Studio V6.1 //****************************************************************************** #include <msp430.h> int main(void) { WDTCTL = WDTPW | WDTHOLD; // Stop WDT // GPIO Setup P1OUT &= ~BIT0; // Clear LED to start P1DIR |= BIT0; // Set P1.0/LED to output P1SEL1 |= BIT2; // Configure P1.1 for ADC P1SEL0 |= BIT2; // Disable the GPIO power-on default high-impedance mode to activate // previously configured port settings PM5CTL0 &= ~LOCKLPM5; // Configure Ref voltage generator REFCTL0 |=REFVSEL_3|REFON; // Configure ADC12 ADC12CTL0 = ADC12SHT0_2 | ADC12ON; // Sampling time, S&H=16, ADC12 on ADC12CTL1 = ADC12SHP; // Use sampling timer ADC12CTL2 |= ADC12RES_2; // 12-bit conversion results ADC12MCTL1|= ADC12INCH_2|ADC12VRSEL_1; // A1 ADC input select; Vref=AVCC ADC12IER0 |= ADC12IE0; // Enable ADC conv complete interrupt ADC12IER2 |=ADC12RDYIE; __enable_interrupt(); while (1) { while(!(REFCTL0 & REFGENRDY)); // Wait for reference generator __delay_cycles(5000); ADC12CTL0 |= ADC12ENC | ADC12SC; // Start sampling/conversion __bis_SR_register(LPM0_bits | GIE); // LPM0, ADC12_ISR will force exit __no_operation(); // For debugger } } #if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__) #pragma vector = ADC12_B_VECTOR __interrupt void ADC12_ISR(void) #elif defined(__GNUC__) void __attribute__ ((interrupt(ADC12_B_VECTOR))) ADC12_ISR (void) #else #error Compiler not supported! #endif { switch(__even_in_range(ADC12IV, ADC12IV__ADC12RDYIFG)) { case ADC12IV__NONE: __no_operation(); break; // Vector 0: No interrupt case ADC12IV__ADC12OVIFG: __no_operation(); break; // Vector 2: ADC12MEMx Overflow case ADC12IV__ADC12TOVIFG: __no_operation(); break; // Vector 4: Conversion time overflow case ADC12IV__ADC12HIIFG: __no_operation(); break; // Vector 6: ADC12BHI case ADC12IV__ADC12LOIFG: __no_operation(); break; // Vector 8: ADC12BLO case ADC12IV__ADC12INIFG: __no_operation(); break; // Vector 10: ADC12BIN case ADC12IV__ADC12IFG0: // Vector 12: ADC12MEM0 Interrupt if (ADC12MEM0 >= 0x7ff) // ADC12MEM0 = A1 > 0.5AVcc? P1OUT |= BIT0; // P1.0 = 1 else P1OUT &= ~BIT0; // P1.0 = 0 // Exit from LPM0 and continue executing main __bic_SR_register_on_exit(LPM0_bits); __no_operation(); break; case ADC12IV__ADC12IFG1: __no_operation(); break; // Vector 14: ADC12MEM1 case ADC12IV__ADC12IFG2: __no_operation(); break; // Vector 16: ADC12MEM2 case ADC12IV__ADC12IFG3: __no_operation(); break; // Vector 18: ADC12MEM3 case ADC12IV__ADC12IFG4: __no_operation(); break; // Vector 20: ADC12MEM4 case ADC12IV__ADC12IFG5: __no_operation(); break; // Vector 22: ADC12MEM5 case ADC12IV__ADC12IFG6: __no_operation(); break; // Vector 24: ADC12MEM6 case ADC12IV__ADC12IFG7: __no_operation(); break; // Vector 26: ADC12MEM7 case ADC12IV__ADC12IFG8: __no_operation(); break; // Vector 28: ADC12MEM8 case ADC12IV__ADC12IFG9: __no_operation(); break; // Vector 30: ADC12MEM9 case ADC12IV__ADC12IFG10: __no_operation(); break; // Vector 32: ADC12MEM10 case ADC12IV__ADC12IFG11: __no_operation(); break; // Vector 34: ADC12MEM11 case ADC12IV__ADC12IFG12: __no_operation(); break; // Vector 36: ADC12MEM12 case ADC12IV__ADC12IFG13: __no_operation(); break; // Vector 38: ADC12MEM13 case ADC12IV__ADC12IFG14: __no_operation(); break; // Vector 40: ADC12MEM14 case ADC12IV__ADC12IFG15: __no_operation(); break; // Vector 42: ADC12MEM15 case ADC12IV__ADC12IFG16: __no_operation(); break; // Vector 44: ADC12MEM16 case ADC12IV__ADC12IFG17: __no_operation(); break; // Vector 46: ADC12MEM17 case ADC12IV__ADC12IFG18: __no_operation(); break; // Vector 48: ADC12MEM18 case ADC12IV__ADC12IFG19: __no_operation(); break; // Vector 50: ADC12MEM19 case ADC12IV__ADC12IFG20: __no_operation(); break; // Vector 52: ADC12MEM20 case ADC12IV__ADC12IFG21: __no_operation(); break; // Vector 54: ADC12MEM21 case ADC12IV__ADC12IFG22: __no_operation(); break; // Vector 56: ADC12MEM22 case ADC12IV__ADC12IFG23: __no_operation(); break; // Vector 58: ADC12MEM23 case ADC12IV__ADC12IFG24: __no_operation(); break; // Vector 60: ADC12MEM24 case ADC12IV__ADC12IFG25: __no_operation(); break; // Vector 62: ADC12MEM25 case ADC12IV__ADC12IFG26: __no_operation(); break; // Vector 64: ADC12MEM26 case ADC12IV__ADC12IFG27: __no_operation(); break; // Vector 66: ADC12MEM27 case ADC12IV__ADC12IFG28: __no_operation(); break; // Vector 68: ADC12MEM28 case ADC12IV__ADC12IFG29: __no_operation(); break; // Vector 70: ADC12MEM29 case ADC12IV__ADC12IFG30: __no_operation(); break; // Vector 72: ADC12MEM30 case ADC12IV__ADC12IFG31: __no_operation(); break; // Vector 74: ADC12MEM31 case ADC12IV__ADC12RDYIFG: ADC12CTL0 |= ADC12ENC | ADC12SC; // Start sampling/conversion __no_operation(); break; // Vector 76: ADC12RDY default: __no_operation(); break; } }
我将从(2)开始,因为我认为这正是您现在所遇到的:
2)如果 CSTARDAD=n,则第一个(或唯一的)转换引用 ADC12MCTLn/memN。 [参考用户指南(SLAU367P)第34.2.7]节。 在该程序中,CSTARDAD=0 (和 CONSEQ=0),因此转换将以 ADC12MCTL0/MEM0开始/结束(不进一步)。 您已经设置了 ADC12MCTL1/MEM1,但它们不会被使用。
使用 CSTARTADD 是一种不同寻常的做法,但在某些情况下,这种做法很有用。
1) RDYIFG 是指 ADC12“本地”缓冲区(图34-1中的 BUF_INT)。 只有当它使用 VRSEL=1的 MCTLn (实际上是奇数)时,它才会触发,这种情况由于(2)而没有发生。 (如果您在此程序中设置了 CSTARDAD=1,您将看到它。)
在实践中,当您使用 SHP=1 [参考 UG 第34.2.6.2和34.2.4]条时,这一切都是自动的。 参考缓冲区将根据需要启动和停止,它将比 您的代码更快(持续时间更短)。
布鲁斯给出了一个很好的答案,我不需要在那里添加任何附加注释。
但是,我注意到您正在配置 ADC12MCTL1,但 ISR 正在读取 ADC12MEM0。 我认为这不是有意的。 ADC 可以采样32个不同的通道。 每个通道都可以通过 ADC12MCTLx 进行配置(其中 x 是0-31的通道编号)。 ADC 将样本写入与通道(ADC12MEMx)相关的寄存器中。 默认情况下,ADC 设置为“单通道,单转换”模式(通过 ADC12CONSEQx 设置),这意味着 ADC 将仅对 ADC12CSTARTADD 中指定的1个通道进行采样。 完成后,请等待重新启用/重新触发。 目前,您的代码正在配置通道1,但正在采样/读取通道0。
希望这能有所帮助。