This thread has been locked.
If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.
大家好、
我尝试使用 Tiva 芯片上的 PE2来读取模拟输入。 我找到了下面的示例、并尝试对其进行编辑以读取该端口、但我只得到大约287的值。
奇怪的是、无论输入电压是多少、读入的第一个值的值仍然为+/- 3。 但是、如果我复位程序、我会看到大约20个跳变 (例如、如果我将输入电压降低0.2V。)
我忘记设置或重置某个内容了吗? 我应该使用其他示例吗?
(我不想使用 uDMA 例程、该示例看起来过于复杂、每隔几秒只需简单读取一次。)
//***************************************************************************** // // single_ended.c - Example demonstrating how to configure the ADC for // single ended operation. // // Copyright (c) 2010-2020 Texas Instruments Incorporated. All rights reserved. // Software License Agreement // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // Neither the name of Texas Instruments Incorporated nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This is part of revision 2.2.0.295 of the Tiva Firmware Development Package. // //***************************************************************************** #include <stdbool.h> #include <stdint.h> #include "inc/hw_memmap.h" #include "driverlib/adc.h" #include "driverlib/gpio.h" #include "driverlib/pin_map.h" #include "driverlib/sysctl.h" //***************************************************************************** // //! \addtogroup adc_examples_list //! <h1>Single Ended ADC (single_ended)</h1> //! //! This example shows how to setup ADC0 as a single ended input and take a //! single sample on AIN0/PE3. //! //! This example uses the following peripherals and I/O signals. You must //! review these and change as needed for your own board: //! - ADC0 peripheral //! - GPIO Port E peripheral (for AIN0 pin) //! - AIN0 - PE3 //! //! The following UART signals are configured only for displaying console //! messages for this example. These are not required for operation of the //! ADC. //! - UART0 peripheral //! - GPIO Port A peripheral (for UART0 pins) //! - UART0RX - PA0 //! - UART0TX - PA1 //! //! This example uses the following interrupt handlers. To use this example //! in your own application you must add these interrupt handlers to your //! vector table. //! - None. // //***************************************************************************** //***************************************************************************** // // Configure ADC0 for a single-ended input and a single sample. Once the // sample is ready, an interrupt flag will be set. Using a polling method, // the data will be read then displayed on the console via UART0. // //***************************************************************************** int main_adc(void) { // // This array is used for storing the data read from the ADC FIFO. It // must be as large as the FIFO for the sequencer in use. This example // uses sequence 3 which has a FIFO depth of 1. If another sequence // was used with a deeper FIFO, then the array size must be changed. // uint32_t pui32ADC0Value[1]; // // Set the clocking to run at 20 MHz (200 MHz / 10) using the PLL. When // using the ADC, you must either use the PLL or supply a 16 MHz clock // source. // TODO: The SYSCTL_XTAL_ value must be changed to match the value of the // crystal on your board. // SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ); // // The ADC0 peripheral must be enabled for use. // SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0); // // For this example ADC0 is used with AIN0 on port E7. // The actual port and pins used may be different on your part, consult // the data sheet for more information. GPIO port E needs to be enabled // so these pins can be used. // TODO: change this to whichever GPIO port you are using. // SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE); // // Select the analog ADC function for these pins. // Consult the data sheet to see which functions are allocated per pin. // TODO: change this to select the port/pin you are using. // GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_2); // ADCSequenceStepConfigure(ADC0_BASE, 0, 0, ADC_CTL_CH0); // PE3 ADCSequenceStepConfigure(ADC0_BASE, 0, 0, ADC_CTL_CH2); // PE3 // // Enable sample sequence 3 with a processor signal trigger. Sequence 3 // will do a single sample when the processor sends a signal to start the // conversion. Each ADC module has 4 programmable sequences, sequence 0 // to sequence 3. This example is arbitrarily using sequence 3. // ADCSequenceConfigure(ADC0_BASE, 3, ADC_TRIGGER_PROCESSOR, 0); // // Configure step 0 on sequence 3. Sample channel 0 (ADC_CTL_CH0) in // single-ended mode (default) and configure the interrupt flag // (ADC_CTL_IE) to be set when the sample is done. Tell the ADC logic // that this is the last conversion on sequence 3 (ADC_CTL_END). Sequence // 3 has only one programmable step. Sequence 1 and 2 have 4 steps, and // sequence 0 has 8 programmable steps. Since we are only doing a single // conversion using sequence 3 we will only configure step 0. For more // information on the ADC sequences and steps, reference the datasheet. // // ADCSequenceStepConfigure(ADC0_BASE, 3, 0, ADC_CTL_CH0 | ADC_CTL_IE | // ADC_CTL_END); ADCSequenceStepConfigure(ADC0_BASE, 3, 0, ADC_CTL_CH2 | ADC_CTL_IE | ADC_CTL_END); // // Since sample sequence 3 is now configured, it must be enabled. // ADCSequenceEnable(ADC0_BASE, 3); // // Clear the interrupt status flag. This is done to make sure the // interrupt flag is cleared before we sample. // ADCIntClear(ADC0_BASE, 3); // // Sample AIN0 forever. Display the value on the console. // while(1) { // // Trigger the ADC conversion. // ADCProcessorTrigger(ADC0_BASE, 3); // // Wait for conversion to be completed. // while(!ADCIntStatus(ADC0_BASE, 3, false)) { } // // Clear the ADC interrupt flag. // ADCIntClear(ADC0_BASE, 3); // // Read ADC Value. // ADCSequenceDataGet(ADC0_BASE, 3, pui32ADC0Value); // // This function provides a means of generating a constant length // delay. The function delay (in cycles) = 3 * parameter. Delay // 250ms arbitrarily. // SysCtlDelay(SysCtlClockGet() / 12); } }
感谢您提供任何指导。 我知道我缺少一些简单的东西。
Bob
这来自器件数据表。 https://www.ti.com/lit/pdf/spms376。 转到801页查看该表。