This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

TMS320F28335的DMA,实现ADC数据到RAM的传输,DMA能够传输,也可以进入中断,可在对应的RAM区域中却没有对应的数据


#include "DSP2833x_Device.h"     // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h"   // DSP2833x Examples Include File
// ADC start parameters
#if (CPU_FRQ_150MHZ)     // Default - 150 MHz SYSCLKOUT
  #define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3)   = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
  #define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2)   = 25.0 MHz
#endif
#define ADC_CKPS   0x1   // ADC module clock = HSPCLK/2*ADC_CKPS   = 25.0MHz/(1*2) = 12.5MHz
#define ADC_SHCLK  0xf   // S/H width in ADC module periods                        = 16 ADC clocks
#define AVG        1000  // Average sample limit
#define BUF_SIZE   20    // Sample buffer size

// Global variable for this example
Uint16 j=0;

#pragma DATA_SECTION(DMABuf1,"DMARAML4");
volatile Uint16 DMABuf1[20];

volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);

void main(void)
{
   Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
   InitSysCtrl();

// Specific clock setting for this example:
   EALLOW;
   SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
   EDIS;

// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio();  // Skipped for this example

// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
   DINT;

// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
   InitPieCtrl();
 // Clear Table
  for (i=0; i<BUF_SIZE; i++)
   {
     DMABuf1[i] = 0;
   }

// Disable CPU interrupts and clear all CPU interrupt flags:
   IER = 0x0000;
   IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example.  This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
   InitPieVectTable();

// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
   EALLOW; // Allow access to EALLOW protected registers
   PieVectTable.DINTCH1= &local_DINTCH1_ISR;
   EDIS;   // Disable access to EALLOW protected registers
     
   IER = M_INT7 ;                              //Enable INT7 (7.1 DMA Ch1)
   EnableInterrupts();
  
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
   InitAdc();  // For this example, init the ADC

// Specific ADC setup for this example:
   AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
   AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
   AdcRegs.ADCTRL1.bit.SEQ_CASC = 0;        // 0 Non-Cascaded Mode
   AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1;
   AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1;// Enable SOCA from ePWM to start SEQ1
   AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
   AdcRegs.ADCCHSELSEQ1.bit.CONV00 =0x0;       //only one channel is slected
   AdcRegs.ADCCHSELSEQ1.bit.CONV01 =0x0;
   AdcRegs.ADCCHSELSEQ1.bit.CONV02 =0x0;
   AdcRegs.ADCCHSELSEQ1.bit.CONV03 =0x0;
   AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 3;   // Set up ADC to perform 4 conversions for every SOC
// Assumes ePWM1 clock is already enabled in InitSysCtrl();
   EPwm1Regs.ETSEL.bit.SOCAEN = 1;        // Enable SOC on A group
   EPwm1Regs.ETSEL.bit.SOCASEL = 4;       // Select SOC from from CPMA on upcount
   EPwm1Regs.ETPS.bit.SOCAPRD = 1;        // Generate pulse on 1st event
   EPwm1Regs.CMPA.half.CMPA = 150;   // Set compare A value
   EPwm1Regs.TBPRD = 750;              // Set period for ePWM1  ---0.05ms
   EPwm1Regs.TBCTL.bit.CTRMODE = 0;    // count up and start
//Step 5. User specific code, enable interrupts:
  // Initialize DMA
 DMAInitialize();
// Configure DMA Channel
    DMADest   = &DMABuf1[0];              //Point DMA destination to the beginning of the array
 DMASource = &AdcMirror.ADCRESULT0;    //Point DMA source to ADC result register base
 DMACH1AddrConfig(DMADest,DMASource);

 DMACH1BurstConfig(3,1,4);                 //burst 4words;SRC+1,DST+4;
 DMACH1TransferConfig(4,0,4);              //5 bursts,SRC+0,DST+4;
 DMACH1WrapConfig(0,0,0,1);                  //SRC wrap around after 1 burst,SRC+0;DST wrap around after 1 burst,DST+1;
 DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_ENABLE,SYNC_DISABLE,SYNC_SRC,
                  OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);

 

 

 StartDMACH1();

   while(1);

   // Start SEQ1
  // AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1;
   //for(i=0;i<10;i++){
    // for(j=0;j<1000;j++){}
     //   AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1;    //Normally ADC will be tied to ePWM, or timed routine
 //  }                                      //For this example will re-start manually                  

}

// INT7.1
interrupt void local_DINTCH1_ISR(void)     // DMA Channel 1
{
  //20个数据处理,每隔0.0025ms采集一次
  //总共用时0.1ms
  // To receive more interrupts from this PIE group, acknowledge this interrupt
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
  // Next two lines for debug only to halt the processor here
  // Remove after inserting ISR Code
}

而且,TI提供的例程,同样的结果,也是DMA对应的目标内存地址的数据不对

  • zhang lei,

    那个cmd文件你用的是TI的吗,即DMARAML4段是映射到RAML4      : origin = 0x00C000, length = 0x001000 。

    你在调试的时候观察一下AdcMirror.ADCRESULT0这个数据对不对,确保在搬运之前这个数据是对的。

    你用下面的例程测试一下。

  • 您好,我也写了一段ADC-DMA的程序,大问题应该没有了,就是采集的数据还是不正确,DMA的设置我就是按照您这个程序写的,如果单步运行的话,程序能过去,如果全速运行就不行,就会停在    if(AD_Flag)  的后面那行,实在不知道为什么了

    #include "DSP28x_Project.h" // Device Headerfile and Examples Include File

    //B2,B4,B6,B8,B10=1
    #define U54 GpioDataRegs.GPBDAT.bit.GPIO54
    #define U56 GpioDataRegs.GPBDAT.bit.GPIO56
    #define U58 GpioDataRegs.GPBDAT.bit.GPIO58
    #define U60 GpioDataRegs.GPBDAT.bit.GPIO60


    //B1,B3,B5,B7,B9=0
    #define U55 GpioDataRegs.GPBDAT.bit.GPIO55
    #define U57 GpioDataRegs.GPBDAT.bit.GPIO57
    #define U59 GpioDataRegs.GPBDAT.bit.GPIO59
    #define U61 GpioDataRegs.GPBDAT.bit.GPIO61


    #define LED1 GpioDataRegs.GPBDAT.bit.GPIO50 // For test LED1
    #define LED2 GpioDataRegs.GPBDAT.bit.GPIO49 // For test LED2
    #define SLAVE
    #define NOP asm(" nop")
    #define IO_NOP NOP;NOP;NOP;NOP

    // ADC start parameters
    #if (CPU_FRQ_150MHZ) // Default - 150 MHz SYSCLKOUT
    #define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
    #endif
    #if (CPU_FRQ_100MHZ)
    #define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
    #endif
    #define ADC_CKPS 0x5 // ADC module clock = HSPCLK/1 = 25.5MHz/(1) = 25.0 MHz
    #define ADC_SHCLK 0x7 // S/H width in ADC module periods = 2 ADC cycle


    #define CPU_FREQ 150E6
    #define LSPCLK_FREQ CPU_FREQ/4
    #define SCI_FREQ 115200
    #define SCI_PRD (LSPCLK_FREQ/(SCI_FREQ*8))-1 // 115200 bps

    #define BUF_SIZE 128 // Sample buffer size
    #define DMA_SIZE (BUF_SIZE/16)-1

    volatile Uint16 *DMADest;
    volatile Uint16 *DMASource;

    extern Uint16 RamfuncsLoadStart;
    extern Uint16 RamfuncsLoadEnd;
    extern Uint16 RamfuncsRunStart;

    interrupt void local_DINTCH1_ISR(void);
    interrupt void scibTxFifoIsr(void);
    interrupt void scibRxFifoIsr(void);

    void error(void);
    void spi_ctrlio_init(void);
    void InitScibGpio(void);

    void scib_fifo_init(void);
    void adc_config(void);
    void dma_config(void);

    volatile Uint16 DMABuf1[BUF_SIZE];
    #pragma DATA_SECTION(DMABuf1,"DMARAML4");


    //Uint16 buffer1[BUF_SIZE];
    Uint16 RX_buffer[8];
    volatile char TX_Buffer[8];
    volatile char *display;
    volatile Uint32 j;

    volatile Uint16 AD_Flag = 0;
    volatile Uint16 Run_Flag = 0;
    volatile Uint16 Motor1_3NM = 60;


    void main(void)
    {
    Uint16 i,j=0;
    Uint32 temp;
    display = TX_Buffer;
    // Step 1. Initialize System Control:
    // PLL, WatchDog, enable Peripheral Clocks
    // This example function is found in the DSP2833x_SysCtrl.c file.
    InitSysCtrl();

    // Specific clock setting for this example:
    EALLOW;
    SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/2*ADC_MODCLK
    EDIS;

    spi_ctrlio_init();

    //the eight IO state



    InitScibGpio();

    // Step 3. Clear all interrupts and initialize PIE vector table:
    // Disable CPU interrupts
    DINT;

    // Initialize the PIE control registers to their default state.
    // The default state is all PIE interrupts disabled and flags
    // are cleared.
    // This function is found in the DSP2833x_PieCtrl.c file.
    InitPieCtrl();

    // Disable CPU interrupts and clear all CPU interrupt flags:
    IER = 0x0000;
    IFR = 0x0000;

    // Initialize the PIE vector table with pointers to the shell Interrupt
    // Service Routines (ISR).
    // This will populate the entire table, even if the interrupt
    // is not used in this example. This is useful for debug purposes.
    // The shell ISR routines are found in DSP2833x_DefaultIsr.c.
    // This function is found in DSP2833x_PieVect.c.
    InitPieVectTable();

    MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);
    InitFlash();

    EALLOW; // Allow access to EALLOW protected registers
    PieVectTable.DINTCH1= &local_DINTCH1_ISR;
    PieVectTable.SCIRXINTB = &scibRxFifoIsr;
    PieVectTable.SCITXINTB = &scibTxFifoIsr;
    EDIS; // Disable access to EALLOW protected registers

    scib_fifo_init();
    IER |= M_INT1;
    IER |= M_INT7;
    IER |= M_INT9;
    IER |= M_INT13;
    IER |= M_INT14;
    // Enable TINT0 in the PIE: Group 1 interrupt 7
    PieCtrlRegs.PIEIER1.bit.INTx7 = 1;
    PieCtrlRegs.PIEIER7.bit.INTx1 = 1;
    PieCtrlRegs.PIEIER9.bit.INTx3 = 1; // PIE Group 9, INT3
    // PieCtrlRegs.PIEIER9.bit.INTx4 = 1; // PIE Group 9, INT4
    // EnableInterrupts();
    // Enable global Interrupts and higher priority real-time debug events:
    EINT; // Enable Global interrupt INTM
    // ERTM; // Enable Global realtime interrupt DBGM

    // Initialize DMA
    InitAdc(); // For this example, init the ADC
    adc_config();

    DMAInitialize();
    dma_config();


    LED1 = 1;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    U54=1;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    U56=1;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    U58=1;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    U60=1;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;

    U55=0;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    U57=0;
    IO_NOP;
    U59=0;
    IO_NOP;
    U61=0;
    IO_NOP;


    // Clear Table
    for (i=0; i<BUF_SIZE; i++)
    DMABuf1[i] = 0;
    for(i=0;i<8;i++)
    RX_buffer[i] = 0; // Read data
    // for(i=0;i<BUF_SIZE;i++)
    // buffer1[i]=0;
    for(;;){

    AdcRegs.ADCCHSELSEQ1.all = 0x8888; // Initialize all ADC0 channel selects to B0
    AdcRegs.ADCCHSELSEQ2.all = 0x8888;
    AdcRegs.ADCCHSELSEQ3.all = 0x8888;
    AdcRegs.ADCCHSELSEQ4.all = 0x8888;

    StartDMACH1(); // Start DMA
    AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
    AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1; // Start SEQ1

    AD_Flag = 1; //do not use the local_DINTCH1_ISR

    // for(i=0;i<1000;i++)
    // for(j=0;j<100;j++);

    if(AD_Flag){ // AD0 feedbake control, 3NM
    // for(i=0;i<16;i++){
    // buffer1[i]=DMABuf1[i];
    // }
    for(i=0;i<16;i++)
    j += DMABuf1[i];
    j = j/16;
    if((j >= Motor1_3NM )&&( Run_Flag)){
    AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x0;

    LED1 = 0;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    U54=0;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    U56=0;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    U58=0;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    U60=0;
    IO_NOP;
    IO_NOP;
    IO_NOP;IO_NOP;
    IO_NOP;

    U55=1;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    U57=1;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    U59=1;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    U61=1;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;
    IO_NOP;


    if(Run_Flag){
    display[0] = 0x00BB;
    display[1] = 0x0060;
    display[2] = 0x0000;
    display[3] = 0x0000;
    display[4] = 0x0000;
    display[5] = 0x0000;
    display[6] = 0x0000;
    temp = 0;
    for(j=0;j<7;j++){
    for(i=0;i<8;i++){
    temp = temp + ((display[j]>>i)&0x01);
    }
    }
    display[7] = temp;
    }
    PieCtrlRegs.PIEIER9.bit.INTx4 = 1; // Send messege
    }
    else
    StartDMACH1();
    AD_Flag = 0;
    }
    }
    }
    // INT7.1
    interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
    {
    AD_Flag = 1;
    // asm (" ESTOP0");
    GpioDataRegs.GPBDAT.bit.GPIO63 = ~GpioDataRegs.GPBDAT.bit.GPIO63;

    /* DMACH1AddrConfig(DMADest,DMASource);
    DMACH1BurstConfig(15,1,1);
    DMACH1TransferConfig(DMA_SIZE,-15,1);
    DMACH1WrapConfig(66,0,66,16);
    DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
    OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
    */
    // StartDMACH1();
    // To receive more interrupts from this PIE group, acknowledge this interrupt
    PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;

    // Next two lines for debug only to halt the processor here
    // Remove after inserting ISR Code

    // for(;;);
    }

    interrupt void scibTxFifoIsr(void)
    {
    Uint16 i;

    PieCtrlRegs.PIEIER9.bit.INTx4 = 0;

    for(i=0; i< 8; i++)
    {
    ScibRegs.SCITXBUF=display[i]; // Send data
    }
    /*
    for(i=0; i< 8; i++) //Increment send data for next cycle
    {
    sdataB[i] = (sdataB[i]-1) & 0x00FF;
    }*/
    ScibRegs.SCIFFTX.bit.TXFFINTCLR=1; // Clear Interrupt flag
    PieCtrlRegs.PIEACK.all|=0x100; // Issue PIE ACK = CPU INT9
    for(i=0; i< 8; i++)
    {
    ScibRegs.SCITXBUF=0;
    }
    }

    interrupt void scibRxFifoIsr(void)
    {
    Uint16 i,j,temp1;
    for(i=0;i<8;i++)
    RX_buffer[i] = ScibRegs.SCIRXBUF.all; // Read data
    Motor1_3NM = (RX_buffer[2]*256 + RX_buffer[3]);
    temp1 = 0;
    for(j=0;j<7;j++){
    for(i=0;i<8;i++){
    temp1 = temp1 + ((RX_buffer[j]>>i)&0x01);
    }
    }
    if(temp1 == RX_buffer[7]){
    if((RX_buffer[0] == 0x00AA) && (RX_buffer[1] == 0x0010) && !Run_Flag){
    display[0] = 0x00BB;
    for(i=1;i<7;i++)
    display[i] = RX_buffer[i];
    display[7] = RX_buffer[7]+2;
    PieCtrlRegs.PIEIER9.bit.INTx4 = 1; // Send messege
    Run_Flag = 1;
    }
    else if((RX_buffer[0] == 0x00AA) && (RX_buffer[1] == 0x0010) && Run_Flag){
    display[0] = 0x00BB;
    display[1] = 0x0010;
    display[2] = 0x00FF; // Already Running
    display[3] = 0x0000;
    display[4] = 0x0000;
    display[5] = 0x0000;
    display[6] = 0x0000;
    temp1 = 0;
    for(j=0;j<7;j++){
    for(i=0;i<8;i++){
    temp1 = temp1 + ((display[j]>>i)&0x01);
    }
    }
    display[7] = temp1;
    PieCtrlRegs.PIEIER9.bit.INTx4 = 1; // Send messege
    Run_Flag = 1;
    }
    else if((RX_buffer[0] == 0x00AA) && (RX_buffer[1] == 0x0041)){
    display[0] = 0x00BB;
    display[1] = 0x0041;
    display[2] = Motor1_3NM/256;
    display[3] = Motor1_3NM%256;
    display[4] = 00;
    display[5] = 00;
    display[6] = 00;
    temp1 = 0;
    for(j=0;j<7;j++){
    for(i=0;i<8;i++){
    temp1 = temp1 + ((display[j]>>i)&0x01);
    }
    }
    display[7] = temp1;
    PieCtrlRegs.PIEIER9.bit.INTx4 = 1; // Send messege
    }

    else{
    display = "ERROR ";
    PieCtrlRegs.PIEIER9.bit.INTx4 = 1;
    }

    /*for(i=0;i<8;i++) // Check received data
    {
    if(rdataB[i] != ( (rdata_pointB-i) & 0x00FF) ) error();
    }
    rdata_pointB = (rdata_pointB-1) & 0x00FF;*/

    ScibRegs.SCIFFRX.bit.RXFFOVRCLR=1; // Clear Overflow flag
    ScibRegs.SCIFFRX.bit.RXFFINTCLR=1; // Clear Interrupt flag
    PieCtrlRegs.PIEACK.all|=0x100; // Issue PIE ack
    LED2 = ~LED2;
    }
    else{
    display = "ERROR ";
    PieCtrlRegs.PIEIER9.bit.INTx4 = 1;
    }
    }

    void spi_ctrlio_init(void){
    EALLOW;

    #ifdef SLAVE
    GpioCtrlRegs.GPBMUX2.bit.GPIO48 = 0;
    GpioCtrlRegs.GPBMUX2.bit.GPIO49 = 0;
    GpioCtrlRegs.GPBMUX2.bit.GPIO50 = 0;
    // GpioCtrlRegs.GPBMUX2.bit.GPIO51 = 0;
    GpioCtrlRegs.GPBMUX2.bit.GPIO54 = 0;
    GpioCtrlRegs.GPBMUX2.bit.GPIO55 = 0;
    GpioCtrlRegs.GPBMUX2.bit.GPIO56 = 0;
    GpioCtrlRegs.GPBMUX2.bit.GPIO57 = 0;
    GpioCtrlRegs.GPBMUX2.bit.GPIO58 = 0;
    GpioCtrlRegs.GPBMUX2.bit.GPIO59 = 0;
    GpioCtrlRegs.GPBMUX2.bit.GPIO60 = 0;
    GpioCtrlRegs.GPBMUX2.bit.GPIO61 = 0;
    GpioCtrlRegs.GPBMUX2.bit.GPIO62 = 0;

    GpioCtrlRegs.GPBDIR.bit.GPIO48 = 1;
    GpioCtrlRegs.GPBDIR.bit.GPIO49 = 1;
    GpioCtrlRegs.GPBDIR.bit.GPIO50 = 1;
    // GpioCtrlRegs.GPBDIR.bit.GPIO51 = 1;
    GpioCtrlRegs.GPBDIR.bit.GPIO54 = 1;
    GpioCtrlRegs.GPBDIR.bit.GPIO55 = 1;
    GpioCtrlRegs.GPBDIR.bit.GPIO56 = 1;
    GpioCtrlRegs.GPBDIR.bit.GPIO57 = 1;
    GpioCtrlRegs.GPBDIR.bit.GPIO58 = 1;
    GpioCtrlRegs.GPBDIR.bit.GPIO59 = 1;
    GpioCtrlRegs.GPBDIR.bit.GPIO60 = 1;
    GpioCtrlRegs.GPBDIR.bit.GPIO61 = 1;
    GpioCtrlRegs.GPBDIR.bit.GPIO62 = 1;

    GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 0;
    GpioCtrlRegs.GPADIR.bit.GPIO0 = 0;
    GpioCtrlRegs.GPAPUD.bit.GPIO0 = 0;

    GpioCtrlRegs.GPBMUX2.bit.GPIO63 = 0;
    GpioCtrlRegs.GPBDIR.bit.GPIO63 = 0;
    GpioCtrlRegs.GPBPUD.bit.GPIO63 = 0;

    GpioCtrlRegs.GPCMUX1.bit.GPIO75 = 0; //set the DDR pins to HZ
    GpioCtrlRegs.GPCDIR.bit.GPIO75 = 1;

    GpioCtrlRegs.GPCMUX1.all = 0x00000000;
    GpioCtrlRegs.GPCMUX2.all = 0x00000000;
    GpioCtrlRegs.GPCDIR.all = 0x00000000;
    GpioCtrlRegs.GPCPUD.all = 0xFFFFFFFF;

    GpioCtrlRegs.GPBMUX1.bit.GPIO45 = 0;
    GpioCtrlRegs.GPBMUX1.bit.GPIO46 = 0;
    GpioCtrlRegs.GPBMUX1.bit.GPIO47 = 0;
    GpioCtrlRegs.GPBMUX1.bit.GPIO38 = 0;

    GpioCtrlRegs.GPBDIR.bit.GPIO45 = 0;
    GpioCtrlRegs.GPBDIR.bit.GPIO46 = 0;
    GpioCtrlRegs.GPBDIR.bit.GPIO47 = 0;
    GpioCtrlRegs.GPBDIR.bit.GPIO38 = 0;

    GpioCtrlRegs.GPBPUD.bit.GPIO45 = 1;
    GpioCtrlRegs.GPBPUD.bit.GPIO46 = 1;
    GpioCtrlRegs.GPBPUD.bit.GPIO47 = 1;
    GpioCtrlRegs.GPBPUD.bit.GPIO38 = 1;
    #endif

    /* Enable internal pull-up for the selected pins */
    // Pull-ups can be enabled or disabled by the user.
    // This will enable the pullups for the specified pins.
    // Comment out other unwanted lines.

    //********************************This part is changed at Date 2012-10-25***********************************
    GpioCtrlRegs.GPAPUD.bit.GPIO16 = 0; // Enable pull-up on GPIO16 (SPISIMOA)
    GpioCtrlRegs.GPAPUD.bit.GPIO17 = 0; // Enable pull-up on GPIO17 (SPISOMIA)
    GpioCtrlRegs.GPAPUD.bit.GPIO18 = 0; // Enable pull-up on GPIO18 (SPICLKA)
    GpioCtrlRegs.GPAPUD.bit.GPIO19 = 0; // Enable pull-up on GPIO19 (SPISTEA)

    /* GpioCtrlRegs.GPBPUD.bit.GPIO54 = 0;
    GpioCtrlRegs.GPBPUD.bit.GPIO55 = 0;
    GpioCtrlRegs.GPBPUD.bit.GPIO56 = 0;
    GpioCtrlRegs.GPBPUD.bit.GPIO57 = 0;

    GpioCtrlRegs.GPBPUD.bit.GPIO58 = 0;
    GpioCtrlRegs.GPBPUD.bit.GPIO59 = 0;
    GpioCtrlRegs.GPBPUD.bit.GPIO60 = 0;
    GpioCtrlRegs.GPBPUD.bit.GPIO61 = 0; */

    // GpioCtrlRegs.GPBPUD.bit.GPIO54 = 0; // Enable pull-up on GPIO54 (SPISIMOA)
    // GpioCtrlRegs.GPBPUD.bit.GPIO55 = 0; // Enable pull-up on GPIO55 (SPISOMIA)
    // GpioCtrlRegs.GPBPUD.bit.GPIO56 = 0; // Enable pull-up on GPIO56 (SPICLKA)
    // GpioCtrlRegs.GPBPUD.bit.GPIO57 = 0; // Enable pull-up on GPIO57 (SPISTEA)

    /* Set qualification for selected pins to asynch only */
    // This will select asynch (no qualification) for the selected pins.
    // Comment out other unwanted lines.

    GpioCtrlRegs.GPAQSEL2.bit.GPIO16 = 3; // Asynch input GPIO16 (SPISIMOA)
    GpioCtrlRegs.GPAQSEL2.bit.GPIO17 = 3; // Asynch input GPIO17 (SPISOMIA)
    GpioCtrlRegs.GPAQSEL2.bit.GPIO18 = 3; // Asynch input GPIO18 (SPICLKA)
    GpioCtrlRegs.GPAQSEL2.bit.GPIO19 = 3; // Asynch input GPIO19 (SPISTEA)

    /* GpioCtrlRegs.GPBQSEL2.bit.GPIO54 = 3; // Asynch input GPIO16 (SPISIMOA)
    GpioCtrlRegs.GPBQSEL2.bit.GPIO55 = 3; // Asynch input GPIO17 (SPISOMIA)
    GpioCtrlRegs.GPBQSEL2.bit.GPIO56 = 3; // Asynch input GPIO18 (SPICLKA)
    GpioCtrlRegs.GPBQSEL2.bit.GPIO57 = 3; // Asynch input GPIO19 (SPISTEA)

    GpioCtrlRegs.GPBQSEL2.bit.GPIO58 = 3; // Asynch input GPIO16 (SPISIMOA)
    GpioCtrlRegs.GPBQSEL2.bit.GPIO59 = 3; // Asynch input GPIO17 (SPISOMIA)
    GpioCtrlRegs.GPBQSEL2.bit.GPIO60 = 3; // Asynch input GPIO18 (SPICLKA)
    GpioCtrlRegs.GPBQSEL2.bit.GPIO61 = 3; // Asynch input GPIO19 (SPISTEA)*/

    /* Configure SPI-A pins using GPIO regs*/
    // This specifies which of the possible GPIO pins will be SPI functional pins.
    // Comment out other unwanted lines.

    GpioCtrlRegs.GPAMUX2.bit.GPIO16 = 1; // Configure GPIO16 as SPISIMOA
    GpioCtrlRegs.GPAMUX2.bit.GPIO17 = 1; // Configure GPIO17 as SPISOMIA
    GpioCtrlRegs.GPAMUX2.bit.GPIO18 = 1; // Configure GPIO18 as SPICLKA
    GpioCtrlRegs.GPAMUX2.bit.GPIO19 = 1; // Configure GPIO19 as SPISTEA

    // GpioCtrlRegs.GPBMUX2.bit.GPIO54 = 1; // Configure GPIO54 as SPISIMOA
    // GpioCtrlRegs.GPBMUX2.bit.GPIO55 = 1; // Configure GPIO55 as SPISOMIA
    // GpioCtrlRegs.GPBMUX2.bit.GPIO56 = 1; // Configure GPIO56 as SPICLKA
    // GpioCtrlRegs.GPBMUX2.bit.GPIO57 = 1; // Configure GPIO57 as SPISTEA


    EDIS;
    }

    // Modify the UART IO RXD TXD
    void InitScibGpio(void)
    {
    EALLOW;

    /* Enable internal pull-up for the selected pins */
    // Pull-ups can be enabled or disabled disabled by the user.
    // This will enable the pullups for the specified pins.
    // Comment out other unwanted lines.

    // GpioCtrlRegs.GPAPUD.bit.GPIO9 = 0; // Enable pull-up for GPIO9 (SCITXDB)
    GpioCtrlRegs.GPAPUD.bit.GPIO14 = 0; // Enable pull-up for GPIO14 (SCITXDB)
    // GpioCtrlRegs.GPAPUD.bit.GPIO18 = 0; // Enable pull-up for GPIO18 (SCITXDB)
    // GpioCtrlRegs.GPAPUD.bit.GPIO22 = 0; // Enable pull-up for GPIO22 (SCITXDB)


    // GpioCtrlRegs.GPAPUD.bit.GPIO11 = 0; // Enable pull-up for GPIO11 (SCIRXDB)
    GpioCtrlRegs.GPAPUD.bit.GPIO15 = 0; // Enable pull-up for GPIO15 (SCIRXDB)
    // GpioCtrlRegs.GPAPUD.bit.GPIO19 = 0; // Enable pull-up for GPIO19 (SCIRXDB)
    // GpioCtrlRegs.GPAPUD.bit.GPIO23 = 0; // Enable pull-up for GPIO23 (SCIRXDB)

    /* Set qualification for selected pins to asynch only */
    // This will select asynch (no qualification) for the selected pins.
    // Comment out other unwanted lines.

    // GpioCtrlRegs.GPAQSEL1.bit.GPIO11 = 3; // Asynch input GPIO11 (SCIRXDB)
    GpioCtrlRegs.GPAQSEL1.bit.GPIO15 = 3; // Asynch input GPIO15 (SCIRXDB)
    // GpioCtrlRegs.GPAQSEL2.bit.GPIO19 = 3; // Asynch input GPIO19 (SCIRXDB)
    // GpioCtrlRegs.GPAQSEL2.bit.GPIO23 = 3; // Asynch input GPIO23 (SCIRXDB)

    /* Configure SCI-B pins using GPIO regs*/
    // This specifies which of the possible GPIO pins will be SCI functional pins.
    // Comment out other unwanted lines.

    // GpioCtrlRegs.GPAMUX1.bit.GPIO9 = 2; // Configure GPIO9 for SCITXDB operation
    GpioCtrlRegs.GPAMUX1.bit.GPIO14 = 2; // Configure GPIO14 for SCITXDB operation
    // GpioCtrlRegs.GPAMUX2.bit.GPIO18 = 2; // Configure GPIO18 for SCITXDB operation
    // GpioCtrlRegs.GPAMUX2.bit.GPIO22 = 3; // Configure GPIO22 for SCITXDB operation

    // GpioCtrlRegs.GPAMUX1.bit.GPIO11 = 2; // Configure GPIO11 for SCIRXDB operation
    GpioCtrlRegs.GPAMUX1.bit.GPIO15 = 2; // Configure GPIO15 for SCIRXDB operation
    // GpioCtrlRegs.GPAMUX2.bit.GPIO19 = 2; // Configure GPIO19 for SCIRXDB operation
    // GpioCtrlRegs.GPAMUX2.bit.GPIO23 = 3; // Configure GPIO23 for SCIRXDB operation

    EDIS;
    }

    void adc_config(void){
    // Specific ADC setup for this example:
    AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK; // Sequential mode: Sample rate = 1/[(2+ACQ_PS)*ADC clock in ns]
    // = 1/(3*40ns) =8.3MHz (for 150 MHz SYSCLKOUT)
    // = 1/(3*80ns) =4.17MHz (for 100 MHz SYSCLKOUT)
    // If Simultaneous mode enabled: Sample rate = 1/[(3+ACQ_PS)*ADC clock in ns]
    AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
    AdcRegs.ADCTRL1.bit.SEQ_CASC = 1; // 1 Cascaded mode
    // AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
    AdcRegs.ADCTRL1.bit.CONT_RUN = 1; // Setup continuous run
    AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1; // Enable SEQ1 interrupt (every EOS)
    AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;

    AdcRegs.ADCTRL1.bit.SEQ_OVRD =1; // Enable Sequencer override feature
    AdcRegs.ADCCHSELSEQ1.all = 0x8888; // Initialize all ADC channel selects to B0
    AdcRegs.ADCCHSELSEQ2.all = 0x8888;
    AdcRegs.ADCCHSELSEQ3.all = 0x8888;
    AdcRegs.ADCCHSELSEQ4.all = 0x8888;
    AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0xf; // convert and store in 8 results registers
    }

    void dma_config(void){
    // Configure DMA Channel
    DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
    DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
    DMACH1AddrConfig(DMADest,DMASource);
    DMACH1BurstConfig(15,1,1);
    DMACH1TransferConfig(7,1,1);
    DMACH1WrapConfig(0xFFFF,0,0xFFFF,0);
    DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
    OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
    }


    void scib_fifo_init(void)
    {
    ScibRegs.SCICCR.all =0x0007; // 1 stop bit, No loopback
    // No parity,8 char bits,
    // async mode, idle-line protocol
    ScibRegs.SCICTL1.all =0x0003; // enable TX, RX, internal SCICLK,
    // Disable RX ERR, SLEEP, TXWAKE
    ScibRegs.SCICTL2.bit.TXINTENA =1;
    ScibRegs.SCICTL2.bit.RXBKINTENA =1;
    ScibRegs.SCIHBAUD =0x0000;
    ScibRegs.SCILBAUD =SCI_PRD;
    // ScibRegs.SCICCR.bit.LOOPBKENA =1; // Enable loop back
    ScibRegs.SCIFFTX.all=0xC028;
    ScibRegs.SCIFFRX.all=0x0028;
    ScibRegs.SCIFFCT.all=0x00;
    ScibRegs.SCIFFTX.bit.SCIFFENA = 1; //WO ZIJI JIA DE
    ScibRegs.SCICTL1.all =0x0023; // Relinquish SCI from Reset
    ScibRegs.SCIFFTX.bit.TXFIFOXRESET=1;
    ScibRegs.SCIFFRX.bit.RXFIFORESET=1;

    }