最新技术文章
  • 模拟: SAR ADC 响应时间:迅速响应、快速控制

    Kaustubh Gadgil

    很多典型控制系统应用的目标是根据输入控制变量的状态来影响控制操作。其中的一些变量包括位置、速度、角度、水平、温度和压力。

    对于这些控制变量中的每一个,你也许需要针对“精确的”测量、“准确的”控制操作和/或快速“响应时间”来优化设计。在这个系列博文中,我们将讨论SAR DAC响应时间和几种实现设计最佳效果的方法。

    当我们考虑模拟电子元器件时:

    • 系统的“高精度”要求转化为你的模拟块(放大器、基准、传感器等)和混合信号块(ADC,DAC等)所需要的性能技术规格。
    • 系统的“响应时间”要求转化为主机控制器的选择和混合信号块(ADC,DAC等)的速度。

    但是,让我们将注意力放到如何优化系统响应时间 (tRESP) 上来。其中一个比较有效的方法是在设计中的不同“非实时”块上…

  • 模拟: SAR ADC响应时间 vs. 市场营销: 有趣的类比

    Kaustubh Gadgil

    当需要SAR ADC的响应时间为1µs时 (tRESP-ADC = 1µs),很多工程师会寻找数据吞吐量为1Msps (tTHROUGHPUT = 1us) 的SAR ADC。事实上,这两个参数是不一样的。为了说明他们之间的差异,我们来看看下面的类比:

    你是一位主要零售公司的市场营销经理。为了大大增加用户基础,你所在的这家公司打算启动一个全新的电子零售业务。为了启动这个业务,你确定了电子零售流程的3个基本步骤:

    1. 理解用户需求
    2. 确定正确产品
    3. 通过安全、外部的支付途径来付费

    你监督指导两个团队,团队A和团队B,来设计电子零售门户网站。为了保持高质服务并且最大限度地提高利润,你为两个团队设定了以下目标:

    1. 最大限度地增加每天的用户访问量
    2. 用户满意度评分 > 80

    一旦两个队伍准备就绪,你发布每个队伍的“测试”版本,并调查使用反馈。调查结果显示如下…

  • 模拟: ADC精度(II):解释总不可调整误差

    Vinay Agarwal

    在第一篇ADC精度帖子中,我们确定了模数转换器 (ADC) 的分辨率和精度间的差异。现在我们深入研究一下对ADC总精度产生影响的因素,通常是指总不可调整误差 (TUE)。

    曾经想到过ADC的TUE技术规格中的“总”代表什么吗?他是不是简单到将ADC数据表的所有DC误差技术规格(即偏移电压,增益误差,INL)相加,还是要更复杂一些?事实上,TUE是总系统误差相对于ADC工作输入范围的比率。

    更确切地说,TUE是单位为最低有效位 (LSB) 的DC误差技术规格。最低有效位 (LSB) 代表ADC的实际和理想传递函数之间的最大偏离。这个技术规格假定未执行系统级校准。在概念上,TUE是ADC运行方式中以下非理想类型数值的组合:

    • 偏移误差 (VOS):如图1所示,ADC实际和理想传递曲线间的恒定差异。这个值是测得的将ADC输入短接至地而获得的数字输出。

     

    图1. A…

  • 模拟: ADC精度(I):精度与分辨率是一回事吗?

    作者: Vinay Agarwal

    在与使用模数转换器 (ADC) 的系统设计人员进行交谈时,我最常听到的一个问题就是:

    “你的16位ADC的精度也是16位的吗?”

    这个问题的答案取决于对分辨率和精度概念的基本理解。尽管是两个完全不同的概念,这两个数据项经常被搞混和交换使用。

    今天的博文详述了这两个概念间的差异。我们将在一系列帖子中深入研究造成ADC不准确的主要原因。

    ADC的分辨率被定义为输入信号值的最小变化,这个最小数值变化会改变数字输出值的一个数值。对于一个理想ADC来说,传递函数是一个步宽等于分辨率的阶梯。然而,在具有较高分辨率的系统中(≥16位),传输函数的响应将相对于理想响应有一个较大的偏离。这是因为ADC以及驱动器电路导致的噪声会降低ADC的分辨率。

    此外,如果DC电压被施加到理想ADC的输入上并且执行多个转换的话,数字输出应该始终为同样的代码(由图1中的黑点表示)。现实中…

  • 汽车: 低压差稳压器削减汽车电池待机耗电

    长途旅行之后遇到的最糟糕的事情之一就是发现汽车无法正常起动。原因很简单:汽车电池没电了。是谁“盗取”了电池的电能呢?有人也许会惊讶地得知:耗尽电池电能的实际上正是汽车本身。即使当汽车熄火时,许多系统仍然工作于待机模式,因此依旧耗用电池的电能。比如:防盗锁止器和遥控无钥匙进入系统一直监视着外部信号。信息娱乐和仪表盘必需处于待机状态以在汽车点火之后实现系统的快速启动。

     

    随着近几十年来汽车的迅猛发展,人们对于汽车智能的预期也在不断攀升。智能化程度较高的汽车需要更多的电子控制单元 (ECU)。然而,汽车电池技术并未取得突破性的改进。为了延长电池的使用寿命,汽车制造商开始对每一种待机 ECU 的静态电流设置日益严格的要求。目前,要求整个 ECU 的静态电流低于 100μA 的趋势正席卷业界,一举超越了传统的毫安 (mA) 级静态电流规格要求。

     

    对于处在待机模式的 ECU 来说,通常至少有三类组件是消耗功率的…

  • 汽车: 汽车中的音频插孔开关

    Other Parts Discussed in Post: TS3A225E, TS3A227E

    在当今的汽车电子应用中,工程师们融入了越来越多由个人电子产品所启发的功能。于是,音频插孔如今开始出现在汽车之中。它们可用于后座娱乐、可拆卸式导航装置或汽车级平板电脑。当查看个性化内容时,乘客往往喜欢使用自己的头戴式耳机。这样做不仅保护了他们的个人隐私,而且还能避免驾驶者在乘客查看内容时分心他顾。

     

    用于这些有线头戴式耳机的音频插孔是标准的 3.5 mm 连接器。过去,此类音频插孔一直是具有一个尖端 (tip)、环 (ring) 和套筒销 (sleeve pin) 的三芯插孔。随着该行业的发展,更多的高级音频娱乐环境系统逐步实现了需要一个传声器输入的按键和话音命令功能。这样一来,系统就必需支持具有一个尖端、两个环和套筒销的四芯插孔。然而,支持传声器给系统设计人员带来了一个不同的问题,因为市面上有两种四极插孔,它们具有不同的传声器和接地位置…

  • 电源管理: 如何借助LDO提高降压转换器的轻负载效率 – I

    设计一个空负载时流耗仅有几微安的DC/DC转换器可以被看作是用打火机油为大排量汽车补充燃料 – 你也许能让他运转,但是并不容易!在大多数新式DC/DC转换器中,满负载时的高效率已司空见惯,然而,在负载被禁用或者断开时实现高效率仍然是一项困难且/或者开销很大的任务。

    很多汽车工业应用不但在满负载时要求从主电源到低至负载点 (POL) 电压的高效12V或24V降压电力转换,而且在器件处于空闲或者关断状态时需要流耗极低。为了实现如此低的电流,你可以简单地使用一个与降压转换器并联的低压降稳压器 (LDO) ,在系统进入轻负载/无负载状态时从电池汲取最少的电流。

    最终,在系统中延长电池使用寿命的理想情况将是禁止任何可能的器件使用输入电源。然而在某些情况下,对于系统中的特定组件,仍然需要为他们提供稳压电压,以便在关断状态期间实现与其他系统块的通信(即汽车应用中的CAN总线收发器)。不是专门针对轻负载效率而设计的DC/DC转换器在没有负载的时候流耗为几毫安…

  • 模拟: 用SPICE仿真高精度数模转换器

    Kunal Gandhi /Pahul Rrakash

    对于工程师来说,最令他们担心和紧张的时刻也许就是他们的设计从制造厂返回、准备进行测试的时候。虽然在实验室中首次看到我们的概念或者设计作品时令人很激动,但是有时我们也必须接受重大失败的现实。

    在这篇博客中,我们将重点讲述系统性能预测及如何避免设计失败。可立即映入我脑海中能避免这些失败的术语就是“仿真”。当前,除了数模转换器 (DAC) 之外,用户可以在SPICE仿真工具中建模并仿真模拟信号链组件中的绝大多数组件。借助于针对高精度DAC的SPICE模型,在实现实际硬件前,电路板工程师不再需要完全依赖于手算结果。

    我们可提供两款不同的SPICE模型。其中的一个使用简单的n位宽并行接口,如图1中所示,此模型与所有TINA-TI版本器件兼容。而另外一款模型使用一个串行SPI接口,如图2中所示,他与工业用TINA-TI器件兼容。两款不同的模型包括针对DAC和输出放大器的重要直流特性…

  • 电源管理: 48 输出 LED 驱动器为大众带来妙趣不尽的显示牌

    驱车行驶在城市的大街上时,环顾一下四周,您会看到越来越多的全色 LED 标牌及留言板出现在商店、饭店和办公大楼的外墙上。随着 LED 矩阵显示系统产量的快速增长,广告标牌现在可提供商店老板可承受的价格。为了支持这一需求,我们正在努力开发新技术,进一步优化可实现这些显示屏的 LED 驱动器。

    今年年初,TI 推出了业界第一个 48 输出(48 通道)LED 标牌显示器驱动器产品系列。TLC5954TLC5955TLC5958 提供三个等级的集成度,支持不同程度的灵活性。

    TLC5954

    TLC5955

    TLC5958

    说明

    支持亮度控制的 48 通道 LED 驱动器

    支持单点矫正和亮度控制的 48 通道、16 位 PWM 驱动器

    具有 48kb SRAM 和预充电 FET 的 48 通道、16位 PWM 驱动器

  • 电源管理: 探索宽泛 Vin DC/DC 转换的电流模式控制

    面对各种电源电压变量,如何在降低宽泛输入 DC/DC 解决方案成本与复杂性的同时,最大限度提高其性能与可靠性?例如,新增启停技术的汽车动力系统会涉及多变的电压分布(如图 1 所示),需要采用前置升压或降升压功率级,该功率级必须满足 40V 甚至更高电池负载突降过压瞬态的要求。

    图 1:汽车冷启动波形实例

    随着要求更高的宽泛 VIN 应用逐步走向成熟,我们必须采用合适的 DC/DC 转换器功率级及控制环路设计来应对大型输入电压干扰以及所预见负载电流瞬态带来的挑战。幸运的是,经典电流模式控制非常适合宽泛 VIN 电源转换器解决方案,可提供简单易用、特性集成、高度电流可扩展性以及更高性能等各种优势。

    因此,当前电源电子工程师应充分理解电流模式控制。为此,我最近写了一篇分两部分的文章《DC/DC 转换器的电流模式控制稳定性分析》,更加深入地探讨了该主题。

      

    图 2:支持峰值/谷值电流模式控制的 DC/DC 同步降压转换器…

  • 电源管理: 低功耗偏置电源 — 线性、降压或反激式?

    作者:Sheng-yang Yu1

    偏置电源在电源中很重要。在电源内部,需要偏置电源给 IC 加电。在电源外部,可能需要偏置电源给系统中的 MCU 和/或其它局部电源加电。

    很多低电压 IC(额定电压小于 100V DC)都将偏置电源集成到该 IC 内部。不过,对于 AC-DC 电源而言事情会变得更加复杂,因为现在需要处理高很多的输入电压。

    偏置电源有几种设计方法。今天,我将介绍在 AC-DC 应用中实现偏置电源的 3 种选项:线性、降压转换器或反激式转换器。

    线性偏置电源

    BJT 线性电路可提供一款组件数量最少的简单偏置电源解决方案。不过,使用该方案的主要缺点是效率低。

    图 1. BJT 线性偏置电源

    在图 1 的实例中,要使用通用 AC 输入(85VAC 至 264VAC)实现 12V/50mA 的偏置电源,需要为 R2 应用 2kΩ 的最大电阻器。即便使用串联电阻器,仍需补偿 BJT 上的损耗,在输入为 …

  • 电源管理: 如何设计具有 COT 的稳定 Fly-Buck™ 转换器 - 2

    作者:Xiang Fang

    本博客共分两个部分,第 1 部分我们探讨了使 Fly-Buck 设计稳定所需的重要设计指标。本文我们将介绍如何将这些设计指标应用到 Fly-Buck 电路设计中,以及这会对转换器工作产生怎样的影响。

    图 2. 典型的双输出 LM5017 Fly-Buck 电路

    我们假设您已经收集了所需的电源规范,并决定使用 LM5017 Fly-Buck 作为电源解决方案(图 2)。Fly-Buck 设计过程与普通降压转换器有很多共同之处。在确定一次侧电感和开关频率后,下一步就是设计合适的纹波注入网络(Rr、Cr 和 Cac),以确保稳定工作。设计步骤如下:

    1. 首先从一些初始值开始:Rr=10kΩ、Cr=10nF、Cac=1nF
    2. 调整输出电容,确保达到稳定性指标:

    应提供足够的裕量以获得不等式左侧信息。如果将功率损耗包含在内,真正的占空比会更大一点,而且 DC 偏置额定值降低以及对陶瓷电容的温度影响会让电容值更低…

  • 电源管理: 如何设计具有 COT 的稳定 Fly-Buck™ 转换器 - 1

    作者:德州仪器 Xiang Fang

    Fly-Buck™ 转换器拓扑被公认为是一种多功能的隔离式偏置电源,其在各类应用中得到了越来越多的关注。同步降压转换器可以配置成 Fly-Buck,但并非所有控制方法都能简单应用于这种拓扑。

    图 1. 纹波注入网络 Rr、Cr 和 Cac

    LM5017 是一款支持恒定导通时间 (COT) 控制的 100V 同步降压稳压器,特别适合 Fly-Buck。COT 不需要补偿网络,可简化 Fly-Buck 设计,而且 Fly-Buck 的设计流程与普通降压设计或多或少有些相似。LM5017 产品页面上有很多设计实例。不过,有个问题还是会被经常问起:如何设计稳定的 COT Fly-Buck?答案可能很简单,但背后的解释可能则会很复杂。我们将通过两篇文章加以说明:本文我们将重点讨论技术分析,第二篇文章则将针对设计进行逐步指导。

    顾名思义,占空导通时间是在给定输入电压下进行 COT…

  • 电源管理: Fly-Buck何时是隔离式电源的最佳选择?

    作者: 德州仪器 Vijay Choudhary86929

     

    图 1. 隔离式转换器(拓扑与电源)

    有很多应用都需要偏置电轨,而且这些电轨必须与主电源隔离。工程师一直使用各种方案生成这些电轨,包括反激式转换器、带变压器的低侧或推挽式驱动器、隔离式模块或者专有集成型解决方案等。Fly-Buck™ 转换器(或隔离式降压转换器)正日益成为深受欢迎的低功耗隔离式偏置解决方案,这主要得益于其简便性、易用性、低组件数,以及TI LM5017 系列部件等宽泛 Vin 集成型稳压器的提供。客户与现场工程师经常会问,为什么他们需要选择 Fly-Buck 解决方案,而不继续使用反激式解决方案。为了回答这个问题,我需要换个问法:“Fly-Buck 解决方案何时更好?”本博客会确定一些应用属性,只要这些属性一出现,Fly-Buck 就会变得更具吸引力。

    低功耗(10W、5W、2.5W、1W)隔离式电轨

  • 电源管理: PowerLab 笔记:为家庭 IoT 提供强大动力

    作者:Brian King

    物联网 (IoT) 时代已经到来。最近有很多关于 IoT 的话题,人们猜测在不久的将来 IoT 将如何构建我们的生活。虽然还有很长的路要走,但环视一下家里的情况,您会发现我们在几年前就已经开始了这段旅程。

    要了解 IoT 对我们的生活已经产生了怎样的影响,必须首先对 IoT 的含义有个大致的了解。什么是 IoT?它的基本意思是将设备与家用电器(“物”)连接至互联网,以实现控制与数据传输等更多功能。点击这里阅读有关 IoT 的更详细说明。

    在家中您能找到哪些 IoT 连接设备实例?

    已经接入 IoT 的“物”包括家用自动调温器、消防警铃和一氧化碳检测器。Nest 智能自动调温器已广泛深入人心,并激励了许多类似竞争产品的出现。

    我们房子的外墙上也有这样的设备。公共事业公司好多年前就部署了智能电表。这样不仅无需派人去抄表,省钱省力,而且还可收集到一段时间内的重要能源使用信息…

  • 电源管理: 如何改进 Fly-Buck 拓扑中的隔离式输出稳压(第 2 部分)

    Other Parts Discussed in Post: LM5017

    作者:德州仪器 Vijay Choudhary 和 Sourav Sen

    在本 Fly-Buck™ 拓扑系列博客的第 1 部分,我们介绍了隔离侧二次补偿环路的意图和理念。本文我们将回顾这种补偿电路并展示二次侧稳压的改善效果。

    图 1. 在二次输出上提供反馈补偿电路的 Fly-Buck 转换器

    图 1 是完整的补偿电路与原型 LM5017 应用电路。外部补偿电路包含一款用于反馈隔离的光耦合器以及用作误差放大器在较低频率下提供很大增益的并联稳压器 LM431A [3]。反馈电路包含一个可确定截止频率的典型 I 类补偿网络 (C1、R1)。此外,该 I 类补偿还可确保高 DC 增益,减少低频率 DC 稳压误差。在光耦合器中的光电晶体管开启时,一次输出的有效反馈比会下降。

    图 2 是具有正确电路参数的修改电路。增加补偿电路后,电阻分压器比率…

  • 电源管理: PowerLab 笔记:如何测量电流 — 2

    作者:Robert Taylor1

     

    我们几乎总需要测量一些类型的电流。在上篇文章中,我介绍了测量电流的两个主要原因,以及采用损耗电流感测技术进行测量的几个方法。本文将重点介绍无损电流感测技术。

    使用已有电路元件!我们将介绍两种采用已有电路元件进行电流感测的方法。这两种方法是电感器 DCR 感测和 FET 感测。

    电感器 DCR 感测并不是特别精确,但已足够了。电感器的 DCR 通常近似于 +/- 10%。温度系数会因铜而发生变化,您可能会得到一些很不准确的测量值。可取之处是在 DCR 网络之后,您最终可得到不含开关噪声的、非常干净的信号。图 1 是从电感器的 DCR 提取电流信息所需的网络。

    图 1

    通过以下公式选择该网络的组件:

    在设置 DCR 网络时有几个因素需要考虑:

    1. 控制器或感测电路能够处理的最大信号量 — 可能需要拆分。
    2. 温度补偿 — 具有负温度系数的组件可在温度变化时用来帮助保持…
  • 电源管理: 一次性按钮开关帮助最大限度延长闲置时间

    作者:Michael Hartshorne

    很多现代便携式设备发货时都必须安装电池,以便客户无需电池安装或充电便可立即开启设备。如果连接至电池的组件有过量电流“泄漏”,那设备到客户手中时可能就没电了。所有组件都有漏电流情况,尽管 IC 组件是主要元凶,但电容器、电路板脏污和湿度也具有不可预测的漏电等级。

    解决这个问题并非小事。将负载从电池完全断开时可获得最长闲置时间,但任何上电检测电路都需要连接电池才能工作。此外,PCB 面积在很多电池供电应用中也非常重要,很难为单个锁存开关电路调整空间。

    一种简单直接的方法是使用简单的 P 型 MOSFET (PMOS) 和 N 型 MOSFET (NMOS) 锁存器断开电池。

    然而,这个看似简单的电路可导致不可靠的性能。开关上的任何干扰都将打开锁存器。此外,如果输出电压跳至正极,或者 PMOS 的 CGS 和 NMOS 的 CDS 创建的电容分压器将 PMOS…

  • 电源管理: 如何使用谐波注入法降低 PFC 谐波并改善 THD(第 2 部分)

    作者:Bosheng Sun

    第 1 部分中,我介绍了在后台环路中生成所需高阶正弦信号的步骤。今天,我不仅将介绍如何将该正弦信号注入 PFC 控制环路,而且还将介绍该方法的一个实际使用实例。

    按照以下步骤在中断环路中实施谐波注入法:

    1. 在出现 Vac 零点交叉时,将准备好的正弦信号与 Vac 同步。
    2. 将这些正弦信号注入 PFC 电流环路。电流环路中有几个可将其注入的位置,不过我的实验显示:注入 PWM 工作位置效果最佳。
    3. 为下一个 AC 周期重复步骤 1。

    该步骤如图 1 所示:

    图 1 谐波注入流程图

    该推荐方法在 360W 单相位 PFC 上进行了测试。谐波分析器显示,PFC 中的第三及第五谐波为高,因此应生成三阶及五阶正弦信号并将其注入电流控制环路。如图 2 所示,通过谐波注入可显著降低第三及第五谐波。

    图 2. 使用谐波注入和不使用谐波注入的谐波对比

    在抑制单个谐波时,THD 也会改善…

  • 电源管理: 如何使用谐波注入法降低 PFC 谐波并改善 THD(第 1 部分)

    作者:Bosheng Sun

    作为德州仪器 (TI) 高性能隔离式电源团队的一名工程师,我主要与通常需要高性能电源的服务器及电信公司合作。开发高端功率因数校正 (PFC) 设计,不仅需要在特定负载下使总谐波失真 (THD) 低于一定百分比,而且还需要每个谐波都不超过 IEC 61000-3-2 合规性标准中规定的特定限值。在这篇共分两部分的博客中,我将介绍用于降低 PFC 谐波和改善 THD 的谐波注入法。

    表 1,IEC 61000-3-2 谐波限值

    闭环调谐通常是一种降低谐波失真、改善 THD 的有效方法。不过,我看到过有 PFC 设计通过了 THD 测试,但无论工程师如何努力调谐控制环路,也无法通过单个谐波失真测试。传统闭环调谐在这种情况下帮助不大。因此需要使用新的方法来应对单个谐波。

    我看到过工程师通过在单开关三相位整流器设计中注入三阶电流信号来降低 THD。这使我想到了一种抑制(补偿)高幅值谐波的类似方法。这种方法应该很容易使用…

  • 电源管理: 通过数字电源实现更多从线路到负载的应用

    作者:Tara Stratton

    从零开始构建完整的系统设计,通常都很难。如果能有一个可以参考的参考设计,事情就会比较简单。您很走运!今天,我们将介绍三款最新参考设计帮助您更轻松地通过高电压数字电源实现更多应用。

    这三款最新参考设计在 TI Designs 中提供,也就是说每个参考设计都包含原理图或方框图、材料清单、测试数据或用户指南以及设计过程中可能有用的任何其它设计文件。这些设计既可以按原样使用,也可将其作为根据自身需求自定义全新设计的灵感。这三款德州仪器 (TI) 设计都适用于电信与服务器 AC-DC 电源、工业 AC-DC 及工业 DC-DC 电源、军用电源以及电动汽车电池充电应用。了解这几款参考设计:

    • 设计两相位交错式 PFC,请试用 TIDM-2PHILPFC,其可帮助您设计整流器中使用的、带集成计量功能的两相位交错式功率因数校正转换器。

  • 电源管理: 如何提高 ANY-OUT 可编程输出电压器件的分辨率

    作者:Xavier Ramus

    您可利用可调节 LDO 创建任意输出电压。不过,对于 TPS7A8300TPS7A7100TPS7A7200 以及 TPS7A7300 等 ANY-OUT 可编程输出电压器件而言,情况并非如此,其范围和分辨率都是有限的。对于这四款器件,您可使用它们的通用反馈架构提高分辨率。

    下图是通用反馈架构:

    图 1:ANY-OUT 架构

    我以 TPS7A83 的值为例。注意,参考电压基本上由放大器周围的增益放大。反馈电阻器在这里设置为 2.R,增益电阻器可以选择。此外,增益电阻器还可进行二进制加权。如果将阻值为 R 的增益电阻器连接至接地,那参考电压的增益就将为 1+(2.R)/R=3,输出将调节为 0.8V ×3= 2.4V。

    由于增益电阻器可进行二进制加权,因此每个连接至接地的增益电阻器都会有 的贡献。当有多个电阻连接至接地时,可通过叠加来确定输出电压。

    最小分辨率由最大增益电阻器提供…

  • 电源管理: 汽车音频电源

    作者:Robert Taylor1

    上高中时,我在一家本地快餐店打工。那时攒钱并不是为了上大学或者做其它更实际的事情,而是用来买汽车音响等其它东西。

    我有一辆丰田花冠掀背车,那是辆破车,也是第一辆完美的车。经过两年的积累和升级,我最终有了一套比这辆车还值钱的立体声系统。它是一套很棒很响的系统!我上大学和在德州仪器 (TI) 工作的前两年一直开这辆车。最后,我淘汰了这辆车和这套立体声音响,但我仍在心里为高性能汽车音频保留了一个位置。

    车体组件汽车音响系统(不是我那套,但类似!)

    汽车系统中的主电源是汽车电池和交流发电机。这是一套 12V 的系统,所提供的交流发电机工作电压在 14.4V 左右。音响系统环境从电压瞬变角度来看也非常恶劣。要想使车窗震动起来,您需要大量的电源。

    汽车音频系统有很多组件:音响主机、放大器以及均衡器等。所有这些组件都需要电源。在本文中,我们将重点探讨最高功率器件 — 放大器。最新放大器使用 D…

  • 电源管理: 如何简化 AC/DC 适配器设计

    作者:Brian King

    如果您最近在TI 网站上购买过低功耗 AC/DC 控制器,您可能已经注意到了 UCC28910。这款小部件可大有来头!它是进军高电压集成 FET 市场的第一款产品,就像我们很多最新反激式控制器一样,它也具有一次侧稳压 (PSR) 优势。通过将控制器与集成型 FET 和 PSR 相结合,您可显著简化 AC/DC 转换器设计。在您试图设计包括电源在内的任何产品时,使其保持简单通常会带来最佳效果。降低复杂性总能提高可靠性,缩小尺寸并降低成本。

    通过图 1 可以看出使用 UCC28910 的设计有多简单。这是 PMP9171 的原理图,其可通用 AC 输入在 250mA 下生成 15V 的隔离电源。首先,将 FET 放入控制器封装内部,可显著简化原理图的一次侧。这样做的另一个优势在于:可通过变压器从 FET 及其与输入电压的连接获得启动电源。其次,PSR 可消除光电耦合器、TL431 以及几款用于补偿的电阻器和电容器…

  • 电源管理: 如何调节低电压隔离电源

    作者:Brian King

    多年来我设计了很多隔离式电源。正如您可能猜想的那样,大部分这些电源往往都有 3.3V 或更高的输出电压。当要我设计一款 2.5V 隔离式电源时,我最初的想法是根本不可能使用 TL431 实现这种低输出电压。想到必须生成更高的辅助输出电压只用于为误差放大器、参考和光电耦合器供电时,我感到有些退缩。经过一番思考,琢磨如何更好地利用现有电压后,我想出了添加一个 PNP 型晶体管的简单解决方案。要理解问题与解决方案,首先要清楚 TL431 的内部情况以及如何用它来调节电源。

    TL431 并联稳压器也许是隔离式开关电源中最常见的 IC。它可为精确调节输出电压提供低成本的简单方法。图 1 是 TL431 以及用来调节隔离式电源输出的典型应用电路的方框图。TL431 在单个三端器件中整合了一个内部参考和一个放大器。R3 及 R5 电阻分压器与 TL431 的内部参考电压可设置输出电压。在 TL431 内部,误差放大器的输出可驱动晶体管的基极…