This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
// ADC start parameters
#if (CPU_FRQ_150MHZ) // Default - 150 MHz SYSCLKOUT
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
#define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
#endif
#define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz
#define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks
#define AVG 1000 // Average sample limit
#define BUF_SIZE 20 // Sample buffer size
// Global variable for this example
Uint16 j=0;
#pragma DATA_SECTION(DMABuf1,"DMARAML4");
volatile Uint16 DMABuf1[20];
volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Specific clock setting for this example:
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Clear Table
for (i=0; i<BUF_SIZE; i++)
{
DMABuf1[i] = 0;
}
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_DINTCH1_ISR;
EDIS; // Disable access to EALLOW protected registers
IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1)
EnableInterrupts();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Specific ADC setup for this example:
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1;
AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1;// Enable SOCA from ePWM to start SEQ1
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV00 =0x0; //only one channel is slected
AdcRegs.ADCCHSELSEQ1.bit.CONV01 =0x0;
AdcRegs.ADCCHSELSEQ1.bit.CONV02 =0x0;
AdcRegs.ADCCHSELSEQ1.bit.CONV03 =0x0;
AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 3; // Set up ADC to perform 4 conversions for every SOC
// Assumes ePWM1 clock is already enabled in InitSysCtrl();
EPwm1Regs.ETSEL.bit.SOCAEN = 1; // Enable SOC on A group
EPwm1Regs.ETSEL.bit.SOCASEL = 4; // Select SOC from from CPMA on upcount
EPwm1Regs.ETPS.bit.SOCAPRD = 1; // Generate pulse on 1st event
EPwm1Regs.CMPA.half.CMPA = 150; // Set compare A value
EPwm1Regs.TBPRD = 750; // Set period for ePWM1 ---0.05ms
EPwm1Regs.TBCTL.bit.CTRMODE = 0; // count up and start
//Step 5. User specific code, enable interrupts:
// Initialize DMA
DMAInitialize();
// Configure DMA Channel
DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(3,1,4); //burst 4words;SRC+1,DST+4;
DMACH1TransferConfig(4,0,4); //5 bursts,SRC+0,DST+4;
DMACH1WrapConfig(0,0,0,1); //SRC wrap around after 1 burst,SRC+0;DST wrap around after 1 burst,DST+1;
DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_ENABLE,SYNC_DISABLE,SYNC_SRC,
OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
StartDMACH1();
while(1);
// Start SEQ1
// AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1;
//for(i=0;i<10;i++){
// for(j=0;j<1000;j++){}
// AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine
// } //For this example will re-start manually
}
// INT7.1
interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
{
//20个数据处理,每隔0.0025ms采集一次
//总共用时0.1ms
// To receive more interrupts from this PIE group, acknowledge this interrupt
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
// Next two lines for debug only to halt the processor here
// Remove after inserting ISR Code
}
而且,TI提供的例程,同样的结果,也是DMA对应的目标内存地址的数据不对
您好,我也写了一段ADC-DMA的程序,大问题应该没有了,就是采集的数据还是不正确,DMA的设置我就是按照您这个程序写的,如果单步运行的话,程序能过去,如果全速运行就不行,就会停在 if(AD_Flag) 的后面那行,实在不知道为什么了
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
//B2,B4,B6,B8,B10=1
#define U54 GpioDataRegs.GPBDAT.bit.GPIO54
#define U56 GpioDataRegs.GPBDAT.bit.GPIO56
#define U58 GpioDataRegs.GPBDAT.bit.GPIO58
#define U60 GpioDataRegs.GPBDAT.bit.GPIO60
//B1,B3,B5,B7,B9=0
#define U55 GpioDataRegs.GPBDAT.bit.GPIO55
#define U57 GpioDataRegs.GPBDAT.bit.GPIO57
#define U59 GpioDataRegs.GPBDAT.bit.GPIO59
#define U61 GpioDataRegs.GPBDAT.bit.GPIO61
#define LED1 GpioDataRegs.GPBDAT.bit.GPIO50 // For test LED1
#define LED2 GpioDataRegs.GPBDAT.bit.GPIO49 // For test LED2
#define SLAVE
#define NOP asm(" nop")
#define IO_NOP NOP;NOP;NOP;NOP
// ADC start parameters
#if (CPU_FRQ_150MHZ) // Default - 150 MHz SYSCLKOUT
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
#define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
#endif
#define ADC_CKPS 0x5 // ADC module clock = HSPCLK/1 = 25.5MHz/(1) = 25.0 MHz
#define ADC_SHCLK 0x7 // S/H width in ADC module periods = 2 ADC cycle
#define CPU_FREQ 150E6
#define LSPCLK_FREQ CPU_FREQ/4
#define SCI_FREQ 115200
#define SCI_PRD (LSPCLK_FREQ/(SCI_FREQ*8))-1 // 115200 bps
#define BUF_SIZE 128 // Sample buffer size
#define DMA_SIZE (BUF_SIZE/16)-1
volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
extern Uint16 RamfuncsLoadStart;
extern Uint16 RamfuncsLoadEnd;
extern Uint16 RamfuncsRunStart;
interrupt void local_DINTCH1_ISR(void);
interrupt void scibTxFifoIsr(void);
interrupt void scibRxFifoIsr(void);
void error(void);
void spi_ctrlio_init(void);
void InitScibGpio(void);
void scib_fifo_init(void);
void adc_config(void);
void dma_config(void);
volatile Uint16 DMABuf1[BUF_SIZE];
#pragma DATA_SECTION(DMABuf1,"DMARAML4");
//Uint16 buffer1[BUF_SIZE];
Uint16 RX_buffer[8];
volatile char TX_Buffer[8];
volatile char *display;
volatile Uint32 j;
volatile Uint16 AD_Flag = 0;
volatile Uint16 Run_Flag = 0;
volatile Uint16 Motor1_3NM = 60;
void main(void)
{
Uint16 i,j=0;
Uint32 temp;
display = TX_Buffer;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Specific clock setting for this example:
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/2*ADC_MODCLK
EDIS;
spi_ctrlio_init();
//the eight IO state
InitScibGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);
InitFlash();
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_DINTCH1_ISR;
PieVectTable.SCIRXINTB = &scibRxFifoIsr;
PieVectTable.SCITXINTB = &scibTxFifoIsr;
EDIS; // Disable access to EALLOW protected registers
scib_fifo_init();
IER |= M_INT1;
IER |= M_INT7;
IER |= M_INT9;
IER |= M_INT13;
IER |= M_INT14;
// Enable TINT0 in the PIE: Group 1 interrupt 7
PieCtrlRegs.PIEIER1.bit.INTx7 = 1;
PieCtrlRegs.PIEIER7.bit.INTx1 = 1;
PieCtrlRegs.PIEIER9.bit.INTx3 = 1; // PIE Group 9, INT3
// PieCtrlRegs.PIEIER9.bit.INTx4 = 1; // PIE Group 9, INT4
// EnableInterrupts();
// Enable global Interrupts and higher priority real-time debug events:
EINT; // Enable Global interrupt INTM
// ERTM; // Enable Global realtime interrupt DBGM
// Initialize DMA
InitAdc(); // For this example, init the ADC
adc_config();
DMAInitialize();
dma_config();
LED1 = 1;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
U54=1;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
U56=1;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
U58=1;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
U60=1;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
U55=0;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
U57=0;
IO_NOP;
U59=0;
IO_NOP;
U61=0;
IO_NOP;
// Clear Table
for (i=0; i<BUF_SIZE; i++)
DMABuf1[i] = 0;
for(i=0;i<8;i++)
RX_buffer[i] = 0; // Read data
// for(i=0;i<BUF_SIZE;i++)
// buffer1[i]=0;
for(;;){
AdcRegs.ADCCHSELSEQ1.all = 0x8888; // Initialize all ADC0 channel selects to B0
AdcRegs.ADCCHSELSEQ2.all = 0x8888;
AdcRegs.ADCCHSELSEQ3.all = 0x8888;
AdcRegs.ADCCHSELSEQ4.all = 0x8888;
StartDMACH1(); // Start DMA
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1; // Start SEQ1
AD_Flag = 1; //do not use the local_DINTCH1_ISR
// for(i=0;i<1000;i++)
// for(j=0;j<100;j++);
if(AD_Flag){ // AD0 feedbake control, 3NM
// for(i=0;i<16;i++){
// buffer1[i]=DMABuf1[i];
// }
for(i=0;i<16;i++)
j += DMABuf1[i];
j = j/16;
if((j >= Motor1_3NM )&&( Run_Flag)){
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x0;
LED1 = 0;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
U54=0;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
U56=0;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
U58=0;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
U60=0;
IO_NOP;
IO_NOP;
IO_NOP;IO_NOP;
IO_NOP;
U55=1;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
U57=1;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
U59=1;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
U61=1;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
IO_NOP;
if(Run_Flag){
display[0] = 0x00BB;
display[1] = 0x0060;
display[2] = 0x0000;
display[3] = 0x0000;
display[4] = 0x0000;
display[5] = 0x0000;
display[6] = 0x0000;
temp = 0;
for(j=0;j<7;j++){
for(i=0;i<8;i++){
temp = temp + ((display[j]>>i)&0x01);
}
}
display[7] = temp;
}
PieCtrlRegs.PIEIER9.bit.INTx4 = 1; // Send messege
}
else
StartDMACH1();
AD_Flag = 0;
}
}
}
// INT7.1
interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
{
AD_Flag = 1;
// asm (" ESTOP0");
GpioDataRegs.GPBDAT.bit.GPIO63 = ~GpioDataRegs.GPBDAT.bit.GPIO63;
/* DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(15,1,1);
DMACH1TransferConfig(DMA_SIZE,-15,1);
DMACH1WrapConfig(66,0,66,16);
DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
*/
// StartDMACH1();
// To receive more interrupts from this PIE group, acknowledge this interrupt
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
// Next two lines for debug only to halt the processor here
// Remove after inserting ISR Code
// for(;;);
}
interrupt void scibTxFifoIsr(void)
{
Uint16 i;
PieCtrlRegs.PIEIER9.bit.INTx4 = 0;
for(i=0; i< 8; i++)
{
ScibRegs.SCITXBUF=display[i]; // Send data
}
/*
for(i=0; i< 8; i++) //Increment send data for next cycle
{
sdataB[i] = (sdataB[i]-1) & 0x00FF;
}*/
ScibRegs.SCIFFTX.bit.TXFFINTCLR=1; // Clear Interrupt flag
PieCtrlRegs.PIEACK.all|=0x100; // Issue PIE ACK = CPU INT9
for(i=0; i< 8; i++)
{
ScibRegs.SCITXBUF=0;
}
}
interrupt void scibRxFifoIsr(void)
{
Uint16 i,j,temp1;
for(i=0;i<8;i++)
RX_buffer[i] = ScibRegs.SCIRXBUF.all; // Read data
Motor1_3NM = (RX_buffer[2]*256 + RX_buffer[3]);
temp1 = 0;
for(j=0;j<7;j++){
for(i=0;i<8;i++){
temp1 = temp1 + ((RX_buffer[j]>>i)&0x01);
}
}
if(temp1 == RX_buffer[7]){
if((RX_buffer[0] == 0x00AA) && (RX_buffer[1] == 0x0010) && !Run_Flag){
display[0] = 0x00BB;
for(i=1;i<7;i++)
display[i] = RX_buffer[i];
display[7] = RX_buffer[7]+2;
PieCtrlRegs.PIEIER9.bit.INTx4 = 1; // Send messege
Run_Flag = 1;
}
else if((RX_buffer[0] == 0x00AA) && (RX_buffer[1] == 0x0010) && Run_Flag){
display[0] = 0x00BB;
display[1] = 0x0010;
display[2] = 0x00FF; // Already Running
display[3] = 0x0000;
display[4] = 0x0000;
display[5] = 0x0000;
display[6] = 0x0000;
temp1 = 0;
for(j=0;j<7;j++){
for(i=0;i<8;i++){
temp1 = temp1 + ((display[j]>>i)&0x01);
}
}
display[7] = temp1;
PieCtrlRegs.PIEIER9.bit.INTx4 = 1; // Send messege
Run_Flag = 1;
}
else if((RX_buffer[0] == 0x00AA) && (RX_buffer[1] == 0x0041)){
display[0] = 0x00BB;
display[1] = 0x0041;
display[2] = Motor1_3NM/256;
display[3] = Motor1_3NM%256;
display[4] = 00;
display[5] = 00;
display[6] = 00;
temp1 = 0;
for(j=0;j<7;j++){
for(i=0;i<8;i++){
temp1 = temp1 + ((display[j]>>i)&0x01);
}
}
display[7] = temp1;
PieCtrlRegs.PIEIER9.bit.INTx4 = 1; // Send messege
}
else{
display = "ERROR ";
PieCtrlRegs.PIEIER9.bit.INTx4 = 1;
}
/*for(i=0;i<8;i++) // Check received data
{
if(rdataB[i] != ( (rdata_pointB-i) & 0x00FF) ) error();
}
rdata_pointB = (rdata_pointB-1) & 0x00FF;*/
ScibRegs.SCIFFRX.bit.RXFFOVRCLR=1; // Clear Overflow flag
ScibRegs.SCIFFRX.bit.RXFFINTCLR=1; // Clear Interrupt flag
PieCtrlRegs.PIEACK.all|=0x100; // Issue PIE ack
LED2 = ~LED2;
}
else{
display = "ERROR ";
PieCtrlRegs.PIEIER9.bit.INTx4 = 1;
}
}
void spi_ctrlio_init(void){
EALLOW;
#ifdef SLAVE
GpioCtrlRegs.GPBMUX2.bit.GPIO48 = 0;
GpioCtrlRegs.GPBMUX2.bit.GPIO49 = 0;
GpioCtrlRegs.GPBMUX2.bit.GPIO50 = 0;
// GpioCtrlRegs.GPBMUX2.bit.GPIO51 = 0;
GpioCtrlRegs.GPBMUX2.bit.GPIO54 = 0;
GpioCtrlRegs.GPBMUX2.bit.GPIO55 = 0;
GpioCtrlRegs.GPBMUX2.bit.GPIO56 = 0;
GpioCtrlRegs.GPBMUX2.bit.GPIO57 = 0;
GpioCtrlRegs.GPBMUX2.bit.GPIO58 = 0;
GpioCtrlRegs.GPBMUX2.bit.GPIO59 = 0;
GpioCtrlRegs.GPBMUX2.bit.GPIO60 = 0;
GpioCtrlRegs.GPBMUX2.bit.GPIO61 = 0;
GpioCtrlRegs.GPBMUX2.bit.GPIO62 = 0;
GpioCtrlRegs.GPBDIR.bit.GPIO48 = 1;
GpioCtrlRegs.GPBDIR.bit.GPIO49 = 1;
GpioCtrlRegs.GPBDIR.bit.GPIO50 = 1;
// GpioCtrlRegs.GPBDIR.bit.GPIO51 = 1;
GpioCtrlRegs.GPBDIR.bit.GPIO54 = 1;
GpioCtrlRegs.GPBDIR.bit.GPIO55 = 1;
GpioCtrlRegs.GPBDIR.bit.GPIO56 = 1;
GpioCtrlRegs.GPBDIR.bit.GPIO57 = 1;
GpioCtrlRegs.GPBDIR.bit.GPIO58 = 1;
GpioCtrlRegs.GPBDIR.bit.GPIO59 = 1;
GpioCtrlRegs.GPBDIR.bit.GPIO60 = 1;
GpioCtrlRegs.GPBDIR.bit.GPIO61 = 1;
GpioCtrlRegs.GPBDIR.bit.GPIO62 = 1;
GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 0;
GpioCtrlRegs.GPADIR.bit.GPIO0 = 0;
GpioCtrlRegs.GPAPUD.bit.GPIO0 = 0;
GpioCtrlRegs.GPBMUX2.bit.GPIO63 = 0;
GpioCtrlRegs.GPBDIR.bit.GPIO63 = 0;
GpioCtrlRegs.GPBPUD.bit.GPIO63 = 0;
GpioCtrlRegs.GPCMUX1.bit.GPIO75 = 0; //set the DDR pins to HZ
GpioCtrlRegs.GPCDIR.bit.GPIO75 = 1;
GpioCtrlRegs.GPCMUX1.all = 0x00000000;
GpioCtrlRegs.GPCMUX2.all = 0x00000000;
GpioCtrlRegs.GPCDIR.all = 0x00000000;
GpioCtrlRegs.GPCPUD.all = 0xFFFFFFFF;
GpioCtrlRegs.GPBMUX1.bit.GPIO45 = 0;
GpioCtrlRegs.GPBMUX1.bit.GPIO46 = 0;
GpioCtrlRegs.GPBMUX1.bit.GPIO47 = 0;
GpioCtrlRegs.GPBMUX1.bit.GPIO38 = 0;
GpioCtrlRegs.GPBDIR.bit.GPIO45 = 0;
GpioCtrlRegs.GPBDIR.bit.GPIO46 = 0;
GpioCtrlRegs.GPBDIR.bit.GPIO47 = 0;
GpioCtrlRegs.GPBDIR.bit.GPIO38 = 0;
GpioCtrlRegs.GPBPUD.bit.GPIO45 = 1;
GpioCtrlRegs.GPBPUD.bit.GPIO46 = 1;
GpioCtrlRegs.GPBPUD.bit.GPIO47 = 1;
GpioCtrlRegs.GPBPUD.bit.GPIO38 = 1;
#endif
/* Enable internal pull-up for the selected pins */
// Pull-ups can be enabled or disabled by the user.
// This will enable the pullups for the specified pins.
// Comment out other unwanted lines.
//********************************This part is changed at Date 2012-10-25***********************************
GpioCtrlRegs.GPAPUD.bit.GPIO16 = 0; // Enable pull-up on GPIO16 (SPISIMOA)
GpioCtrlRegs.GPAPUD.bit.GPIO17 = 0; // Enable pull-up on GPIO17 (SPISOMIA)
GpioCtrlRegs.GPAPUD.bit.GPIO18 = 0; // Enable pull-up on GPIO18 (SPICLKA)
GpioCtrlRegs.GPAPUD.bit.GPIO19 = 0; // Enable pull-up on GPIO19 (SPISTEA)
/* GpioCtrlRegs.GPBPUD.bit.GPIO54 = 0;
GpioCtrlRegs.GPBPUD.bit.GPIO55 = 0;
GpioCtrlRegs.GPBPUD.bit.GPIO56 = 0;
GpioCtrlRegs.GPBPUD.bit.GPIO57 = 0;
GpioCtrlRegs.GPBPUD.bit.GPIO58 = 0;
GpioCtrlRegs.GPBPUD.bit.GPIO59 = 0;
GpioCtrlRegs.GPBPUD.bit.GPIO60 = 0;
GpioCtrlRegs.GPBPUD.bit.GPIO61 = 0; */
// GpioCtrlRegs.GPBPUD.bit.GPIO54 = 0; // Enable pull-up on GPIO54 (SPISIMOA)
// GpioCtrlRegs.GPBPUD.bit.GPIO55 = 0; // Enable pull-up on GPIO55 (SPISOMIA)
// GpioCtrlRegs.GPBPUD.bit.GPIO56 = 0; // Enable pull-up on GPIO56 (SPICLKA)
// GpioCtrlRegs.GPBPUD.bit.GPIO57 = 0; // Enable pull-up on GPIO57 (SPISTEA)
/* Set qualification for selected pins to asynch only */
// This will select asynch (no qualification) for the selected pins.
// Comment out other unwanted lines.
GpioCtrlRegs.GPAQSEL2.bit.GPIO16 = 3; // Asynch input GPIO16 (SPISIMOA)
GpioCtrlRegs.GPAQSEL2.bit.GPIO17 = 3; // Asynch input GPIO17 (SPISOMIA)
GpioCtrlRegs.GPAQSEL2.bit.GPIO18 = 3; // Asynch input GPIO18 (SPICLKA)
GpioCtrlRegs.GPAQSEL2.bit.GPIO19 = 3; // Asynch input GPIO19 (SPISTEA)
/* GpioCtrlRegs.GPBQSEL2.bit.GPIO54 = 3; // Asynch input GPIO16 (SPISIMOA)
GpioCtrlRegs.GPBQSEL2.bit.GPIO55 = 3; // Asynch input GPIO17 (SPISOMIA)
GpioCtrlRegs.GPBQSEL2.bit.GPIO56 = 3; // Asynch input GPIO18 (SPICLKA)
GpioCtrlRegs.GPBQSEL2.bit.GPIO57 = 3; // Asynch input GPIO19 (SPISTEA)
GpioCtrlRegs.GPBQSEL2.bit.GPIO58 = 3; // Asynch input GPIO16 (SPISIMOA)
GpioCtrlRegs.GPBQSEL2.bit.GPIO59 = 3; // Asynch input GPIO17 (SPISOMIA)
GpioCtrlRegs.GPBQSEL2.bit.GPIO60 = 3; // Asynch input GPIO18 (SPICLKA)
GpioCtrlRegs.GPBQSEL2.bit.GPIO61 = 3; // Asynch input GPIO19 (SPISTEA)*/
/* Configure SPI-A pins using GPIO regs*/
// This specifies which of the possible GPIO pins will be SPI functional pins.
// Comment out other unwanted lines.
GpioCtrlRegs.GPAMUX2.bit.GPIO16 = 1; // Configure GPIO16 as SPISIMOA
GpioCtrlRegs.GPAMUX2.bit.GPIO17 = 1; // Configure GPIO17 as SPISOMIA
GpioCtrlRegs.GPAMUX2.bit.GPIO18 = 1; // Configure GPIO18 as SPICLKA
GpioCtrlRegs.GPAMUX2.bit.GPIO19 = 1; // Configure GPIO19 as SPISTEA
// GpioCtrlRegs.GPBMUX2.bit.GPIO54 = 1; // Configure GPIO54 as SPISIMOA
// GpioCtrlRegs.GPBMUX2.bit.GPIO55 = 1; // Configure GPIO55 as SPISOMIA
// GpioCtrlRegs.GPBMUX2.bit.GPIO56 = 1; // Configure GPIO56 as SPICLKA
// GpioCtrlRegs.GPBMUX2.bit.GPIO57 = 1; // Configure GPIO57 as SPISTEA
EDIS;
}
// Modify the UART IO RXD TXD
void InitScibGpio(void)
{
EALLOW;
/* Enable internal pull-up for the selected pins */
// Pull-ups can be enabled or disabled disabled by the user.
// This will enable the pullups for the specified pins.
// Comment out other unwanted lines.
// GpioCtrlRegs.GPAPUD.bit.GPIO9 = 0; // Enable pull-up for GPIO9 (SCITXDB)
GpioCtrlRegs.GPAPUD.bit.GPIO14 = 0; // Enable pull-up for GPIO14 (SCITXDB)
// GpioCtrlRegs.GPAPUD.bit.GPIO18 = 0; // Enable pull-up for GPIO18 (SCITXDB)
// GpioCtrlRegs.GPAPUD.bit.GPIO22 = 0; // Enable pull-up for GPIO22 (SCITXDB)
// GpioCtrlRegs.GPAPUD.bit.GPIO11 = 0; // Enable pull-up for GPIO11 (SCIRXDB)
GpioCtrlRegs.GPAPUD.bit.GPIO15 = 0; // Enable pull-up for GPIO15 (SCIRXDB)
// GpioCtrlRegs.GPAPUD.bit.GPIO19 = 0; // Enable pull-up for GPIO19 (SCIRXDB)
// GpioCtrlRegs.GPAPUD.bit.GPIO23 = 0; // Enable pull-up for GPIO23 (SCIRXDB)
/* Set qualification for selected pins to asynch only */
// This will select asynch (no qualification) for the selected pins.
// Comment out other unwanted lines.
// GpioCtrlRegs.GPAQSEL1.bit.GPIO11 = 3; // Asynch input GPIO11 (SCIRXDB)
GpioCtrlRegs.GPAQSEL1.bit.GPIO15 = 3; // Asynch input GPIO15 (SCIRXDB)
// GpioCtrlRegs.GPAQSEL2.bit.GPIO19 = 3; // Asynch input GPIO19 (SCIRXDB)
// GpioCtrlRegs.GPAQSEL2.bit.GPIO23 = 3; // Asynch input GPIO23 (SCIRXDB)
/* Configure SCI-B pins using GPIO regs*/
// This specifies which of the possible GPIO pins will be SCI functional pins.
// Comment out other unwanted lines.
// GpioCtrlRegs.GPAMUX1.bit.GPIO9 = 2; // Configure GPIO9 for SCITXDB operation
GpioCtrlRegs.GPAMUX1.bit.GPIO14 = 2; // Configure GPIO14 for SCITXDB operation
// GpioCtrlRegs.GPAMUX2.bit.GPIO18 = 2; // Configure GPIO18 for SCITXDB operation
// GpioCtrlRegs.GPAMUX2.bit.GPIO22 = 3; // Configure GPIO22 for SCITXDB operation
// GpioCtrlRegs.GPAMUX1.bit.GPIO11 = 2; // Configure GPIO11 for SCIRXDB operation
GpioCtrlRegs.GPAMUX1.bit.GPIO15 = 2; // Configure GPIO15 for SCIRXDB operation
// GpioCtrlRegs.GPAMUX2.bit.GPIO19 = 2; // Configure GPIO19 for SCIRXDB operation
// GpioCtrlRegs.GPAMUX2.bit.GPIO23 = 3; // Configure GPIO23 for SCIRXDB operation
EDIS;
}
void adc_config(void){
// Specific ADC setup for this example:
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK; // Sequential mode: Sample rate = 1/[(2+ACQ_PS)*ADC clock in ns]
// = 1/(3*40ns) =8.3MHz (for 150 MHz SYSCLKOUT)
// = 1/(3*80ns) =4.17MHz (for 100 MHz SYSCLKOUT)
// If Simultaneous mode enabled: Sample rate = 1/[(3+ACQ_PS)*ADC clock in ns]
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 1; // 1 Cascaded mode
// AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
AdcRegs.ADCTRL1.bit.CONT_RUN = 1; // Setup continuous run
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1; // Enable SEQ1 interrupt (every EOS)
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
AdcRegs.ADCTRL1.bit.SEQ_OVRD =1; // Enable Sequencer override feature
AdcRegs.ADCCHSELSEQ1.all = 0x8888; // Initialize all ADC channel selects to B0
AdcRegs.ADCCHSELSEQ2.all = 0x8888;
AdcRegs.ADCCHSELSEQ3.all = 0x8888;
AdcRegs.ADCCHSELSEQ4.all = 0x8888;
AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0xf; // convert and store in 8 results registers
}
void dma_config(void){
// Configure DMA Channel
DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(15,1,1);
DMACH1TransferConfig(7,1,1);
DMACH1WrapConfig(0xFFFF,0,0xFFFF,0);
DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
}
void scib_fifo_init(void)
{
ScibRegs.SCICCR.all =0x0007; // 1 stop bit, No loopback
// No parity,8 char bits,
// async mode, idle-line protocol
ScibRegs.SCICTL1.all =0x0003; // enable TX, RX, internal SCICLK,
// Disable RX ERR, SLEEP, TXWAKE
ScibRegs.SCICTL2.bit.TXINTENA =1;
ScibRegs.SCICTL2.bit.RXBKINTENA =1;
ScibRegs.SCIHBAUD =0x0000;
ScibRegs.SCILBAUD =SCI_PRD;
// ScibRegs.SCICCR.bit.LOOPBKENA =1; // Enable loop back
ScibRegs.SCIFFTX.all=0xC028;
ScibRegs.SCIFFRX.all=0x0028;
ScibRegs.SCIFFCT.all=0x00;
ScibRegs.SCIFFTX.bit.SCIFFENA = 1; //WO ZIJI JIA DE
ScibRegs.SCICTL1.all =0x0023; // Relinquish SCI from Reset
ScibRegs.SCIFFTX.bit.TXFIFOXRESET=1;
ScibRegs.SCIFFRX.bit.RXFIFORESET=1;
}