最新技术文章
  • 电源管理: TPS546D24A PMBUSTM输出电压和输出电流

    Other Parts Discussed in Post: TPS546D24A, TPS546D24, TPS543B20, TPS53688

    作者:Wenhao Wu

    PMBusTM是很多大电流电源管理芯片会用到的通用电源管理接口,其借用了SMBusTM的时序和命令格式,进行了电源常用命令的标准化。其中输出电压读取READ_VOUT(8Bh) 和输出电流读取READ_IOUT(8Ch) 是最常用的两个命令,但是命令返回值都是二进制,且并没有注明单位,从而给命令返回值的翻译带来了难度。另外,很多电源工程师不熟悉数字逻辑,不了解PMBus的命令格式,这进一步加大了使用带PMBus设备的困难。本文借助业界比较成功的40A可并联,带PMBus的DCDC转换器TPS546D24A,阐述输出电压读取READ_VOUT和输出电流读取READ_IOUT从返回值到十进制快速翻译方法。

    输出电压READ_VOUT

    TPS546D24A的输出电压是通过READ_VOUT寄存器中的值转化得来…

  • 汽车: 澄清有关48V系统的5种不实传言

    可用的技术、市场、环境法规以及基础设施建设的不断完善,正在将长期处于预测状态的电动汽车(EV)变为现实。根据国际能源署的《2020年全球电动汽车展望》报告,包括插电式混合动力电动汽车(PHEV)在内的电动汽车销售在2019年达到了210万辆的全球峰值,道路上行驶的此类车辆总数增加到720万辆。 

    但即使电动汽车的年均增长率达到40%,也只占全球汽车市场的1%,以及全球汽车销量的2.6%,其余市场份额仍被内燃机(ICE)车辆占据。为了满足减少二氧化碳 (CO2) 排放量以及遵守政府法规的需求,汽车制造商逐步采用48V轻混合动力(MHEV)车型。

    有些人仍对纯电动系统存在误解,但还是有不少人是此类系统的忠实粉丝。在本文中,我将澄清有关轻混电动车的5种不实传言。 

    第1种不实传言:

    市场无法再容纳48V轻混电动车这一细分领域

    虽然并不是所有消费者都已做好了放弃内燃机汽车的准备,但市场已提供了内燃机系统的各种替代方案,包括插电式混合动力电动汽车和纯电动汽车…

  • 嵌入式处理: 在 MSP430™ 微控制器 (MCU) 中集成多种功能

    我们一直在通过减少元器件的数量和节约印刷电路板的尺寸来追求系统设计的最优化。

    增添小型、低成本的微控制器(MCU)以实现简单的辅助处理功能,可以对许多电路的设计产生助益。该通用MCU并非系统中主要的处理器,但它可处理一些必不可少的系统级功能,如LED控制或输入/输出扩展。本文中,我将说明如何在系统中集成多功能通用处理MCU来缩减物料清单(BOM)成本,节省电路板空间,并最大程度地简化设计。

    例如,假如您要创建一个具有以下功能的新设计:

    • LED控制
    • I/O扩展
    • 带电可擦可编程存储器(EEPROM)
    • 外部看门狗时钟

    您可使用分立元器件来实现所有功能。也可以考虑在通用MCU上执行软件实现同样的功能,以降低复杂性并减小电路板的尺寸,如图1所示。

    图1:在单个通用MSP430 MCU上实现软件中多个分立元器件的功能

    另一个值得考虑的设计方面的挑战——也许是一个最为重要的挑战——就是符合您的设计预算要求。…

  • 模拟: 一种改善模拟调光关断性能的方法

    Other Parts Discussed in Post: TPS92513HV, ATL431

    德州仪器(TI)

    作者:Zhou, Jimmy

    在室内低压调光应用中,母线电压小于60V,一般会选用降压调光驱动器。对于调光方式,存在模拟调光和数字PWM调光两种方式。数字调光通过调整脉冲和信号周期的比率,实现调光功能;模拟调光调整输出电流的幅值,实现调光目的。相比数字PWM调光方式,模拟调光方式的线性度更好,可以实现无极调光。

                   

    1:数字PWM调光方式和模拟调光方式

    TPS92513HV是集成MOS的LED 调光芯片,输入电压支持4.5V – 60V,输出电流最高支持1.5A。同时TPS92513HV支持模拟调光和数字PWM调光模式,适用于大多数调光应用。

    2TPS92513HV典型应用电路

    对于模拟调光,由于调光IC内部集成电路的工艺,存在失调电压,即便模拟给定是0,芯片仍然会存在微弱的输出…

  • 模拟: 一种改善数字调光闪烁的方法

    Other Parts Discussed in Post: TPS92513HV, LM3414

    德州仪器(TI)

    作者:Zhou, Jimmy

    在低压调光应用领域,通常会采用Buck降压调光驱动器,具有高效率、高集成度和低成本等优势。对于Buck降压调光驱动器,存在High-side Buck和Floating Buck两种输出拓扑。如图1所示,Floating Buck中,灯串和电源输出并联;High-side Buck中,灯串直接连接输入,和滤波电感串联。相比Floating Buck,High-side Buck对于灯串短路到地的工况,可以完成有效保护,可靠性更高。

    1High-side Buck Floating Buck拓扑

    同时,在High-side Buck拓扑,为了驱动高侧的MOSFET,线路中存在BOOT电容。在每次二极管导通过程中,芯片内部路径会对BOOT电容充电。在输入和输出压差较低、调光频率较低和调光占空比较低的条件下…

  • 模拟: 一种拓展模拟采样通道数的方法

    Other Parts Discussed in Post: TMUX1208

    德州仪器(TI)

    作者:Zhou, Jimmy

    在精密测量应用领域,为了实现多通道数据测量,广泛地使用了MUX(多路复用器)芯片。在多通道的模拟量测量电路中,往往会采用MUX用于多个通道模拟量的切换,从而节省调理电路、参考电路和ADC成本,实现整体成本的最优化。

    1:典型的模拟采样应用电路

    常用的MUX的通道数是2路、8路和16路,在一些特殊应用,需要更多路的采样通道,比如64通道。对于64通道的模拟信号采样,如果采用8通道的MUX,方案整体上的资源需求如表1。可以看出,如果采用传统的结构,考虑了ADC、参考芯片和运放调理电路,整个系统成本比较高。

    1:使用8通道MUX实现64通道模拟采样的系统资源

    ADC

    参考芯片

    运放调理电路

    MUX

    MCU与ADC通信接口

    MCU控制MUX I/O口

    8

    8

  • 模拟: DP83822, DP83826在EtherCAT应用下的硬件配置

    作者:Chen Yan

    随着近年来工业互联网蓬勃发展,智能化信息化进程逐步加快,而EtherCAT技术由于其具有通讯的高性能,硬实时性能,灵活的拓扑结构,简单、低成本及充分的开放性,以EtherCAT为代表的工业以太网的发展势头远超现场总线,逐渐成为未来工业互联网的主流应用。

    EtherCAT是使用100Mbit/s 全双工的Ethernet通讯。通常由EtherCAT从站控制器(EtherCAT Slave Controller,ESC)和物理层接口PHY实现EtherCAT的应用。ESC通常会支持PHY使用MII,RMII和RGMII接口,由于RMII和RGMII接口包含TX FIFO,会增加EtherCAT从站设备的传输延时,同时也会引入抖动,所以一般不建议在EtherCAT应用中使用,本文主要讨论PHY的MII接口的硬件配置。

    下图是ESC和PHY MII之间的连接关系的示意图。ESC和PHY之间的时钟必须保持一致。LINK_STATUS是一个LED输出信号…

  • 模拟: 便携式ECG介绍及相关TI产品推荐

    TI现场应用工程师苏智超

     

    近年来,中国心血管病患病率及死亡率仍处于上升阶段,而实时的便携式心电监测能够及时地发现异常心电信号,提醒人们提前就医,避免危险病情的发生,因此近年来心电监测市场十分火热。TI在心电监测领域耕耘多年,从心电采集ADC,低功耗的电源到无线传输,均有相应的解决方案。所以,本文将为您介绍TI在ECG应用中的相关产品,帮助您快速完成硬件设计。

    一.心电导联数量与ADC选型之间的联系

    TI心电信号检测相关的ADC有很多…

  • 模拟: 如何优化48V轻混电动车(MHEV)的电机驱动器设计

    Other Parts Discussed in Post: DRV3255-Q1

    作者:Issac Hsu

    制造商制造轻混电动车(MHEV)的最终目标是减少温室气体(GHG)排放。轻混电动车包含一个连接到车辆变速器系统的48V电机驱动系统。为了减少温室气体排放,轻混电动车中的内燃机(ICE)会在车辆滑行时关闭,同时该48V电机系统会为48V电池充电,以便为车辆供电。在本文中,我将讨论48V电机驱动器的一种设计方法,该设计可提供大功率的电机驱动,实现功能安全并且尺寸更加小巧。

    大功率电机驱动的注意事项

    对于汽车动力总成应用,典型的48V电机驱动系统需要10kW至30kW的电功率。传统的12V电池系统无法满足该功率水平,因此必须采用48V架构来支持大功率电机驱动。

    阅读白皮书《如何构建功能安全的小型48V、30kW轻混电动车电机驱动系统》,详细了解如何解决电机驱动系统驱动电路中的重大设计难题。

    如图1所示,48V电机驱动器控制外部金属…

  • 汽车: 汽车区域架构优势详述

    不妨将一辆乘用车想象为多个电子控制单元(ECU)的集合,它们分布在汽车的各个位置并使用不同网络相互通信。为实现车联网(V2X)、自动驾驶和汽车电气化而添加更多先进的汽车电子产品时,ECU数量和交换数据量也都会增加。

    此外,ECU数量的增加还促进了网络类型的多样化,包括本地互联网络(LIN)、控制器局域网(CAN)以及诸如平板显示器链路(FPD-Link)、PCI Express(PCIe)和以太网等高速网络。

    在域架构中,ECU可根据功能不同分为不同的域。但区域架构是一种按照ECU在汽车内的实际位置分类的新方法,并利用中央网关来管理通信。这种物理接近性可减少ECU之间的布线,从而节省空间并降低汽车重量,同时还能提高处理器速度。

    域架构简介

    为了更好地了解域架构,可以首先了解根据功能将ECU分成的五个域,如表1所示。

    ECU功能

    动力总成域

    管理汽车的驾驶功能,包括电机控制和电池管理、发动机控制、变速器…

  • 嵌入式处理: 紧凑,精确,互联。在工厂自动化、楼宇自动化和电网自动化领域应用智能边缘计算来提高生产力

    Other Parts Discussed in Post: AM6442, AM6441, AM6421, AM6412, AM6411

    目前世界人口已经达到了78亿,并且还在不断增加,预计到2050年将达到100亿。日益增长的人口既有对衣服,食物等基本必需品的需求,对舒适、安全生活的追求也不断增长。被广泛应用于智能制造、智能楼宇和智能电网领域的工业4.0技术以及即将推出的工业5.0创新技术,都是可以满足上述需求的现代自动化技术。

    工业4.0云架构中使用的高性能多核处理引擎可以从数千个边缘传感器中收集数据并执行复杂的分析,从而管理工厂运营。随着端到端自动化的发展,传感器数量和需要管理的数据也相应地呈指数级增长。一个智能工厂可能拥有超过50,000个传感器,每天产生几千万亿字节的数据;即使是普通的办公大楼也可能产生数百GB的数据。

    据国际数据公司(IDC)估计,到2022年,将有40%的数据被存储、管理、分析并留存在产生位置(也称为…

  • DLP® 技术: 采用德州仪器DLP 技术设计裸眼3D显示应用

    该文章由Alex Lyubarsky和Paul Rancuret共同编写。 
     
    正如充满未来感的好莱坞电影中经常出现的那样,下一代投影显示将会提供逼真的观看体验。通过将立体眼镜与虚拟现实(VR)内容相结合,3D显示应用成功的实现了上述的体验场景。遗憾的是,由于使用眼镜的不便性以及3D眼镜的局限性,导致在2010年推出的3D立体显示并未在游戏和家庭娱乐中得到大规模的普及。
     
    DLP® 技术可以实现具有出色图像质量的多视角自动立体显示解决方案。通过将观看者与虚拟物体之间的距离控制在立体显示的视觉舒适区内,有助于管理DLP® 技术多视角显示应用的VAC。
     
     
     
    图1:自动立体显示多视角解决方案
     
    通过刺激人类视觉系统(HVS)中的双目线索,3D显示系统使用户能够以更强的三维感体验内容。
     
    裸眼3D系统的目标是消除对立体眼镜的需求,同时增强视觉体验以消除眼睛疲劳。
     
    可以从裸眼3D显示中受益的应用涵盖了医疗、工程和游戏系统…
  • 电源管理: 小功率电子负载实现快速负载瞬态测试

    Other Parts Discussed in Post: DRV8836, LMC555

    作者:Captain Luo

    在DCDC电源测试中,负载瞬态测试(Load Transient Test)是十分重要的一环,利用负载瞬态测试,可以快速评估所测电源的稳定性与快速性,而在DCDC转换器芯片的选型时,负载瞬态测试表现也是评估该芯片动态性能的重要参考。下图是某DCDC转换器负载瞬态测试的典型波形,CH3为输出电压的AC分量,CH4为负载电流。注意到负载电流上升斜率与下降斜率并不相同,较缓的上升斜率对应较小的电压跌落(Undershoot),而陡峭的下降斜率则对应较大的电压过冲(Overshoot)。

    图1 负载动态典型波形

    负载瞬态通常使用电子负载(E-Load)进行测试,前面提到,负载的跳变斜率(Slew Rate)将对测试结果产生关键影响,然而受设备内部电路限制,常规电子负载所能实现的di/dt不会很高,另外受不同厂家设计等因素影响…

  • 模拟: 如何设计逐次逼近型模数转换器的驱动电路

    Other Parts Discussed in Post: ADS8860, OPA320

    作者:Jenson Fang

     

    逐次逼近型(SAR)ADC是在在工业,汽车,通讯行业中应用最广泛的ADC之一,例如电机电流采样,电池电压电流监控,温度监控等等。

    通常工程师在设计SAR ADC时,通常需要注意以下三个方面:ADC前端驱动设计,参考电压设计,数字信号输出部分设计。本文将介绍ADC的前端驱动所需要的注意的一些要素。

    如图所示是一个常见的SAR ADC的驱动电路包括驱动放大器和RC滤波。接下来将从如何设计RC滤波器,以及如何选择合适的运算放大器展开。

    图1.  SAR ADC驱动电路基本架构

    如何设计RC滤波网络

    首先我们来看一下RC网络的设置,对于RC网络,它的主要作用分为以下两个方面:

    1:对ADC的Csh进行充电,由于ADC采样保持阶段需要输入给采样保持电容Csh充电。如图所示,开始采样时,Csh的电荷由输入部分(Qfrm…

  • 电源管理: 具有集成式驱动器和自我保护功能的GaN FET如何实现下一代工业电源设计

    氮化镓(GaN)半导体的物理特性与硅器件不相上下。传统的电源供应器金属氧化物半导体场效应晶体管(MOSFET)和绝缘栅极双极晶体管(IGBT)只有在牺牲效率、外形尺寸和散热的前提下才能提高功率密度。

    使用GaN则可以更快地处理电源电子器件并更有效地为越来越多的高压应用提供功率。GaN更优的开关能力意味着它可以用更少的器件更有效地转换更高水平的功率,如图1所示。GaN半导体能够在交流/直流供电应用,实现新型电源和转换系统。(例如,5G通信电源整流器和服务器计算)GaN不断突破新应用的界限,并开始取代汽车、工业和可再生能源市场中传统硅基电源解决方案。  

    图1:硅设计与GaN设计的磁性元件功率密度对比

    GaN FET:新的集成系统

    大型数据中心、企业服务器和通信交换中心会消耗大量电能。在这些电源系统中,FET通常与栅极驱动器分开封装,因为它们使用不同的工艺技术,并且最终会产生额外的寄生电感。

    除了导致较大的形状尺寸外,这还可能限制GaN在高压摆率下的开关性能…

  • 嵌入式处理: 毫米波雷达技术在角雷达的应用

    Other Parts Discussed in Post: AWR1642
    作者:Amelie Zheng

    近年来,毫米波雷达技术愈益成熟。前面在工业领域,主要介绍了道闸雷达的应用;而在汽车领域,主要的雷达应用可以大致分为两大类:角雷达(Corner Radars)和前向雷达(Front Radars)。

    角雷达(包括前向角雷达和后向角雷达)通常是短距离雷达,可满足盲区检测(BSD),变道辅助(LCA)和前后交通警报(F / RCTA)的要求;而前向雷达主要是用于自主紧急制动(AEB)和自适应巡航控制(ACC)的中远程雷达应用。

    传统的角雷达主要是基于24GHz技术,但由于新兴的法规要求,并且需要更高的带宽,更小的尺寸以及更高的性能,角雷达正逐步向77 GHz频带转移。

    本章节将会基于AWR1642介绍适用于角雷达的短程雷达解决方案。由于系统的框图跟之前的道闸雷达大同小异,主要的区别在于三点,一是雷达芯片使用的是AWR1642…

  • 嵌入式处理: 关于如何将函数封装成库使用的方法介绍

    Other Parts Discussed in Post: C2000WARE

    作者:Aki Li

    在项目开发过程中,开发者出于保护核心算法的目的,希望将部分核心代码封装起来,使得其他使用者无法查看具体的代码实现细节,而不影响正常的调用。常见的思路是将核心的函数封装成库,下面将结合例程说明具体实现方法。

    1.库的建立

    1).新建库工程

    在CCS中,选择Project -> New CCS Project,在工程配置窗口中,选择相应的“Target” device,以及输入自定义的工程名字;然后需要注意在“Project type and tool-chain -> output type”中选择“Static Library”,而不是“Executable”,“Executable”对应的是我们一般用到的可生成.out 可执行文件的工程。…

  • 电源管理: USB Type C Display Mode with TPS65994AD and TUSB1046A

    Other Parts Discussed in Post: TPS65994AD

    作者:Dylan Zheng

     

    USB Type-C日益普及,广泛应用于笔记电脑,手机,台式机和工业PC等领域,在这些应用场合往往需要Type-C 接口既支持USB3.1,同时也能够支持Display(DP)。本文主要介绍如何通过TPS65994AD和TUSB1046A实现USB Type-C DP Mode。

    TPS65994AD是一款独立的USB Type-C和 USB PD控制器,内置电源路径,支持USB PD 3.0,可以实现DP,Thunderbolt等ALT Mode。TUSB1046A是一款VESA USB Type-C AltMode redriving switch,支持USB3.1速率可达10 Gbps,也支持DP1.4速率可达8.1 Gbps,并集成了高达14 dB 的线性redriver。TPS65994AD通过CC识别接入的设备…

  • 嵌入式处理: 低成本、高精度的电池测试设备数字控制方案

    Other Parts Discussed in Post: TMS320F280049, INA821, INA828, INA819, INA188, TLV07, ADS131M08, REF2025

    作者:Jared Liu

    电池测试设备,是锂离子电池生产线后处理系统的重要环节,对于锂离子电池的质量至关重要。电池测试设备的核心功能是对锂离子电池进行高精度的恒流或恒压充放电,传统的控制方法以使用分立器件搭建的模拟控制方案为主。相比于传统的模拟控制方案,采用TI的C2000™为核心实现的数字控制方案,由于其低成本、高精度、更灵活、保密性较好等优点,将成为未来电池测试设备主流的发展方向。本文中,将详细介绍如何通过TI的C2000数字控制方案,有效降低系统成本,并保证极高的电流、电压控制精度。

    1低成本

    采用TI的C2000数字控制方案的典型结构如图 1所示:电流/电压放大器对电池充放电的电流/电压进行采样,通过模数转换器ADC将模拟信号转化为数字信号并送入C2000中…

  • 模拟: 运放输出钳位机理及避免办法

    Other Parts Discussed in Post: LM358, LM358B

    作者:Howard Zou

    运算放大器是指一类专门通过改变外围器件可以实现不同算数运算的放大器。任何一颗运放都集成了非常多的晶体管,这些晶体管除了构成基本的工作电路,同时也会有实现输入输出电压钳位等保护功能。但是因为生产工艺的原因,在制造这些保证运放正常工作的晶体管的过程中,不可避免地会引入寄生晶体管和二极管。当运算放大器工作在规格书指定的工作范围内时,这些寄生晶体管不会对芯片的工作造成影响。然而,如果运放工作在超规格书的范围时,可能使得芯片的输出异常,进入输出钳位状态,从而影响电路的正常工作。本文以LM358为例,介绍其进入输出钳位状态的机理,同时提出避免芯片被钳位的解决办法。

    一、运算放大器进入钳位状态的原理(以LM358为例)

            虽然各家厂商推出的运算放大器性能与规格互有差异,但是一般而言标准的运算放大器都包含下列三个部分。

    1.差动输入级…

  • 电源管理: 德州仪器全新同步升压变换器TPS61288,无线音箱升压变换器的理想方案

    作者:William Zhang

    近年来,无线音箱在消费类音频市场备受关注,其功能和应用多样化的需求促使该行业快速增长,逐渐成为人们日常生活的习惯用品。无线音箱从是否便携的角度可分类为非便携式和便携式两大类,其主要区别在于是否为电池供电。

    一般地,非便携式无线音箱直接由电源设配器供电,功率等级可达数十瓦至数百瓦不等,而便携式无线音箱由电池供电,输出功率通常只有数瓦至数十瓦,且常带有一个4Ω或8Ω的喇叭。为了同时满足便携性并为喇叭提供足够的输出功率,便携式无线音箱通常配备2节可充电锂离子电池,当输出功率要求高于10W时,由于电池电压不足以为后级的音频功放提供足够的功率,一般需要升压电路将电池电压升至12V~18V以满足功率需求。图1展示了典型的便携式无线音箱供电系统示意图。

    图1. 便携式无线音箱供电系统示意图

    德州仪器最新推出了升压变换器TPS61288,以优异的功率密度和整体方案尺寸领先于市场同类产品…

  • 电源管理: 通过主机自动反向唤醒功能节省 HEV/EV 的电池电量

    Other Parts Discussed in Post: BQ79600-Q1, BQ79616-Q1

    随着越来越多的车辆实现电气化,通过高精度电池监控实现最高级别的功能安全变得至关重要。但是,为了提高电池监控精度,汽车的电池管理系统必须实时高效运转,以监控其中每节电池的性能。

    在典型的混合动力汽车 (HEV) 和电动汽车 (EV) 配置中,电池管理单元 (BMU) 由一个 12V 的电池供电。为了支持遥控免钥匙进入、安全和电池监控等功能,即使在汽车停车或熄火时,电池也要持续供电。停车后,为了确保电池处于正常状态,微控制器 (MCU) 必须定期唤醒,查看高电压电池组是否出现故障。这种定期唤醒会消耗电流,并可能导致 12V 电池过早将电量放完。

    现在,设计工程师和汽车制造商可考虑通过全新的主机自动反向唤醒功能关闭主机 MCU,转而依靠电源管理集成电路 (PMIC) 保持低功耗模式运行并节省 12V 电池的电量。

     

    了解具有故障唤…

  • 工业: 如何设计一款适用于各类电池尺寸、电压和外形的电池测试仪

    锂离子电池既可应用于小型电子器件,也可应用于电动汽车、电网等较大的应用,其可轻松满足各种尺寸、电压和外形的要求。但这种应用广度意味着电池制造商不得不购买和维护每种电池类型的测试方案,从而造成巨大的相关资金投入,直接占电池最终成本的20%。

    显然,需要一种可处理不同电压、容量和外形尺寸且成本效益好、多量程的电池测试解决方案。本文介绍了数字控制回路电池测试仪的优势,并提供了一个灵活且具备较高性价比的电池测试设计示例。

    数字控制回路的优势

    电池测试仪的主要功能是控制和监控电池的充放电情况。图1所示为开关式电池测试仪的原理框图。可在模拟或数字模式下实现控制部分。在模拟实现中,脉冲宽度调制(PWM)控制器可调节流经高压和低压电源的输出电压或电流。保护电路集成在PWM控制器中。恒定电流和恒定电压反馈回路驱动PWM控制器的参考输入,以精确控制输出电流和电压。连接到反馈控制器的16位数模转换器(DAC)设置输出电流和电压。最后由一个精密的16位模数转换器…

  • 汽车: 如何设计汽车瞬态和过流保护滤波器

    如今在世界的某个地方,已经有汽车工程师开始构想新的汽车信息娱乐系统,但该系统在未来五年或更长时间内不会实现。这是因为,信息娱乐系统应用对电源有很多要求,而且该应用目前仅处于概念阶段。随着信息娱乐系统具有日益复杂的电子功能,其所需的集成电路(IC)数量越来越多,而且这些IC都会共享12V电池的功率。

    设计电源架构时需要加入电源调节和保护功能,这样才能确保系统在出现各种瞬态事件时良好运行。

    在这篇文章中,我将介绍应该注意的几种典型瞬态,以及TI如何帮助满足瞬态保护需求。


    浏览此文章,并查看参考设计:

    《汽车瞬态和过流保护滤波器参考设计》

     

    典型瞬态

    在四种常见场景中可能会发生瞬变。

    图1所示为第一种场景,即在交流发电机给电池充电的过程中,电池断开导致的负载突降事件。负载突降会导致电压上升;交流发电机的集中式钳位电路将出现35V的最大电压。

    112V系统的负载突降曲线

    图2所示为第二种场景,即电源断开时,在与电感负载并联的模块中产生较大的负电压峰值…

  • 嵌入式处理: 拥抱互联:汽车网关如何提升驾驶体验

    汽车供应商和原始设备制造商正大力投资软件研发工作,以期增加新的功能和特性,从而实现自主性、电气化和连通性。但通过增加更多的电子控制单元(ECU)来实现这些功能是不可行的,因为这会加剧系统复杂性和成本增加。

    有两种方法可整合和简化车辆中的ECU:使用域体系结构或区域体系结构。域体系结构整合了支持汽车特定功能的ECU的子集,而区域体系结构则基于其在汽车中的位置(例如:右前区)整合ECU。尽管使用这两种方法可以最小化系统复杂性并节约成本,但区域体系结构简化了处理过程,并有助于进一步最小化车内布线。

    1区域车辆体系结构说明

    1:将DRA821U用作汽车中的中央网关或区域网关的区域体系结构

    为支持区域体系结构,应设有在特定位置内的ECU之间维护现有的控制器局域网(CAN)和本地互连网络(LIN)通信的区域网关,同时还使用高带宽千兆位以太网连接到中央网关和其他区域网关。

    汽车行业已显现出:网关系统支持和桥接多个接口至关重要。DRA8…